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It is shown that the static spherically symmetric solutions to the Brans-Dicke theory of gravitation
give rise either to a naked singularity if the post Newtonian parameter v < 1 or to a wormhole if

v > 1.
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In recent years there has occurred a renewed inter-
est in wormhole physics, since the analysis of classical
traversable wormholes performed by Morris and Thorne
[1] and by Morris, Thorne, and Yurtsever [2]. Most of
the efforts have been concentrated on the possibility of
constructing time machines and on the requirement of
matter violating the weak energy condition (WEC) [3].
The standard type of work treats spacetimes that are
solutions to the Einstein field equations of general rela-
tivity, alternative models of gravity having been explored
with the aim of understanding the role of WEC violation
in connection with wormholes [4,5]. To our knowledge,
researches to investigate whether the Brans-Dicke scalar-
tensor theory of gravitation [6] can describe spacetimes
with a wormhole geometry have been done only in the
dynamic but not in the static case [7]. It is, however,
important to find phenomena for which the Brans-Dicke
and the Einstein theory make qualitatively different pre-
dictions, so it seems worth raising the question of the
existence of static Brans-Dicke wormholes, even though
the size of the dimensionless coupling constant w is con-
sistent with |w| 2 500. The very large value of the pa-
rameter w and the uncertainty on experimental data ac-
tually make the Brans-Dicke and Einstein theories both
agree with the observational tests related to weak local
gravitational fields, gravitational collapsed and cosmo-
logical situations. In this paper we shall discuss the static
spherically symmetric solutions to the Brans-Dicke equa-
tions about a point source of mass M, after expressing
them as a function of the post-Newtonian parameter -y
given by v = (1 + w)/(2 + w). It will be shown that if
~ > 1 these solutions can describe a two-way (no hori-
zon) traversable wormhole, which would reduce to a one-
way traversable Schwarzschild wormhole (black hole) in
the limit v — 1. Of course, for the Brans-Dicke worm-
holes to have a physical meaning they should be pertur-
batively stable. Making this requirement would involve
an analysis which is, however, beyond the scope of the

*Electronic address: agnese@genova.infn.it
tElectronic address: lacamera@genova.infn.it

0556-2821/95/51(4)/2011(3)/$06.00 51

present work; it seems nevertheless appropriate to recall
that Schwarzschild wormholes are unstable under per-
turbations [8] and, since Brans-Dicke gravity differs only
slightly from general relativity, one expects those pertur-
bations to be important here as well.

The Brans-Dicke field equations are
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The most general static spherically symmetric line ele-
ment can be written as

ds? = —e*Mdt? + e (M dr? 4 22402 | (3)
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the solutions are
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Here 7, A, B are constants, ¢9 = (1/Go)[2/(1 + )] as
defined in [6], and, moreover, the following constraint
must hold:
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Solutions in the form given by Egs. (5) have already been
found in Ref. [9]. For the specification of the constants it
is convenient to write the line element in isotropic form.
By means of the transformation
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It is now immediately possible to relate our constants
to the parameters B and v which appear in the post-
Newtonian metric

ds® = —[1 - 2(%) + 2ﬂ(%)2] dt?
+ [1 + 27(%)] (d?2 + deﬂz) , (9)

thus obtaining
B

Finally, using Eq. (6) we have

A= (11)
147y
2
B = - _—, 12
Wi, (12)
1
n=M —3251 (13)

Leaving apart the value v = 1 which corresponds to infi-
nite |w|, it may be —1 <y < 1 if w > —3 or alternatively
it may be v > 1 if w < —2. Both possibilities have to
be considered, because the sign of (y — 1) is not yet ex-
perimentally fixed [10]. Moreover, there is no theoretical
reason to restrict (v — 1) to, say, negative values. In the
solutions we are discussing, the sign of (y — 1) implies
by Eq. (5d) that the effective value of G, which replaces
the gravitational constant Gy and equals ¢!, increases
(v —1 > 0) or decreases (v — 1 < 0) on approaching the
source of mass M, and neither behavior seems a priori
rejectable.

Turning to the question whether the Brans-Dicke
spacetime can support a wormhole geometry, it is suit-
able to represent the metric (3) in the form

dR?

ds? — —e22(R) g42
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where ®(R) and b(R) are, respectively, known as the red-
shift function and the wormhole shape function, and are
to be constrained by the properties enumerated in Ref.
[1]. In our gauge the standard radial coordinate R is

[1—v+4/2/(147)]/2
] , (15)

R(r):r[1—27n

where 7 is given by Eq. (13).

It is apparent that if v < 1 we must have » > 27 and
correspondingly R > 0 results. If instead v > 1, we must
have r > ro, where the minimum allowed value 7o for r

is given by
[ 2

and correspondingly R > Ry results, the value of Ry
being obtained by using Egs. (15) and (16). It is im-
mediately possible to verify that 7o > 27 and therefore
Ry > 0.

We shall denote by 7(R) the inverse of R(r). It is then
straightforward to obtain

28(R) = \/gln [1 - 7‘?;]2)] (17)
and
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In the case v < 1 one can identify a singularity at R =0
where the invariant of curvature Rog,sR*?7® is diver-
gent; the point R = 0 clearly constitutes a naked singu-
larity. In the limit v — 1, when the Brans-Dicke equa-
tions reduce to the Einstein equations, the event horizon
is placed at R = 2M and only in this limit could one have
a black hole solution, as pointed out by Hawking [11].
The occurrence of a naked singularity in the spherical
vacuum solutions of the Brans-Dicke theory was already
shown in the literature [12]; on the other hand, the same
type of singularity is also found in the Einstein theory of
gravitation with a massless scalar field (e.g., [13]) or in a
charged dilaton gravity [14].

The remaining case to be discussed, i.e., v > 1, will
bring into evidence the existence of static wormhole so-
lutions to the Brans-Dicke equations. To this end let us
first consider the redshift function ®(R). We notice that
since now R > Rp > 0 there is no horizon, and ®(R)
is finite everywhere. As to the shape function b(R), it
satisfies the condition b(R)/R < 1 and b(R)/R — 0 as
R — oo. Moreover, it results that b(R)/R = 1 when R
reaches its minimum value Ry. The functions ®(R) and
b(R) thus meet all the requirements needed to describe
what can be called a Brans-Dicke wormhole.

The line element for an equatorial slice through the
wormhole at a fixed instant of time is

2
ds? = [1 + (:Tz%) ]dRZ + R%dp? | (19)

where the embedding function z(R) is a solution of

g-% S [% - 1] ) (20)
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At the value R = Ry (the wormhole throat) Eq. (20)
is divergent, which means that the embedded surface is
vertical there. Spatial geometry is better studied by in-
troducing the proper radial coordinate

R dR
R == [ Gy &
which can now be written
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where F' is the hypergeometric function and B is given
by Eq. (12).

Let us finally examine whether the wormhole discussed
above requires a WEC violating energy-momentum ten-
sor to support it. Equation (1) can suitably be rewritten
as

Gap = %“[Taa + (Ts)ag] » (23)

where (Ty)ap is composed of two terms: the former comes
from the energy-momentum stress of the scalar field and
the latter results from the presence of second derivatives

2013

in the action for the Brans-Dicke theory. From

Gop = A=A +27) 7 [1_ znrwz/‘“”—”
@+ @ (B
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it follows that Ggo < 0, because we are considering the
case v > 1. This fact, since the coupling 87¢ ! is non-
negative, implies that the WEC is violated. The connec-
tion between wormhole existence and WEC violation has
been discussed by several authors [1,2,15-17].

The reason why the absence of horizons in Brans-Dicke
wormbholes implies WEC violation may have the follow-
ing physical explanation [1]. A traversable wormhole re-
quires that light rays which enter it at one mouth and
emerge from the other have cross-sectional areas initially
decreasing and then increasing. This conversion can be
produced by gravitational repulsion which acts on the
light rays passing near the throat provided in that re-
gion resides a negative energy density, as is effectively
guaranteed by the Brans-Dicke scalar field ¢ in the case
v > 1

In the Einstein theory of general relativity the proper-
ties required for the functions ®(R) and b(R) cause such
constraints on the matter stress tensor as to make nec-
essary the occurrence of exotic matter, especially in the
wormhole throat, where the absence of a horizon is re-
quired. In the Brans-Dicke theory of gravitation the role
of exotic matter is instead played, if v > 1 (or w < —2),
by the scalar field ¢ and therefore, via Mach’s principle,
by the mass distribution in the Universe.
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