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It is shown that the static spherically symmetric solutions to the Brans-Dicke theory of gravitation
give rise either to a naked singularity if the post Newtonian parameter p ( 1 or to a wormhole if
p)1.
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In recent years there has occurred a renewed inter-
est in wormhole physics, since the analysis of classical
traversable wormholes performed by Morris and Thorne
[1] and by Morris, Thorne, and Yurtsever [2]. Most of
the efI'orts have been concentrated on the possibility of
constructing time Inachines and on the requirement of
matter violating the weak energy condition (WEC) [3].
The standard type of work treats spacetimes that are
solutions to the Einstein field equations of general rela-
tivity, alternative models of gravity having been explored
with the aim of understanding the role of WEC violation
in connection with wormholes [4,5]. To our knowledge,
researches to investigate whether the Brans-Dicke scalar-
tensor theory of gravitation [6] can describe spacetimes
with a wormhole geometry have been done only in the
dynamic but not in the static case [7]. It is, however,
important to find phenomena for which the Brans-Dicke
and the Einstein theory make qualitatively difI'erent pre-
dictions, so it seems worth raising the question of the
existence of static Brans-Dicke wormholes, even though
the size of the dimensionless coupling constant cu is con-
sistent with ~w~ ) 500. The very large value of the pa-
rameter u and the uncertainty on experimental data ac-
tually make the Brans-Dicke and Einstein theories both
agree with the observational tests related to weak local
gravitational fields, gravitational collapsed and cosmo-
logical situations. In this paper we shall discuss the static
spherically symmetric solutions to the Brans-Dicke equa-
tions about a point source of mass M, after expressing
them as a function of the post-Newtonian parameter p
given by p = (1 + w)/(2 + tu). It will be shown that if
p ) 1 these solutions can describe a two-way (no hori-
zon) traversable wormhole, which would reduce to a one-
way traversable Schwarzschild wormhole (black hole) in
the limit p —+ 1. Of course, for the Brans-Dicke worm-
holes to have a physical meaning they should be pertur-
batively stable. Making this requirement would involve
an analysis which is, however, beyond the scope of the
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The most general static spherically symmetric line ele-
ment can be written as
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where dO = d8 + sin 6 dy . In the gauge we select,
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the solutions are
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Here il, A, R are constants, po ——(1/Go)[2/(1 + p)] as
defined in [6], and, moreover, the following constraint
must hold:

present work; it seems nevertheless appropriate to recall
that Schwarzschild wormholes are unstable under per-
turbations [8] and, since Brans-Dicke gravity differs only
slightly from general relativity, one expects those pertur-
bations to be important here as well.

The Brans-Dicke field equations are
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we get
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It is now immediately possible to relate our constants
to the parameters P and p which appear in the post-
Newtonian metric

Solutions in the form given by Eqs. (5) have already been
found in Ref. [9]. For the specification of the constants it
is convenient to write the line element in isotropic form.
By means of the transformation
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and correspondingly B & Rp results, the value of Rp
being obtained by using Eqs. (15) and (16). It is im-
mediately possible to verify that rp & 2g and therefore
Rp &0.

We shall denote by r(R) the inverse of R(r) It is t.hen
straightforward to obtain

where q is given by Eq. (13).
It is apparent that if p ( 1 we must have r & 2g and

correspondingly R & 0 results. If instead p & 1, we must
have r & rp, where the minimum allowed value rp for r
is given by
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thus obtaining

B
ArI=M, @= 1,

A
(io)

2

s(a) (~ —Iv/~W)))~+~42/(~+~)I)
R

=1—
1 —2g/r(R)

(is)

Finally, using Eq. (6) we have
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Leaving apart the value p = 1 which corresponds to in6-
nite ice~, it may be —1 & p & 1 if w ) —

2 or alternatively
it may be p & 1 if u ( —2. Both possibilities have to
be considered, because the sign of (p —1) is not yet ex-
perimentally fixed [10]. Moreover, there is no theoretical
reason to restrict (p —1) to, say, negative values. In the
solutions we are discussing, the sign of (p —1) implies
by Eq. (5d) that the effective value of G, which replaces
the gravitational constant Go and equals P, increases
(p —1 ) 0) or decreases (p —1 & 0) on approaching the
source of mass M, and neither behavior seems a priori
rej ectable.

Turning to the question whether the Brans-Dicke
spacetime can support a wormhole geometry, it is suit-
able to represent the metric (3) in the form

In the case p ( 1 one can identify a singularity at R = 0
where the invariant of curvature R p~gR ~~ is diver-
gent; the point R = 0 clearly constitutes a naked singu-
larity. In the limit p —+ 1, when the Brans-Dicke equa-
tions reduce to the Einstein equations, the event horizon
is placed at R = 2M and only in this limit could one have
a black hole solution, as pointed out by Hawking [11].
The occurrence of a naked singularity in the spherical
vacuum solutions of the Brans-Dicke theory was already
shown in the literature [12]; on the other hand, the same
type of singularity is also found in the Einstein theory of
gravitation with a massless scalar field (e.g. , [13]) or in a
charged dilaton gravity [14].

The remaining case to be discussed, i.e., p & 1, will
bring into evidence the existence of static wormhole so-
lutions to the Brans-Dicke equations. To this end let us
first consider the redshift function C (R). We notice that
since now R ) Ro ) 0 there is no horizon, and 4(R)
is finite everywhere. As to the shape function b(R), it
satisfies the condition b(R)/R & 1 and b(R)/R -+ 0 as
R -+ oo. Moreover, it results that b(R)/R = 1 when R
reaches its minimum value Ro. The functions 4(R) and

b(R) thus meet all the requirements needed to describe
what can be called a Brans-Dicke wormhole.

The line element for an equatorial slice through the
wormhole at a Axed instant of time is

d 2 2C (R)dt2
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where 4(R) and b(R) are, respectively, known as the red-
shift function and the wormhole shape function, and are
to be constrained by the properties enumerated in Ref.
[1]. In our gauge the standard radial coordinate R is

dz B
dR b(R)

- —1/2

where the embedding function z(R) is a solution of

(20)
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At the value R = Rp (the wormhole throat) Eq. (20)
is divergent, which means that the embedded surface is
vertical there. Spatial geometry is better studied by in-
troducing the proper radial coordinate

in the action for the Brans-Dicke theory. From

dR
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which can now be written
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where (Ty) p is composed of two terms: the former comes
from the energy-momentum stress of the scalar Geld and
the latter results from the presence of second derivatives

where E is the hypergeometric function and B is given
by Eq. (12).

Let us finally examine whether the wormhole discussed
above requires a WEC violating energy-momentum ten-
sor to support it. Equation (1) can suitably be rewritten
as

(24)

it follows that Gpp & 0, because we are considering the
case p ) 1. This fact, since the coupling 8~/ is non-
negative, implies that the WEC is violated. The connec-
tion between wormhole existence and WEC violation has
been discussed by several authors [1,2, 15—17].

The reason why the absence of horizons in Brans-Dicke
wormholes implies WEC violation may have the follow-
ing physical explanation [1]. A traversable wormhole re-
quires that light rays which enter it at one mouth and
emerge &om the other have cross-sectional areas initially
decreasing and then increasing. This conversion can be
produced by gravitational repulsion which acts on the
light rays passing near the throat provided in that re-
gion resides a negative energy density, as is eQ'ectively
guaranteed by the Brans-Dicke scalar field P in the case
p & 1.

In the Einstein theory of general relativity the proper-
ties required for the functions 4(R) and b(R) cause such
constraints on the matter stress tensor as to make nec-
essary the occurrence of exotic matter, especially in the
wormhole throat, where the absence of a horizon is re-
quired. In the Brans-Dicke theory of gravitation the role
of exotic xnatter is instead played, if p ) 1 (or ur ( —2),
by the scalar field P and therefore, via Mach's principle,
by the mass distribution in the Universe.
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