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In bosonic end perturbative calculations for quantum mechanical anyon systems a regularization
and renormalization procedure, analogous to those used in field theory, is necessary. I examine
the reliability and the physical interpretation of the most commonly used bosonic end regularization
procedures. I then use the regularization procedure with the most transparent physical interpretation
to derive some bosonic end perturbation theory results on anyon spectra, including a three-anyon
ground state energy.
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I. INTRODUCTION

In 2+1 dimensions the rotation group is Abelian
[SO(2)], and, as a consequence, in addition to bosons
and fermions, also particles with neither integer nor half-
integer spin, anyons, can exist [1]. Free anyons can be
described [2], in what is called the "boson gauge" (or
"magnetic gauge") description, as nonrelativistic bosonsi
interacting with each other through the mediation of
an Abelian Chem-Simons gauge 6eld; the corresponding
Hamiltonian is

the boson gauge description, and 8 are the azimuthal
angles of the relative vectors r —r . It is easy to ver-
ify that H has the form P„p2/2m of an ordinary free
Hamiltonian; moreover, since the boson gauge wave func-
tions 4g are single-valued and U is not single-valued, the

's are multivalued. Indeed, with transformation (1.3)
one removes the interaction by redefining (in a multival-
ued fashion) the phase of the wave functions, a procedure
which is made possible by the fact that a„ is a (singu-
lar) pure gauge potential [2]. The multivaluedness of the
4' 's is directly related to the anomalous quantum statis-
tics of anyons, which, in particular, prescribes [1] that the
quantum-mechanical wave functions describing the rela-
tive motion of two anyons in polar coordinates, 2 satisfy
the condition

r2 —r2
(1.2) (1 5)

where r = (r„,r2) is the position vector of the nth
particle.

An alternative description of anyons, called the "anyon
gauge" description, can be derived &om the boson gauge
using the transformation

where

U=exp iv ) 8„—
rnWn

the 4g's are the bosonic wave functions that appear in

It is easy to verify that the 4' 's defined in Eq. (1.3)
satisfy condition (1.5).

The parameter v, called the "statistical parameter, "
characterizes the type of anyons, i.e., their statistics. In
particular, from Eq. (1.5) one realizes that anyons with
even (odd) integer v verify bosonic (fermionic) statistics,
whereas the noninteger values of v correspond to particles
with statistics interpolating between the bosonic and the
fermionic case. Without any loss of generality [1], I shall
restrict the values of v to be in the interval [

—1,1].
Whereas in the case of bosons and fermions the wave

functions for N noninteracting particles or N particles in-
teracting via a separable Hamiltonian (i.e. , Hamiltonian
which can be written as a sum of corresponding one-
particle Hamiltonians) are simply given by appropriately

Indeed, in 2+1 dimensions particles with any statistics can
be described as bosons interacting through an appropriate
statistical interaction.

Here the relative angle runs from —oo to oo, without iden-
tifying angles which difFer by multiples of 2', so that it keeps
track of the number of windings [1].
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symmetrized products of one-particle wave functions, in
the case of general-type anyons, because of the anomalous
statistics, these factorizations do not occur, rendering the
study of any ¹anyon problem extremely difficult. It is
essentially for this reason that the problem of finding all
the exact energy eigenvalues and eigenfunctions, even for
very simple anyon systems, is still unresolved for N ) 2.

The realization that anyons are relevant to the un-
derstanding of some condensed-matter phenomena, most
notably the fractional quantum Hall effect [3], has moti-
vated numerous recent studies of the ¹ nyon problem.
In particular, the problem of N identical anyons in a har-
monic potential has played a central role in these recent
investigations. The harmonic potential, by discretizing
the spectrum, allows one to disentangle the dependence
on the statistical parameter v; moreover, the virial coeffi-
cients can be deduced &om the solutions of the harmonic
potential problem by taking in appropriate fashion the
limit of vanishing oscillator frequency [5,6].

The problem of N anyons in a harmonic potential has
been completely solved [1] for N = 2, but only an incom-
plete set of exact eigensolutions has been found [7—9] for
N ) 2. Interestingly all the known eigenenergies depend
linearly on the statistical parameter v.

In addition to the search for exact solutions, there has
been much effort in the perturbative [5,6,9—16] and in the
numerical [17,18] study of the N-anyon problem. Both
the perturbative and the numerical studies have led to
interesting results; most notably, they have shown that
there are energies with nonlinear dependence on v among
those that are not presently known exactly.

In the proposed perturbative approaches, called
"bosonic end" and "fermionic end" perturbative ap-
proaches, one studies either "quasibosonic" anyons (i.e. ,
anyons with small v, whose anomalous statistics is close
to being bosonic) or "quasifermionic" anyons, by using a
perturbative expansion in which the small parameter is
the deviation of the statistics (indicated by the statistical
parameter v) from the bosonic or the fermionic limit.

The, analysis presented in this paper concerns the
bosonic end perturbative approach, which, because of the
nonanalyticity [1,19] of the limit v ~ 0, is afflicted by
some spurious divergencies, and therefore requires regu-
larization [9,11,16,19—21]. In order to see the mechanism
that leads to these divergencies, let us look at the simple
case of two anyons in a harmonic potential; the boson
gauge Hamiltonian that describes the relative motion is

1 1 2 2 2$P V
II2 = — 8„(rB ) ———8& + r — 84, + —. (1.6)r" " r2 r2 r2

'

In the perturbative calculations about v = 0, one runs
into an inconsistency because the matrix elements of
v2/r~ between zeroth order in v (i.e., bosonic) s-wave
functions are logarithmically divergent; for example, to
the second order in v, one of the contributions to the
ground-state energy is given by

2 OO 2' e v e
—r /2 2 —r /2

~boson 2 ~boson = r dr d4
0 0

exp( —r')= 2v dr~00.
0 r

(1.7)

Many of the results presently available on the unknown
portion of the anyon spectra have been obtained using
bosonic end perturbation theory. However, some of the
regularization procedures used in these calculations re-
quire rather arbitrary manipulations. Only recently, mo-
tivated by the results of some related 6eld theory analysis
[22], a regularization procedure with a clearer physical
interpretation has been proposed [16,20,21]. This reg-
ularization procedure is based on the introduction of a
repulsive b-function potential, and I shall refer to it as
the "b-function regularization. "

The plan of this paper is the following. In the next sec-
tion, I review the three most commonly used procedures
of regularization of bosonic end perturbation theory. In
particular, this allows me to show that, among these pro-
cedures, the b-function regularization is indeed the one
with the clearest physical interpretation. In Sec. III, I
discuss the relations among the difFerent regularization
procedures. In Sec. IV, I explicitly test the reliability
of the b-function regularization by using it in rederiving
several results that have already been obtained exactly
or numerically. Finally, Sec. V is devoted to my conclu-
sions.

II. REGULARIZATIONS OF BOSONIC END
PERTURBATION THEORY

In this section I brieBy review the three most com-
monly used procedures of regularization of bosonic end
perturbation theory. In order to be speci6c, I limit the
discussion to the case of two identical anyons in an ex-
ternal harmonic potential, whose relative motion is de-
scribed by the Hamiltonian H2 in Eq. (1.6). As I men-

Note that the harmonic potential has the same form as one
of the generators of the SO(2, 1) symmetry transformations of
the system [4]. It would be interesting to investigate whether
this fact plays a role in the various uses made of the harmonic-
oscillator potential in the study of anyon quantum mechanics,
especially concerning the limiting procedure to be followed in
deriving the virial coe%cients.

A fourth regularization procedure has been discussed in
Ref. [21); however, that regularization procedure has not been
used in the study of anyon spectra, and in Ref. [21] it was
shown to be completely equivalent to one of the three regu-
larization procedures discussed in the following

Most of these tests have already been performed in the short
publication [16]; in Sec. IV I review them, giving additional
details on the calculations.
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tioned, the exact solutions of the H2 eigenproblem are
known; they are given by [1]

E„"; = (4n+ 2~1+ ~~+ 2), (2.1)

~iIIexacti ~v ll+vl r /2—+ilpL Il+vl (&2)
n, l, u /' n, l~ (2 2)

where the L are Laguerre polynomials, and the N l are
normalization constants.

A. Regularization method I

I

n(m
( - —-) I"I I@) (2.3)

(r„—r )
" H~ (r„—r )

n(m n(m

(2 4)

In the case of two anyons in an external harmonic poten-
tial, from (1.6) one finds that the Hamiltonian is

It has been proposed [11,12] that, in order to ob-
tain a consistent bosonic end perturbative approach, one
should not apply perturbation theory to the original
eigenproblem H~~@) = E~4') (where H~ is an N-anyon
Hamiltonian), but rather to the modified eigenproblem

Hiv~@) = E~4) where H~ and ~4') are related to the
original H~ and ~iII) by

problem are simply related, the same is not true when
perturbation theory is used. In particular, the nonana-
lytic dependence on v present in H2 is such to compen-
sate (in perturbation theory) for the other nonanalytic-
ities present in the problem, and, as a consequence, the
bosonic end perturbation theory for the H2 eigenproblem
is not affected by divergencies [11,19].

The "regularization method I" consists in using the
(finite) results of perturbation theory applied to the H~
eigenproblem to derive, based on the relation between
~@) and ~4), the corresponding results for the original
H~ eigenproblem.

This regularization method I has undergone numerous
tests [6,11,19]. For the two-anyon in the harmonic po-
tential problem all the regularization method I results
have been shown to be consistent with the exact solu-
tions. Moreover, several Grst-order few-anyon eigenener-
gies have been calculated and the results are in agreement
with the expansion in v of the exact solutions.

Unfortunately, the physics behind the manipulations
involved in the regularization method I is not completely
understood. For example, it is not clear for what reason
among the Hamiltonians H2 = r ~]~~IH2rI~~ only the one
with P = v leads to the correct anyon spectra. It would
also be interesting to comprehend the role in the regu-
larization procedure of the fact that the transformation
~4') ~ ~4) is singular at r = 0 and nonunitary, and that
H~ is not Hermitian. An "Hermiticized version" of the
regularization method I, in which the perturbation theory
is based on the Hermitian Hamiltonian (H~+ + H~)/2,
has also been considered in the literature [12,15], but it
can be used only for rather limited tasks [12,19] (more
on this in Sec. III).

H; = r —I"'H, rl"I = O, (r0„) ————O~+ r'r" " r2&

t9@ — 0„ (2.5)

E„'", '„' = E„'", '„' = (4n + 2
~

l + v
~
+ 2), (2.6)

X
~

ilf exact) — 'i
I
v

I

~

@exact )
n, l

gv „li+vl —lvl
" + t.gy I,1&+vI („z)

(

(2.7)

The exact solutions for the H2 eigenproblem are easily
found from (2.1) and (2.2):

B. Regularization method II

Another perturbative approach to the study of quasi-
bosonic anyons used in the literature [9,13,14] is based on
the idea that, if one wants to describe perturbatively the
conventional "noncolliding" anyons in terms of (zeroth-
order) bosonic wave functions, one needs to modify the
bosonic wave functions so that they have an appropriate
hard core. Speci6cally, one substitutes the bosonic wave
functions ~4'i &) with "regularized bosonic wave func-
tions" ~ills l ) in all the divergent matrix elements of the
naive perturbative approach [like the matrix element in
Eq. (1.7)]. For the two-body case (the generalization to
the N-body case is given in the references) the ~4& l+)
are defined by

where N l are normalization constants.
Notice that (i) Hz is not Hermitian, (ii) the transfor-

mation ]@)~ ~@) r I"l~@) is not unitary, and (iii) Hz
depends nonanalytically on v. Moreover, the eigensolu-
tions (i.e., the eigenfunctions and the eigenvalues) of Hz
are nonsmooth functions of v for every value of l, whereas
the H2 eigensolutions are nonsmooth only for l = 0.

Although the exact H2 eigenproblem and H2 eigen-

"Noncolliding anyons" are anyons whose wave functions
vanish at the points of overlap. The possibility of "colliding"
anyons has also been examined in the literature (for example,
this subject is discussed in Refs. [23,29]), but in this paper
only the conventional "noncolliding anyons are considered.
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ly(o)&(~/2)) —~R~r~~~/2ly( ))
t

(2 8)

where N &" are normalization constants. Equation
t

(2.8) indeed implements a hard-core condition; in fact
("/ )) = 0 for r = 0. As a consequence, substitut-

ing the l4' I
"

) to the l4 I) in the divergent matrix
elements of the naive perturbative approach, one obtains
Gnite matrix elements; for example, the matrix element
in (1.7) is substituted by

@(0)R(v/2) v @(0)R(u/2)
oto 0,0

rdrdP v
—,e-"'r ~" I

o o m'I'1+ v 2 r
I'(lvl/2)

I'(I + lvl/2)
(2.9)

The choice of the "regularizing exponent" lvl/2 in (2.8)
is only justified a posterzorz by the agreement of the per-
turbative results with the exact results [19].

It is important to notice that, although (2.8) and (2.7)
are formally similar, this "regularization method II" and
the regularization method I represent conceptually dif-
ferent approaches. In the regularization method I, one
studies a different eigenproblem, since the Hamiltonian
H~ is different from HN, and perturbation theory is ap-
plied to the eigenproblem H~, only at the end one re-
covers a perturbative result for the original eigenprob-
lem through appropriate conversion formulas [19]. In the
regularization method II, Eq. (2.8), which involves only
the zeroth-order wave functions, effectively de6nes reg-
ularized matrix elements for the original theory, and no
equivalent eigenproblem is introduced; in the calculations
one uses the original Hamiltonian, and the results refer
directly (no conversion formulas are needed) to the orig-
inal eigensolutions.

Another important observation is that in Eq. (2.9) a
matrix element apparently of order v actually gives a
contribution of order v. This is a general aspect of the
regularization method I, and is due to the fact that near
v = 0 some matrix elements (@ o

"
lr l @„o "

)
have a pole 1/lvl which is a remainder of the original di-
vergencies. As a consequence, the complete perturbative
result of order v requires the evaluations of terms which
in ordinary perturbation theory appear at any order v
with n & m & 2n.

In spite of these peculiarities, also the regularization
method II has proven very reliable in a series of tests.
The first-order eigenenergies and eigenfunctions for the
two-anyon Hamiltonian H2 have been calculated [19] and
the results are in agreement with the expansion in v of
the exact solutions. Some three- and four-anyon eigenen-
ergies have been calculated [9,13,14] to second order in
v, with results in agreement with the numerical solutions
obtained in Refs. [17,18] and (for the states for which
such exact solutions are available) with the exact solu-
tions found in Refs. [7—9]. However, in the second-order

calculations some spurious inanities must be neglected in
order to obtain the correct results [14]. Even though this
further regularization can be cast into a general proce-
dure [14] (the same term is neglected in all second-order
calculations), this is another arbitrary manipulation re-
quired by the regularization method II.

The quantitative successes of the regularization
method II are surprising considering the apparent ar-
bitrariness of some of the manipulations involved. In
particular, even if the basic physical idea (that in or-
der to study conventional anyons the unperturbed wave
functions must have a hard core) should be correct,
one would like to understand why the de6nition (2.8)
is the right one. For example, if one used the definition

) = N@, r~ ~l4 )o the l@o )'s would have a hard
core independently of the value of o., and it is not clear
for what reason the choice o. = v/2 is the only one leading
to the correct anyon spectra [9,19].

C. 8-function regularization

For the conventional noncolliding anyons the wave
functions vanish at the points of overlap, and the ad-
dition of a repulsive b-function potential to the Hamilto-
nian H~ of a quantum-mechanical N-anyon system has
no physical consequences (see, for example, Ref. [24]),
i.e. , the exact eigensolutions are unaffected by it. One
can therefore apply small-v perturbation theory, rather
than to the original Hamiltonian H~, to the equivalent
Hamiltonian H~, given by

H„'=H~+2~lvl). ~'(r. —r ).
m(n

(2.10)

For our two-anyon in a harmonic potential problem the
"regularized Hamiltonian" is

1 1 2 2 2zv
H, —:——c)„(ro),) ——c)~ + r —,c)pr r r

2
+2~lvlh(')(r) + —", = H, + 2~lvla(')(r) . (2.11)

Although the (exact) Hz~ eigenproblem is completely
equivalent to the H2 eigenproblem (they have precisely
the same eigensolutions), Hz~ is more suitable for per-
turbation theory; in fact, the added b-function potential
leads to divergencies which exactly cancel those intro-
duced by the v2/r2 term, rendering Bnite the results of
bosonic end perturbation theory [16].

I shall illustrate the mechanicsm that leads to these
cancellations in Sec. IV; here I want to discuss the phys-
ical interpretation of the b-function regularization proce-
dure. Within the context of perturbation theory in quan-
tum mechanics, the addition to the original Hamiltonian
of a term 2trlvl8( ) (r) can simply be interpreted as an ex-
pedient to implement the hard-core boundary conditions
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in the perturbative calculations. One can also see, fol-
lowing the analysis in Refs. [20,26], that such a h-function
potential is naturally induced by a procedure of pertur-
bative renormalization of anyon quantum mechanics, in
complete analogy with the structure of the regularization
and renormalization procedures used in field theory.

Indeed, in the study of the nonrelativistic field theories
that correspond to our quantum-mechanical problem it
has been shown [22,25] that a quartic contact interac-
tion (the field theoretical analog of a b'-function poten-
tial) is necessary for renormalization. In these field the-
ory contexts one can also see that at some critical values
of the quartic contact interaction strength the theory is
finite (and preserves classical conformal invariance). In
the &amework of a perturbative renormalization of anyon
quantum mechanics a similar interpretation can be given
of the choice 2']v] for the coefficient of the h-function
term which is necessary in order to reproduce the exact
results. The critical value 2vr]v] can be shown [25] to be
the one that implements the boundary conditions appro-
priate for the conventional noncolliding anyons in the per-
turbation theory. In summary, our b'-function regulariza-
tion procedure has indeed a rather transparent physical
interpretation, and makes contact with other interesting
problems of theoretical physics.

III. RELATIONS BETWEEN REGULARIZATION
PROCEDURES

In this section I will comment on the relations between
the regularization procedures discussed in the preceding
section. Again for definiteness and simplicity my discus-
sion is specialized to the two-anyon in a harmonic poten-
tial problem.

Both the regularization method I and the b-function
regularization have been shown to lead to finite and ac-
curate results even beyond first order in bosonic end per-
turbation theory. The consistency among the results ob-
tained with these two techniques may suggest that they
be ultimately equivalent, and indeed this equivalence is
indicated by the analysis presented in Ref. [21], where
it was argued that (for what concerns perturbation the-

ory) the eigenproblems H24 = E4 and H2 4 = E4 are
related by the (nonunitary) transformation [21]

(3 1)

As I mentioned, an "Hermiticized version" of the reg-
ularization method I, in which one substitutes by brute
force the non-Hermitian Hamiltonian Hz with the Her-
mitian Hamiltonian

H2 +H2+ 1 1 2 2 2gv8„—(r—8 ) ——0~+ r — Bg
2 r2

+2~I vI ~'" (r) (3.2)

has also been considered in the literature. Although
Eq. (3.2) contains the saine h-function potential used
in the b-function regularization, a bosonic end pertur-
bation theory based on the Hamiltonian (H2 + H2+)/2,
first discussed in Ref. [12], is not equivalent to the b'-

function regularized bosonic end perturbation theory, be-
cause (Hz + H2+)/2 does not contain the important
v /r2 term. As already noticed in Ref. [12], the Hamilto-
nian (H2 +H2+)/2 can only be used to obtain first-order
results (as shown in Ref. [19],the second-order results are
divergent) .

Concerning the regularization method II, I observe
that

2
(0)R( /2) & @(0)R( /2)
m. ,k n, l

o(~)

= (@",f.I2~]vl~'" (r) I@.",i) (3 3)

This might suggest that there be a relation between
the choice n = v/2, which is necessary (see Sec. II B) in
the regularization method II, and the choice 2vr]v] for the
coefficient of the b-function potential, which is necessary
in the b-function regularization. However, it is easy to see
[14] that (unlike the second-order results of the h-function
regularization) the second-order results of the regular-
ization method II require additional regularization. (As
I mentioned, this additional regularization can be cast
into a general procedure that has been shown to give
correct second-order results in several tests [9,13,14], but
presently the situation of the higher orders in the pertur-
bative expansion is not clear. ) In fact, one can easily see
that the regularization method II is closer in spirit to
the "Hermiticized version" of the regularization method
I, but is formulated in a way that naturally suggests a
general procedure of regularization of the second-order
results.

More on contact interactions and boundary conditions can
be found in Refs. [26,27,29].

Note, however, that both in field theory and in quantum
mechanics these critical values of the interaction strengths
are only determined up to sign ambiguities (see, for example,
Ref. [25]), and the sign choice can only be made by compar-
ing perturbative results with the exact results one wants to
reproduce.

For the b-function regularization see the next section and
Ref. [16].

As shown by Eq. (3.3) the matrix elements

(4 &

"
]v /r ]@, "

) of the regularization method II
correspond to the matrix elements (@ &]2z ]v]b (r)]4 i) of
the "Hermiticized version" of the regularization method I, and
in both these approaches one essentially misses second-order
contributions of the type (4 z]v /r ]4' i).
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IV. TESTS OF THE 8-FUNCTION
REGULARIZATION

I now perform some direct tests of the reliability of
the b-function regularization. I calculate some 6rst- and
second-order eigenenergies and some 6rst-order eigen-
functions, and compare them with the corresponding ex-
act results. I consider identical anyons in an external
harmonic potential; however, it is easy to realize that
the particular form of the potential does not play a role
in the regularization procedure. Indeed, the divergence
that one is regularizing results &om the '&ee-anyon part"
of the Hamiltonian.

in Eq. (1.6), whose 8-function regularized Haxniltonian
II2 was given in Eq. (2.11). My analysis is limited to
the anyonic states whose v ~ 0 limit are bosonic states
with angular momentum l = 0. For the states with l g 0
no divergence is present to begin with [9,11,19], and the
consistency of the b-function regularization can be veri-
fied in complete analogy with the corresponding results
obtained for the other procedures. (N.B. The b'-function
potential does not contribute to the matrix elements in-
volving unperturbed states with l P 0, because these
states vanish for r = 0.)

Concerning the first-order energies, one easily 6nds

A. Two-anyon energies and wave functions

As a 6rst direct test of its reliability, in this subsection
I use the b-function regularization in the evaluation of the
first- and second-order eigenenergies and the first-order
eigenfunctions of the two-anyon Hamiltonian H2 given

I

= (@.",ol2~l~l&"'(r) I@'.",o) = 21~i

which is clearly in agreement with Eq. (2.1).
The first-order eigenfunctions are given by

(4.1)

—(2 l ')~4+2
I

l~(')(
n, ,o,v) ) ~ (0) (0) I rn, x

rn, lgn, 0 n0 mt

. (~",)012~1~1~(2)(r)I+.",)0) ~«)
(p) (p) na, p

m[gnj nx0 tn, 0

~- L'(r') —.q2

2~+ - m —n
Tngn

(4.2)

Using properties of the Laguerre polynoxnials one can ver-
ify (with some algebra) that result (4.2) is in agreement
with Eq. (2.2). For example, one obtains

I@2 0 „)= e " ~ (2 —r + 4[2' —3+ 41n(r)]L2(r )),
(4.3)

vergent, but one can show that the final result E 0 is(2) ~

6nite. I illustrate the details of the mechanism of cancel-
lation of the infinities by following a de6nite calculation:

E2 0 E2 0 and E2 0 are given by(2) (2,a) (2,6)

2
E(»a) y(0) @(0)

2,0,v 2,0 2 2,0

(2) (2,a) (2,b)
En, 0, =E,O, +E,o,v ~ (4.4)

which agrees with the first-order term in the expansion
jn ~ of

I

@83cRc )t

From (2.11) one sees that the second-order energies are
given by

oo 2& ex —T~2 dr dp p( ) [LO(r2))2
0 0 err

( ) [Lo(„2))2

= x
2 lixn [

—21n(e) —p —2]
e—+0 2 (4.7)

(2,a) (0) (0)
2

E„,' „= (4.5)

E(2,b) =- e(0) —,a~+ 2 (2} e(1)„.4.6

It is easy to realize that both E Ov and E O„are d1-(2,a) (2,b)

E2,0, (@2,0I 2 &~ + 2~I~I~"(r) 1@2,0)

= &@"',ol2~l~lb") (r) l@2,o)

x(s —r2+ 4x[2~ —3+ 41n(r)]L02(r2)}
= x '1xm. p [21n(e) + 22 + p] . (4.S)
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Note that I introduced a cutoff e (which will be ultimately
removed by taking the limit e ~ 0) in order to see the
cancellation of infinities and evaluate the leftover 6nite
result. In general a similar cutoff must be introduced in
all the divergent matrix elements of r 2 and b~2l(r) by
using

OO OO 1
dr dr„f(—r, r„)

OO 271' 1
lim r dr dP f(—r cosP, r sing), (4.9)amp r

(1) 1 g ~ 1

Hq~ i ——27r ) h2i(z —z„),
m&n

H ~'l —= — ) i . +H.c
1 ( 1

4 „((z„—z )(z„' —z„')

&a elI„, =—(z„—z )
t9Zn 0Zm

(o a—(z„' —z' )

(4.i2)

dr drys~ l(r)f(r, r„)

= lim f, . (4.10)e+o 2' 2)

From Eqs. (4.4), (4.7), and (4.8) one concludes that

E2 o „——0, and this is in agreement with Eq. (2.1).

B. Some N-anyon energies

= H~ol + vH~' + iviH~' + v H (4.ii)

where Ho is the relative motion Hamiltonian for N
bosons in a harmonic potential, and

In this subsection I calculate perturbatively &om the
bosonic end to second order in the statistical parameter
v and for arbitrary N the eigenenergies of some N-anyon
in harmonic potential states. The h-function regularized
Hamiltonian which describes the relative motion of N
identical anyons in a harmonic potential is given by

I am using the conventional notation z„= r +ir, z* =
r —ir . The center-of-mass motion is simply a &ee
motion, which I ignore.

The N-anyon states whose energies I evaluate per-
turbatively are the ones which correspond, in the limit
v + 0, to the bosonic states

iN, O) =
-N —1

, exp ):lu-((z'3)l'
n=1

(4.iS)

fN i—
IN +2) =— ' ) u„'((z;))

2(N —1)x~—' (, "
)

N —1

xexp ) iu„((z,))i'
n=1

(4.14)

iN, —2) —= iN, +2)', (4.15)

where u„((z,)) = (zi+ z2+ . . +z„—nz„+i)/gn(n + 1).
iN, 0) is the N-boson ground state, and the states
iN, +2) are in the first excited bosonic energy level and
have angular momentum +2. It is easy to verify that
E~'ri (v) = E~'ri (—v), E~+2(v) = E~ 2( v), —and-
E~+2(v) = E~ 2(—v); therefore, I can limit the calcu-(2) (2)

lations to the case v ) 0 without any loss of generality.
The erst-order energies can be easily calculated; they

are given by

E„"„=(N, nivH,'" + iviH,'&iN, n)

(N, Oi2vrvb~ l (z, —z ) iN, 0)
N(N —1

N(N —1)
2

(4.16)

E~ ~ ——(N, +2ivHL l + iviHq~ liN, +2)

N(N —1)
N, +2 v + 2vrvbi*i(zx —z2) iV, k2)2 Z1 Z2

N(N —2) N
2 +2 (4.i7)
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Concerning the evaluation of the second-order energies, let me start by noticing that from (4.11) and (4.12) it
follows that

E~(p)
——(@ Iv H I(I( )+E (,) +E (,)

(2) (0) 2 (2) (0) ( ) ( )

E(2) ~ - (@"lvHL, '+ lvlH~" l~)(mlvHi 'I@")
@(0).L — j E(') —E '

I~)gD m,

(2) ~ - (@")IvHI. '+ lvlHa'l~) &~llvlHa'I@")
y(0) .g E(0)

im) g'D m

Using the symmetries of H( ) and of the unperturbed wave functions (4.13)—(4.15), one easily obtains

2 2

(N, OIv H( )IN, Q) = N(N——I) [2(N —2) ln( —) —p] — lim N(N——1)ln(e)

2

(N, ~2lv H( IN, +2) = —N[9 —4N + 4(N+ l)(N —2)ln(s) —2p(N —2)]8

(4.IS)

(4.20)

gj 2
—lim —N (N —2)ln(e) (4.21)e~o 4

where the cutoff e has been introduced using (4.9).
For the states (4.13)—(4.15) the evaluation of E «) and E+(,) &

(which usually is only possible numerically) is
)

relevantly simplified by the following results:

Li2IN, k2) =
4 [C, H ]

—~b
i + 1 L,2IN, +2),1 ( (P) (2) (Zl —Z2 i

' )

(~II&, H"ll~, &(+2)) =(~~~" ' '
I
~,&(+2)),

2 )
(4.22)

L» IN~ +2) = E~ ~2L» IN~ +2)
Li2IN, O) = 0 .

where C =
2 [in(lzi —z2I /2) + p —1]. Using the properties (4.22) one finds

N, O;L
(2) (4.23)

E( )n.q
———(N —N) [(N, Ol(vs( ) + IvlH~( )CIN, 0) —E~()n(N, OICIN, 0)]

lim N(N —1)[ln(—e) + p —2(N —2)ln(s)] (4.24)

Em'~.
, g

= S(N' —N)[(N +21(vHI.'+ lvlHg ')CL 2IN +2) —E~'~. (N +2ICL»IN +2)]
2

vN(N —2) ln( ——) + N[5N —12 —18—(N —2)ln( —)],8 4 i6 ) (4.25)

~N —1

)+I

—z" x +2 a+"=2 ""'(("))x +2)E~=i' ~g((z'))
2

N lim [3N —6—+ 4(N —2) [p+ ln(e)] + (38N —44 —8N )ln(q)] + gsv N(N —2)ln(4) . (4.26)
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Again I introduced the cutofF e using (4.10).
Combining these results with (4.16), (4.17), (4.18), and

(4.21) one obtains the final results

using the regularization method II, in Refs. [13,14]; Eq.
(4.29), for the corresponding values of N, is in agreement
with those results.

(i) (3) N(N —1)
NQ+ NO (4.27) C. Additional three-anyon energies

(g) (3) N(N —1)
N+2 + N+2 (4.28)

(g) (3) N(N —3),4, 3N(N —2)
N, —2+ N, —2 ++ ln(3) V

(4.29)

EN & and EN +2 are among the exactly known eigenen-
ergies of the ¹nyon in harmonic potential problem (see
Ref. [9]), and they are in perfect agreement with (4.27)
and (4.28). E~ 3 is not known exactly, but, for the

special cases N = 3 and 4, EN 2+ EN 2 has been cal-(~) (2)

culated numerically in Refs. [17,18] and perturbatively,
I

The ¹ nyon eigenenergies calculated to second order
in v in the preceding subsection and in Ref. [16] all con-
cerned bosonic end states with particularly symmetric
wave functions (in addition to the bosonic symmetry un-
der exchange of the particle indices, they were also sym-
metric under permutations of the functions u;). This
special form of the bosonic end wave functions leads to
simplifications that were exploited in obtaining the re-
sults for arbitrary ¹ In order to perform a more general
test of the b-function regularization (i.e., show that the
agreement with the exact results found in the preceding
subsection is not a consequence of the special form of the
wave functions considered), I now calculate to second or-
der in v the eigenenergies of the two three-anyon states
whose bosonic end wave functions are given by

I3 +3) —= uz((z'})(3[u~((z'})]' —[u3((z'})]')exp[i~~((z'})I'+ lu3((z'}) I']
&24~3

I3, —3) —:I3, +3)' .
(4.30)

(Notice that I3, +3) are not symmetric under permuta-
tions of the functions u;.) The states I3, +3) are in the
second excited energy level and have angular momentum
+3.

Concerning the first-order energies E3 +3 one easily
finds that

E3+3 = (4 + 4)v(X) 3 9 (4.31)

It is also easy to show that the states I3, +3) satisfy re-
lations of the type (4.22), and this allows one to evaluate

the second-order energies E3 +3 analytically. Following a
procedure completely analogous to the one discussed in
the preceding subsection, I find that

E3+3+E3+3 ——3v )
(~) (2) (4.33)

Es 3+ E3 3
———3v+ 3[31n(—) —l]v (4.34)

V. SUMMARY AND CONCLUSION

As expected the h-function regularization result for

E3 +3 + E3 +3 is in perfect agreement with the corre-(~) (2)

spending exact result obtained in Ref. [7]. E3 3+E3
is not known exactly, but it was calculated numerically
in Refs. [17,18] and perturbatively, using the regulariza-
tion method II, in Ref. [13];Eq. (4.34) agrees with those
results.

Es,+3=(3 +3lv JI 13 +3)+E3,+s,i+ 3,+s,s
(2) 2 (2) (2) (2)

(3, +3lv H I3, +3) = v [2+ ——61n(-)],

2 2

E3 ~3.L
———[486 ln(3) —189] + —[9 —271n(43)],

2 2

Es +3.&
———[61n(3) —11]+ —[9 —271n(3)] .

From Eqs. (4.31) and (4.32) one concludes that

(4.32)

In the first part of the paper I have examined the three
bosonic end perturbative approaches that have been used
in the study of the anyon spectra. I find that the b-
function regularization has the most transparent physical
interpretation, and this is very important if we want to
be confident in using bosonic end perturbation theory in
the study of the presently unknown portion of the anyon
spectra. Moreover, as illustrated by the calculation for
arbitrary number of anyons in Sec. IV, in some instances
properties of the b-function regularized Hamiltanian can
be exploited to achieve significant simplification.

The regularization method I has a less insightful phys-
ical interpretatinp, but the fact that the corresponding
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Hainiltonian only includes two-body interactions can be
useful in some calculations. Concerning the regulariza-
tion method II, I found that it essentially corresponds
to a less efficient (and less motivated) way to implement
the same program of the b-function regularization. As
indicated by calculations presented in Sec. IV, the re-
sults of the regularization method II are reliable at least
to second order in v. In particular, using the b-function
regularization, I con6rmed the important result for E3 3
obtained in Ref. [13], which, combined with results of
Ref. [9], allows an approximate analytic description of
the three-anyon in a harmonic potential ground-state en-
ergy for all values of v. These calculations of E3 3 also
represent the only analytic evidence for the existence of
anyonic wave functions with energies nonlinearly depen-
dent on v that smoothly interpolate &om the bosonic to
the fermionic limit [28]. Now that the result of Ref. [13]
has been confirmed using a more transparent procedure,
there is additional motivation for the use of the analysis
presented in Refs. [9,13] as a guide in the search for addi-
tional exact solutions to the ¹nyon (N ) 2) problem.

The calculation of E~ 2 + EN 2 discussed in detail
t

in Sec. IV is an important result of the b-function reg-
ularization; in fact, it gives the only direct evidence [16]
of the fact that there are many-anyon eigenenergies with
nonlinear dependence on the statistical parameter v. I
also want to emphasize again [13,14,16] that the pres-
ence of the interesting factor ln(s) in the nonvaiiishing
second-order contributions to the energies [see for exam-
ple Eqs. (4.29) and (4.34)] could suggest Ansatze (such

as the one proposed in Refs. [13,14]) that simplify the
search for new exact anyon eigensolutions.

Finally, I want to mention a possible area of investiga-
tion which might be motivated by the results discussed
in this paper, but is not aixned at the study of anyon
physics. As indicated in Sec. III, the b-function regular-
ization can be cast precisely in the form of a renormal-
ization procedure [20,26] like the ones customary in the
field theoretical framework. However, whereas in (rela-
tivistic) field theory usually interesting results can only
be obtained in perturbation theory, in anyon quantum
mechanics in several cases one has available (at least
some of) the exact solutions. In anyon quantum me-
chanics it is therefore sometime possible to compare the
(renormalization-requiring) perturbative results with the
exact results. These comparisons might lead to some in-
sight in the physics behind the renormalization and reg-
ularization procedures ncessary in field theory [29].
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