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EfFective quark-antiquark potential for the constituent quark model
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We use dual QCD to derive au effective potential to order (quark mass) for a constituent
quark aud antiquark. This is done by expanding the dual QCD Lagrangian to second order in the

qq spins and velocities around the static central potential, in which the quarks are both spinless
and stationary. The Geld equations are then used to eliminate the dual gluon Gelds and the Higgs
fields of dual QCD in favor of quark variables for an arbitrary but slowly moving qq pair with
a Dirac string of arbitrary shape connecting them. The result is a Lagrangian, and therefore, a
potential, which depends only on the qq positions, velocities, and spins. Dual QCD contains only
three parameters, which can be determined from the vacuum energy density, the string tension,
and the strength of the Coulomb singularity of the central potential. The only free parameters in
the spin- and velocity-dependent part of the effective potential are, therefore, the masses of the
c and b quarks. When inserted into a Schrodinger equation these potentials provide a complete
effective constituent quark theory which can be used to calculate qq energy levels in terms of the
masses and the masses can thereby be fixed (agreement with experiment is excellent). The various
potentials, spin-spin, spin-orbit, and spinless velocity dependent, can also in principle be compared
to lattice calculations of the same quantities. For the spin-orbit case, for example, the agreement is

good, although lattice results are not yet precise enough for a real comparison to be made. For the
potentials proportional to the velocity squared lattice results do not yet exist. We also attempt to
extend the use of these potentials to heavy-light quark-antiquark systems through use of the Salpeter
equation and the Dirac equation. The results of this efFort are described in two Appendixes.

PACS number(s): 12.39.Ki, 12.39.Pn

I. INTRODUCTION AND PRELIMINARIES

This paper is devoted to the calculation of the com-
plete dynamical potential between an arbitrarily moving
heavy-quark —antiquark pair. The potential is given as
an explicit function of the quark coordinates and veloc-
ities, includes all spin efFects, and is accurate to order
(mass), or quark velocity squared. (This is as far as
one can go with a calculation that does not allow for the
explicit radiation of gluons, and is therefore the extent to
which the concept of a potential has a meaning. ) If the
potential we obtain is used in a Schrodinger equation (or,
if desired, in any other wave equation such as, for exam-
ple, a Salpeter equation to take into account the relativis-
tic kinetic energy of the quarks) then we have a coinplete
dynamical theory of constituent quark-antiquark pairs.

Our calculation of the potential is based on the dual
QCD Lagrangian [1,2]. This Lagrangian can be viewed
as an efFective theory of long-distance QCD, which incor-
porates in a very simple way most of what we believe to
be true about real QCD. The dual field theory is rela-
tivistic, unitary, renormalizable, obeys non-Abelian dual
gauge invariance, and automatically gives rise to con6ne-
ment of color via a non-Abelian dual Meissner efFect. The

theory is described in terms of a dual color octet vector
potential C„(thequanta of which are dual gluons) as well
as a set of three octet scalar "Higgs fields" B; (i = 1, 2, 3;
a = 1, . . . , 8). The Higgs mechanism, through the scalar
fields B, gives mass to all eight dual gluons, as well as
to the Higgs fields themselves, thus con6ning color Qux
into Z~ Aux tubes and providing a dual superconduc-
tivity explanation of confinement. (At sufficiently high
temperature, as in ordinary superconductivity, the spon-
taneous symmetry breaking disappears; so does the dual
gluon mass and with it confinement [3].)

The introduction of quarks into dual QCD requires
some delicacy, analogous to the introduction of magnetic
monopoles in ordinary electrodynamics. Each quark
must have attached to it a Dirac string, and these strings
can cause technical problems in calculations. In Ap-
pendix A we have described how these difhculties can
be dealt with in electrodynamics, and how the electro-
dynamic interaction of a pair of oppositely charged par-
ticles of arbitrary mass can be described using the dual
vector potential, with an arbitrarily moving Dirac string
connecting the arbitrarily moving changes [4]. We can
carry over these same techniques to dual QCD i.n order
to describe a quark-antiquark pair, and this is in fact
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& = 2 "[2(H' —D') + 2 (&~B)') —W(B),

where the trace is over color indices, and. where

17„B= B„B—ig[C„,B) . (1 2)

D and H are the non-Abelian generalizations of the color
electric displacement and magnetic field:

D = —V x C —2ig[C, xC) (1 3)

what makes it possible to derive the dynamical quark-
antiquark potential [to order (mass) 2].

The paper is organized as follows. We Grst write down
the dual QCD Lagrangian for a quark and an antiquark
connected. by a Dirac string of arbitrary shape. We then
solve the dual QCD field equations for the various fields
and. for stationary quarks; this gives us our zero order
solution and the static quark-antiquark central potential
[1].We then expand the dual QCD Lagrangian in inverse
powers of quark mass to order (mass) 2, and calculate
the corrected dual QCD fields in terms of the quark po-
sitions, velocities, and spins. These results are then used
to eliminate the Gelds &om the problem, and to calcu-
late the energy of the system in terms only of the quark
variables. This gives rise to a quark-antiquark poten-
tial containing (in addition to the static central poten-
tial obtained in zero order) a spin-spin potential V,~;„,
a spin-orbit potential V,~;„,b;q, and a spin-independent
potential V ~ of order quark velocity squared. All of these
potentials are explicitly given in terms of the quark vari-
ables. The parameters they d.epend. on are only the con-
stituent quark masses mq and mq, the other three param-
eters in dual QCD [1] are fixed &om the vacuum energy
density and the behavior of the central potential at zero
and infinite distance (this last parameter is of course just
the string tension).

The calculation we describe here has been partially
carried out before, in that the various spin- and velocity-
dependent potentials have been evaluated assuming a
particular motion of the quark-antiquark pair, namely,
that they travel in circles [5—7]. Needless to say, our re-
sults here, which are valid for general quark motion, re-
duce to the old results when circular motion is imposed.

The potentials are used in the Schrodinger equation
to predict the masses of heavy-quark —antiquark systems.
The results of this are quite good. When extended to
light-heavy systems, such as sc or sb, however, the re-
sults are far worse. Clearly the relativistic effects as-
sociated with light quarks are very important. To ex-
plore this further we have also used our potentials in the
Salpeter equation and in the Dirac equation. The results
are mixed, and (particularly with the Salpeter equation)
some ambiguities exist. (These calculations are described
in Appendixes B and C.) We need a correct relativistic
generalization of our potentials before we can deal with
light quarks.

In dual QCD the dynamical field is C„,the vector po-
tential dual to the ordinary vector potential A„.In the
absence of quarks, the Lagrangian for C„is given by [1]

H = —VCp —BpC —ig[C, Cp], (1.4)

where C„=PC„2A and 2A are the generators of
SU(3). In the in&ared limit, the dual coupling constant
g = 27r/e where e is the ordinary Yang-Mills coupling
constant. The quantity 8 represents the three scalar
octets necessary to give mass to all color components of
C„,B = (Bi,B2,Bs). The function W(B) is the coun-
terterm needed for renormalization and plays the role of
a Higgs potential; its explicit forin is given in Ref. [1].
Since they couple to the dual potentials the scalar fields
8 carry color magnetic charge.

Our first use of Eq. (1.1) was to calculate the field con-
6gurations associated with quantized color electric Aux
tubes [8]. These, with one unit of quantized Zs fiux, can
be viewed as the fields between a static quark and an-
tiquark at infinite separation. (Note that in the gauge
chosen in Ref. [8], the Dirac strings (see below) attached
to the quarks at Woo are taken to +oo, respectively, and
do not join the two quarks. )

For the calculation of Bux tubes we make the simplest
color ansatz that produces a closed set of nontrivial field
equations [8]. The fields D, H, and C are all proportional
to the color matrix Y = As/~3. The field Cp is zero. Two
of the three B 6elds can be chosen equal: Bq ——B2 = B.
Bq, B2, and B3 are chosen to be in the color directions
(A 7 A 5 A2 ), respectively. For this choice the function
W(B) becomes

W(B) = —'g'A( —+o)(Bi + B2+ Bs)
+. i4 A(B2 + B2 + B2)&

There are two parameters, which we call A and Fp2, [1]—
in the Higgs potential, so, including g, we have three pa-
rameters overall. These three parameters can be roughly
determined &om the solutions for the dual QCD fiux tube
and the zero and in6nite distance limits of the central
potential [8]. First, &om the form of W(B), we can com-

pute the vacuum energy density to be e„,= —A(&p ) /9.
Through the use of the trace anomaly t„,can be re-
lated to the magnetic condensate: e, = —32G2. Next,
we can calculate the string tension 0' in the Qux tube
which is also the coefficient of the linear (in separation)
term in the central potential. Finally we can obtain g
&om the value of a, = 7r/g2 given by the Coulomb sin-
gularity in the central potential. Putting all of this to-
gether, and using the values |2 ——(330 MeV), o = (427
MeV)2, and a, = 0.39 we obtain A = 1.61, g /A = 5, and

~

~

—Fo2 ——420 MeV. With these parameters the Bux tube
comes out to have a radius of about half a fermi. These
rough values can serve as a guide to our more precise
fits to the energy levels in the cc and bb systems, once
we have calculated all the terms in the order (mass)
heavy quark potential.

We next wish to extend. this to a system consisting of
a classical heavy quark of charge e and an antiquark of
charge —e at finite separation having masses m~ and. m2,
and spins crq and. F2. The quark charge density must also
lie in the Y color d.irection in order to absorb the Bux of
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O'. D, = p(x, t)
= e[b (» —«, (t)) —b (x —x2(t))]Y, (1.5)

D. Because quarks in our dual theory are like magnetic
monopoles in ordinary electrodynamics, we must modify
(1.3) so that Gauss law is satisfied. This is achieved by
adding a string field D, to (1.3) [1].

The string field is chosen to connect the two quarks (a
di6'erent gauge choice from that made in the flux. tube
case). It satisfies

is also, due to the quark spin, a magnetization

CCJ y
b (x —xi)—

2m/
b (x —x2) Y, (1.10a)

2m2

P= CCT y CC72
vi x b (x —xi) —'v2 x b (x —»2) Y

2m1 2m2

(1.10b)

and due to the quark motion an induced polarization P:

where xi 2(t) are the positions of the two quarks at time
Thus D, must lie in the Y color direction as well.

Explicitly, we have [4]

D, (x, t) = —e d7 ' b'(x —y(7, t))Y, (1.6)
dy(7. , t)

d7.

Both P and M are in the Y color direction.
The electric displacement D and the magnetic field I

satisfy Maxwell's equations (since all of these fields are
in the same color direction, this sector of the problem,
that is, the sector excluding B, is Abelian):

V. D= p —V-P
where 7 parametrizes position along the string y(7, t) and
y(7i 2, t) = xi 2(t). The moving string induces a magne-
tization H, as well and we can write [4]

VxH —OoD=j+VxM. (1.12)

H. = e d7. ' x '
b (x —y(7, t)) . (1.7)

dy(7, t) dy(7, t)
dt d7.

The solutions to these equations are expressed in terms
of the dual potentials through

These two fields satisfy

VXH, —oDs=

D= —Vx C+D. —P,

H = —VCo —OoC + H, + M .

(1.13a)

(1.13b)

where

j = e[vib (x —xi (t)) —v28 (x —x2(t))]

is the quark current. [Here vi 2
——(d/dt)xi 2(t).] There

These solutions can be inserted into Eq. (1.1), and, as
we shall see, we can retain the flux tube color structure
of B and the fact that Bq ——B2 ——B.

The commutation relations [Y, A5] = —iA4, [Y, A7]
—iAs, and [Y, A2] = 0 yields

'D„B= ((A78p QACg„)B ( A58„+A4gCp, )B A2B„B3). (1.14)

The color traces are 2TrY =
3 and 2TrA Ag

——4b g.
These equations give the final form of 8 in terms of the
coeKcients C&, H, and D of the color matrix Y and the
functions B and Bs.

The resulting Lagrangian is, after evaluation of the
color trace in Eq. (1.1),

2H2 2D2 4 2B2(C2 C2) + 4B~2B
4BB+ 2B3V' B3 ——2B3B3 W(B) (1.15)

Note that it might appear from the commutation rela-
tions and (1.14) that we need to introduce components
of B along the color directions A4 and A6. However, it is
consistent; to set these amplitudes equal to zero provided
we choose V . C = 0, as we do.

II. DERIVATIVE OF EQUATIONS FOR THE
POTENTIAL

where the double overdot denotes the second derivative
with respect to time. The nonquadratic terms in the
fields reflect the underlying non-Abelian nature of the
theory entering via the (17~B) term in E.

Given the expression for the Lagrangian density, Eq.
(1.15), we may substitute the solutions (1.13) and (1.14)
into it, to obtain the Lagrangian L. The first two terms
of I are

d x(H —D ) = — d x((—BoC —%Co+ Ha) + 2M. (—OoC —VCo+ Hs) + M —P
3 3

—(—V x C+ D,)'+ 2P. (—V x C+ D, )) . (2.1)

Note that the cross terms
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d x(P. D, + M. H, ) = —e d~ ' .
~

P(y, t) — ' x M(y, t)
~

= 0,f dy(r, t) ( dy(7-, t)
d'r ) (2.2)

because of the fact that P(y) = dy/dt x M(y). Furthermore, to second order in (mass) i we can omit the term P2.
Thus altogether

L = — d x ——V x C+ D, +2CpV M+ —OpC —VCp+H, +2P. —V x C —2M OpC+M

+6g B (Cp —C ) + 6((9pB) —6(VB) + 3(BpBs) —3(VBs) —
2 W(B)) (2.3)

The classical field equations following &om L are

V Cp —V I +V C —6g B Cp —V M=O

V x (V x CD)+V x D, =0.
The solution to Eq. (2.10a) is

(2.10a)

V B —B —g (C —Cp)B =—
8 OB

(2.5a)

and

+2B
4 OBq

(2.5b)

The value of I for M = v~ ——v2 ——0 is the negative of
the central potential Vp(R). We look for static solutions
(i.e. , C = B = Bs ——0) with Cp ——0 as well [1,9]. These
solutions, which we denote C, B, and B3, depend, of
course, parametrically on the separation R = ~xi —x2~
of the quark sources. Thus the energy Vp(R) is simply

Vp(R) = —f d x Cc(C, B,Bc) (2.6)

where

Cp ——s(D, —V x C) —4g B C
+4BV' B+2BsV Bs —W(B), (2.7)

is the static spinless Lagrangian density obtained &om
(2.3) by setting v, M, Cp, and the time derivatives to
zero. The field equations obeyed by C, B, and B3 are im-
mediately derived from (2.7), or equivalently f'rom (2.4)
and (2.5). Thus

(2.4a)
—V' x (V' x C) —C + V' x D,

+(9p( —VCo + H, ) —6g B C —(9oM = 0, (2.4b)

Xy 1
CD ———— dyx V4' /x —

y/
(2.10b)

D, = e(8(z —Ri) —8(z + R2) )b (T)b (y) e, (2.10c)

and

e z —Bg
4~p gp2+ (z —Ri)2

z+ B2.,'(..-,) )"
(2.10d)

The equation satisfied by c is easily seen to be

V c —6g B (c+CD)=0, (2.11)

where as noted earlier we have made the gauge choice
V C = V c = 0. Equation (2.11) has the virtue,
important for numerical solution, of not containing the
singular quantity D, . Using the decomposition (2.9) we
can rewrite Eq. (2.6) in the simpler form

Vc(R) = —f d «(-', (D. —W x c)'

—4g B (c+ CD) +4BV' B
+2BsV Bs —W(B)), (2.12)

where D is the Coulomb field of the two quarks:

In cylindrical coordinates and for a straight line string
joining the two quarks located on the z axis at z = Rz
and z = —B2)

—Vx(VxC)+VxD, —6g B C=O, (2.8a)

(2.8b)

D. = D., +D.,
e 3c —Ky

4~ [x —xifs
e w —x2

4vr /x —x2/s
(2.13)

1 OW

4 OB3

To solve these it is converuent to define [9]

C = c+CD,

(2.8c)

(2.9)

where CD is the Dirac monopole potential of the two-
quarks satisfying [4]

The static solutions have the following features [9]. For
B ~ 0, C ~ CD and D = D, —V x C becomes a pure
dipole Beld. As R increases, D evolves &om a pure dipole
to a squashed (in the axial direction) dipole and then, as
B increases still further, to a Aux tube for very large B.
This flux tube coincides with our original flux tube [8],
except that this solution is in the gauge where the Dirac
string joins the two quarks while our original solution was
in the gauge where the strings went &om the charges to
+oo.
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FIG. 1. (a) Analytic fit to the numerical results for the central potential Vo(R). The solid line is the fit; the crosses are the
numerically computed values. (b) The same for the spin-orbit potentials V~'(R) and V2(R). (c) The same for the tensor force
Vs(R). (d) The same for the spin-spin potential V4(R). (e) The same for V+(R). (f) The same for V (R). [What is actually

lotted is —Vo/2 in accordance with Bq. (3C.10).] (g) V~~(R). [The plot is actually of V + RBVO/20R as in Eq. (3.13).]
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FIG. 1 (Continued)

As R ~ 0, the central potential Vp(R) obtained from
Eq. (2.12) approaches a Coulomb potential while as R —i
oo it becomes linear in R. An analytic fit to the central
potential obtained Rom Eq. (2.12) using the numerical
solutions of the static field equations in Eq. (2.8) and the
values g /A = 5 determined &om the flux tube solution,
is

—V' Cp + 6g B Cp ———V .I, —V M . (2.15)

Using this and a certain amount of algebra we can obtain
&om (2.3) the second-order Lagrangian, which turns out
to be

where c}s = e /4m = ~/g2 = vr/5A and o = —1.0324Ep
is the string tension. The exponential cutoff on the
Coulomb term in Eq. (2.14) reflects the inability of the
color electric field to penetrate into the dual supercon-
ducting vacuum. The potential is shown in Fig. 1(a}.

We next want to calculate the (mass) corrections to
Vp(R) produced by the spin and velocity of the quarks.
It is easy to show that when the quark sources move, the
static fields C, B, and B3 move rigidly with the sources
through first order in v.

To determine L to second order it now suffices to re-
place C, B, and B3 by C, B, and B3. This is because
L is stationary with respect to variations around C, B,
and Bs since these satisfy the static field equations (2.8).
Hence, there are no terms linear in the difFerences C —C,
B—BB—,and B3—B3, which are themselves already of sec-
ond order.

The field equation for Cp is (2.4a) with V C = 0:

d x s(—c}pC+Hs) +s(—P VxC —M c}pC)+ M + O'V M V H)3 3 p( ' + ' H ) + 4(BpB) + 2(BpBs) )
(2.16)

From this we can extract the three second- d tn -or er po en-
ia s spin~ Vspjn orbit and V„s (the term independent of

spin but quadratic in the quark velocities). We note that
the V's are b d 6y e6nition the negative of the appropriate
parts of the Lagrangian. Setting v and the time deriva-
tives equal to zero in Eq. (2.16) gives Cp = cp+ CM (2.20)

to account for the relativistic effect of spin.
In order to evaluate the nonperturbative contributions

to these two potentials it is convenient to decompose Cp
into

Vspin: d X CpV ' M+ M (2.17)
where CM satisfies

V' CM ———V M. (2.21)
2The M term here is evidently just part of the pertur-

bation theory, or one gluon exchange, result; CpV ~ M
contains the nonperturbative effects of the theory as well
as the rest of perturbation theory.

Similarly the linear terms in v give

Explicitly,

e oi . (x —xi)
M = C72 ' X —X2

2m, lx —»ls (2.22~

Vspin orbit = d x(—
s (P V x C + M . c}pC)3 4 Equation (2.15) then becomes an equation foi cp:

+sCpV H, ) . (2.18)
V cp —6g B (cp+ C~) = 0 . (2.23)

To this we must add by hand the contribution of the
Thomas precession,

~f'oi . cr2. L) 1 DVp(R)

~4 ~ +

The calculation of Vspi and V,pin ozbif, thus requires the
numerical solution of (2.23) for cp, inserting the solution
[via Eq. (2.20)] into Eqs. (2.17) and (2.18), and adding
the Thomas term.

The contribution of C~ in Eqs. (2.17) and (2.18)
for V . and Vspin p b t is simply the Breit-Fermi expres-s ~
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sion for these two potentials. The function t-p provides
the nonperturbative contribution resulting &om the non-
Abelian nature of original Lagrangian, and thereby ex-
presses the e8'ects of confinement.

Finally we read ofF the expression for V„2 by setting
M = 0 in the expression for L2 and in the field equation
(2.4a). This yields

V~ = — d x. — —t9pC+ H + -CpV' H

We can define cz by

Cp = cp+CpD,

where Cp~ satisfies

V'Cpo ——V H

The solutian of (2.27) is [4]

(2.26)

(2.27)

+4(~oB)'+ 2(~ B )'), (2.24)

3 ' dy(r t) dy(7- t) [x —y(r t)]
Cpa= 47r, d7. dt ix —yes

where now, from (2.4a), and because we use the gauge

V' C = 0,
and Eq. (2.25) becomes

V' cp —6g B (cI) + Cp~) = 0 .

(2.28)

(2.29)

V' Cp —6g B Cp ——V'. H, . (2.25) CpD for a straight line string becomes

Cpa = vt + v2 dR, e p2 + z(z —R/2)
2 dt 4~pR

p2+ z(z+ R/2)
I~* + (» + &i2)* )

(2.3O)

HBs = II. —pCD —VCpD (2.31)

where HBs is the Biot-Savart field, which is

We recall that we have written C = c+CD in the course
of solving the central potential problem. We furthermore
note the identity

motion of the quarks. It turns out that the radial quark
motion included in this paper does not acct these po-
tentials, so our earlier results remain valid [5,6]. The
only potential which needs discussion is, therefore, V„,
because here the radial motion changes the circular orbit
results [7] drastically.

The general form for V ~, for arbitrary quark motion,
is

C Vy X K. —3Ci V'2 X
BS— s . 232

47r [x —xg fs /x —x2/s

Using Eqs. (2.29) and (2.31) and some algebra we can
then show that (2.24) can be rewritten in the form

d «f s (HBs + ()9pc) —2Hns &pc)

[R x (vt —v2)]
'V 4R2

[R x (vt + vz)]2

[R (vt + v2)]
4R

[R (vt —vz)]2
4B2 (3.1)

—-H, V'cp+ 4()9pB) + 2(c)pBs) ) . (2.33)

III. EVALUATION OF THE POTENTIALS

In the following section we shall use these forms, namely,
(2.17), (2.18), and (2.33) to explicitly compute all of the
second-order potentials. [R x (vg —vz)]2 I2 C 1 1 )

4Rz 4Rz q m) mz )
+ (3.2)

Note that in the system where the center of mass of
the quark-antiquark is at rest, vt = p/m), v2 ———p/m2,
so

We have already evaluated the central potential Vp(R)
and given an analytic fit to the solution obtained &om
numerically solving the field equation for c and numeri-
cally evaluating the integral giving Vp. Our result is Eq.
(2.14). (This calculation is also described in Refs. [1,15].)

In our earlier papers an V,~;„[5]and V,~;„~,b;q [6] we
have given the derivation of these potentials for circular

[Rx (vt+vz)] I ( 1
4R2 4R2 (m) mz )

(3.3)

where I = B.x p is the orbital angular momentum. This
is the reason for the notation V+ and V . The calcula-
tions of V+, V V~~, and VI, &om Eq. (2.33) are long and
tedious. The results are
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C

[p2 + (z —R/2)']'~' ( 2 4 j

OB )t f BBs OBs 'l

2o., 4e—3R+3R P dP

R/2
z dz ——pcol~=o3R p pp

2vr 4 f Bc Bc) r'c' t' 2B
pdp dz — I

l
p——z—

l +, +8i pR o ~ 3 ( Oz Bp j p ( Bz
(3.4)

4o.,
II

=

1 (Bc) ' c' (BB) &BBs1
pdp dz —

I

—
l

+ —, +2l
I

+
I

o — 3 k~pj p k~pj 4 ~p j

3 o [p +(z —R/2) ] &

1 &aci ' faBI '
t aB.i '

—4vr pdp dz —
i

—
l

+2
l3 (Bzj (Bzj (Bz j

(3.5)

(3.6)

and finally

4 o., 8e Oc/BR
VL,

—————+ — pdp dz —167r
3 R 3 o [P2 + (z —R/2)']'r'

(BB3)

1 rBcl'' (BB)
pdp dz —

i i +2i
3 qc9R j qc9R j

(3.7)

The first terms in these equations are the contributions
due to single gluon exchange. As before, an analytic fit
to the numerical output is made:

V+ ——— ' exp —1.14
i3R (n, j R —0.208o R

+1 12/ no,. , (3 8)

V = —2Vo (see below),

R OVp
V~~

= V + — (see below),
2 OR

(3.10)

4n. f o. ) '~'
VL, = — '

exp —0.685
l

—
l

R
3R (n, j

+0.0885/ . ,o.n (3.11)

V = ——Vp2

It is important to note that relativistic invariance of
the Lagrangian density imposes the following exact rela-
tions between the various terms in V„2 and Vp, namely,

IV. COMPARISON TO EXPERIMENT

The numerical procedures we have employed to solve
the differential equations for the fields, and then to eval-
uate the integrals over these fields to obtain the various
potentials, are the same ones we have used before. They
are described in detail in Refs. [1,5,8]. The only changes
are in V„2,and in the differential equation for cp. How-
ever, since t pD is not singular, no special treatment is
required, and the numerical solution for cp is straightfor-
ward. The evaluation of the integrals in V„2 are, there-
fore, straightforward too.

Two kinds of tests can be made of our results. First is a
comparison with general conditions such as the Gromes
relation [10], Eqs. (3.12) and (3.13), and with lattice
results. Second is a fit to the energy levels of' the ce
and bb quark systems to determine our parameters in
detail. Once these activities are finished we can use our
potentials to predict unobserved states of ec and bb, as
well as levels in mixed quark systems such as cb. Finally,
if we are very optimistic and willing to extend our results
to the not very heavy strange quark, we can also calculate
the bs and cs systems to compare with what data exist
concerning these.

We begin with the Grornes relation [10]. This applies
to the spin-orbit potentials, and on quite general grounds
requires that

v, (R) = v, (R) (4-1)
R OVp

Vi( = V-+ —
~R2 I9R

(3.13)
Our numerical results agree with this to the accuracy of
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our numerical calculation, and the analytic fits to Vj V2,
and Vo satisfy it exactly.

We note that, from Eq. (5.2c), V2'(R) -+ 0 as R ~ oo.
Hence, for large R, Eq. (4.1) gives

10'

10
OVo (R)

OR
(4 2)

This relation is valid for a potential produced by scalar
particle exchange, so the long-range part of our spin-orbit
potentials mimics scalar particle exchange. Neverthe-
less, Vi has nothing to do with one particle exchange;
it is completely nonperturbative. V2, on the other hand,
mimics one vector gluon exchange.

Next wc may compare our computed Vo, V— and Vll

with the general relations (3.12) and (3.13). Again we
find agreement to within the accuracy of our numerical
calculations.

There have been a number of lattice gauge calculations
of the spin orbit potentials which can be summarized as
follows: V2 is similar to one vector gluon exchange, while

Vz is long range. We show in Fig. 2 a comparison of
lattice results [11] with our predictions for Vi' and V2.
Clearly the general trend is in agreement, but a real test
will require more accurate lattice results. [Incidentally,
in the figures for V& and V2 we have used values for g
(or n, = vr/g ), and cr obtained &om our fit to cc and bb

levels described below. ]
In Fig. 3 we plot the potential Vs(R) against R, as well

as the "perturbative" result due to single vector gluon ex-
change. As we see, there is a major difference at large
R, in that our result falls off much more rapidly than
the "perturbative" result. This again reHects the inabil-
ity of the color electric field to penetrate the dual QCD
superconducting vacuum.

Figure 4 shows the same plot for V4(R) . Here the "per-
turbative" result is simply a delta function.

10
U

10

10

10
0.0

I I I I I I I I I I I I I I

0.5 1.0 1.5 2.0
R (fm)

FIG. 3. The tensor force potential Vs(R) (solid line) and
the perturbative gluon exchange contribution (dotted line).

Our next step is to compute the masses of heavy-
quark —antiquark pairs by inserting our potentials (ap-
propriately symmetrized to guarantee Hermiticity) into
the Schrodinger equation. The masses are calculated as
a function of our various parameters and the differences
between the calculated and experimental value are min-
imized.

In all our fits to the masses of the cc and bb systems
we have chosen g'2 = g /A = 5. Varying this parame-
ter requires a complete solution to the dual QCD field
equations for C, B, and B3. Since these are nonlinear
partial differential equations, it is not practical to include

g as a parameter in our minimization search. We have,
however, redone the complete calculation for g' = 2 and
g' = 10. Over this range the final results showed very
little dependence on g' with the fit for g' = 5 being
slightly better than for the other values. The dual QCD

0.4

0.0

—0. 1

U —0.2

I I I I I I

I I ~ I I I

I I I I

0. 1

0.0—
0.80.0 0.2 0.4 0.6 1,0

R (fm)

FIG. 2. Comparison of our computed spin-orbit potentials
(solid lines) with lattice calculations [10] (indicated by the
data points). The dotted line shows the single gluon exchange
result for Vz(R); Vi'(R) is zero for single gluon exchange.

0.0
I I I I I I I I I I I I I I I

0.5 1.0 1.5
R (fm)

FIG. 4. The same plot as in Fig. 4 for V4(R). Here the
single gluon exchange contribution is a delta function at the
origin.
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parameters A and —Eo change in such a way as to keep
the physical quantities o., and the string tension essen-
tially constant. As result, the exact value of g' does not
affect the fit and we can safely fix it to be 5, which was
determined &om our flux tube considerations [8]. This
means that we set n, = vr/5A in carrying out the fitting.

The procedure for obtaining a best fit to the energy
levels of the known cc and bb states is as follows. We
define an efFective y as

( (experiment —theory) ) 2

(0.01 x experiment) )
(4.3)

TABLE I. Predicted and experimental masses of all ob-
served cc and bb states below threshold. (See Ref. [28].)

State
ii (1S)

(is)
g(2S)

y„(1P)
y„(1P)
~., (1P)
h, (lP)
r(is)
T(2S)
T(3S)
T(4S)

~,.(1P)
Xt (1P)
Xb, (1P)
ybo (2P)
yg, (2P)
yb, (2P)

Pred. mass (GeV)
2.968
3.118
3.696
3.437
3.498
3.540
3.511
9.464
9.998

10.340
10.622
9.866
9.897
9.921

10.221
10.246
10.266

Exper. mass (GeV)
2.980
3.097
3.686
3.415
3.511
3.556
3.526 [19]
9.460

10.023
10.355
10.580
9.860
9.892
9.913

10.232
10.255
10.268

This would be the actual y if the experimental statisti-
cal error was in fact 1%% or equivalently what might be
expected to be equal to the number of degrees of &ee-
dom if the theory was good to 1%%. Our remaining four
parameters a„o., and the two-quark masses m, and mp
are then varied to minimize the eEective y . Our proce-
dure is the following: Using our central potential we solve
the Schrodinger equation to determine the eigenvalues
and the wave functions for the necessary orbital angular
momentum states. The spin- and angular-momentum-
dependent potentials are then used perturbatively to cal-
culate the energies of the individual states and the y is
evaluated. The four parameters are then varied to mini-
mize y . It should be emphasized that these are only pa-
rameters and the dependence of the potentials on these
parameters is completely determined by dual @CD.

Once the best fit parameters are determined we can
predict the unobserved energy levels. Our best fit to the
17 observed states is given in Table I. The resulting y
is 1.85, corresponding to an average least-square error of
0.03%. The largest error occurs for the T(4S), where our
result is too heavy by 42 MeV.

Our best fit parameters are (i) n, = 0.3702, (ii) o
0.1994 GeV, (iii) m, = 1.340 GeV, and (iv) mb = 4.770
GeV. These parameters are only slightly changed from
our flux tube fits [8]. They result in a flux tube radius of

TABLE II. Predicted masses of the unobserved cc and bb

states.

State
g (2S)

('Dg)cc (n =
( Di)cc (n =

qg(is)
qg(2S)
qb(3S)
qg(4S)

('Pi)bb (n =
('Pi)bb (n =
('Dg)bb (n =
('D2)bb (n =

y, (3P)
Xb. (»)
Xb, (»)

('D, )bb (n =
( D2)bb (n =
(3D3)bb (n =
( Di)bb (n =
('D2)bb (n =
('Dg)bb (n =

1)
2)
1)
2)

i)
1)
1)
2)
2)
2)

Pred. mass (GeV)
3.589
3.826
3.814
9.314
9.931

10.288
10.577
9.906

10.254
10.155
10.450
10.519
10.542
10.561
10.147
10.153
10.158
10.442
10.448
10.453

TABLE III. Predicted masses of observed c8 and b8 states.
Note that the mass of H,* minus the mass of R, is known
experimentally to be 47 MeV. The experimental masses are
from Ref. [28].

CS

Theory
So 2.343 GeV

Sy 2.500

Expt.
1.969
2.536

Theory
5.788
5.843

Expt.
5.359-+ 5.409
5.406m 5.456

0.5f, and a scaling paraineter AI'p2 = 57—2 MeV.
The predicted energy levels for the as yet unobserved

(nearly) stable states of these systems are shown in Table
II.

Finally, we have also computed the So and Sq states
of the cs and bs systems. (These are known as D„D;,
B„andB;, respectively. ) Our results for these fits are
shown in Table III, and use a value m, = 350 MeV.
This mass is very low, and it is not surprising that the
fit in this case is much poorer than for the cc and bb

systems. It is possible that using the Salpeter equation or
the Dirac equation rather than the Schrodinger equation
to compute the levels involving 8 quarks will help; this
will be discussed in Appendixes B and C.

The potentials can be used to predict low-lying states
of the, as yet, unobserved cb system. For the So (called
ii,&) and Si states of cb we find masses of 6.285 GeV and
6.377 GeV, respectively.

The dual @CD region of applicability is in the IR or
long-range behavior and, therefore, provided no infor-
mation about short-range efFects. Prom what is known
about @CD, one would expect the coupling constant to
run at short distances reBecting the fact that the theory
is asymptotically &ee. We have investigated what such a
modification might do to our fits to the data by using a
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modified formula for the coupling constant for the central
potential:

, obtained from fitting the data with this modification,
was 1.25, an improvement over using the long-distance
potential everywhere.n„B)Bp,

1+ ~ P 1n(RiRD)
(4.4) V. SUMMARY AND CONCLUSION

P was calculated from the P function for @CD for no Ha-

vors and Rp was arbitrarily fixed at 1/GeV. The resulting
I

The entire heavy quark potential to order (mass)
can in general be written in the form [12]

m$ 7%2

[H. (vi + v2)] [H. . (vi —v2)]
4R2 ii

+ 4R2

1 / cri H,cr2 R+
4mim2 l R2

2

V (R)
m2)

(5.1)

Within the classical approximation to dual @CD the nine potentials appearing in Eq. (5.1) have been evaluated as
functions of R, the quark-antiquark separation, by first solving numerically the differential equations (2.11), (2.29),
and (2.39) for the functions c = c(p, z)e~, co(p, z), and co(p, z), respectively, and then inserting these solutions into
the integrals (2.12), (2.17), (2.18), and (2.33). The potentials have an overall power of R (determined by dimensions)
and are otherwise functions of n„g/A, which we fix to be 5, and the string tension cr. Analytic fits are made to the
potentials computed. in this way; we restate these here for convenience:

Vp(R) =—4~. r ~&"' exp —0.511 &.r R + o R —0.646v/o n, , (5.2a)

Vi'(R) = 0 511 —(1 — o siiv/~—/~. .R)
3B o.,

(5.2b)

V'(R) = 4n, &

0.511
3B

— .osiiv~/~/, R)
(5.2c)

V4(R) =

42x10
R )

32700!8 0.019— ( o ) s/2
'b (R) + 12+o.,e ' ~ / ' ' —1.7 x 10

3 R (n, j

(5.2d)

(5.2e)

e ' v ~ —0.208o R + 1.12/o.a, ,3B
1

V (R) = ——Vp(R),
2

(5.2f)

(5.2g)

()= -()+-
VI, (R) = — 'e ' v ~ + 0.0885+oa, .

3B

(5.2h)

(5.2i)

The fits and. their comparison to the results of the nu-
merical calculations are shown in Figs. 1(a)—l(g) and
are evidently excellent.

As to the comparison of these potentials with experi-
ment we first comment that Vp(R) agrees extremely well
with phenomenological central potentials, as shown in
Fig. 5. Second we have remarked that the spin-orbit
potentials Vi'(R) and V2'(R) satisfy, to the limit of our
numerical accuracy, the Gromes relation [10]

V,'(R) = V'(R) — Vo(R)

I

which is derived using the general @CD expressions for

Vp, Vz', and V2 together with invariance under Lorentz
boosts. Third as seen in Fig. 2, our spin-orbit potentials
are in good agreement with lattice calculations of these

[ll]; in particular it is worth noting that single gluon
exchange predicts for Vi(R) zero while both our result
and the lattice result show a nearly constant negative
value.

To obtain the energy levels of the cc and bb systems, the
analytic fits to seven potentials (the V and Vii terms
vanish for equal quark masses) are used perturbatively
in the Schrodinger equation describing the central-quark—
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I I I I I I I I I I I I I I I I I I

0 1 2 3 4
R (fm)

FIG. 5. Comparison of our computed central potential
Vo(R) with a phenomenological potential (from Ref. [13]).
The difference in these potentials is due to the fact that our
fits require a larger string tension.

valid reason for including it in Vo(R).
Finally, there are various relativistic corrections, con-

figuration mixing, and other phenomena sometimes in-
cluded in heavy quarkonium level fitting. All of these
effects (except the Thomas term, which we have incor-
porated) go beyond the (inass) order of approximation
employed here. In the spirit of sticking to a consistent,
well-defined, systematic approximation, we have, there-
fore, chosen to ignore all such effects.

In conclusion, we may ask if any other of our predic-
tions can be tested. One obvious thing is to find further
levels in quarkonium, and to identify cb states. A per-
haps more interesting and more sensitive test would be
to improve lattice calculations of all eight (nine in the
unequal mass case) of our potentials. As we have seen,
lattice calculations do exist for the two spin-orbit poten-
tials Vi'(R) and V2'(R), and these in fact agree with our
predictions for these potentials rather well. We would
like to see similar comparison for the other potentials.
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APPENDIX A: ELECTRODYNAMICS WITH
DUAL POTENTIALS

Dirac [18] showed that Maxwell's equations could be
extended to include both electrically and magnetically
charged particles by connecting the magnetically charged
particles to strings. In the absence of magnetically
charged particles one can apply Dirac's method to ordi-
nary electrodynamics by connecting electrically charged
particles to strings. In this formulation Maxwell's equa-
tions become equations for dual potentials C„whose
sources are the polarization currents produced by the
Dirac strings. The potentials themselves depend upon
the location of the strings but they yield the same string
independent electromagnetic fields as the usual proce-
dure.

If in addition the dual potentials |~ are minimally
coupled to Higgs fields, these fields necessarily carry mag-
netic charge. Such a theory describes the motion of elec-
trically charged particles connected by Dirac strings in a
dual superconductor. If extended to non-Abelian gauge
theory [7] it becomes a concrete realization of the Man-
delstam 't Hooft [19,20] picture of color confinement as a
manifestation of dual superconductivity. We have found
that in order to understand this mechanism for confine-
ment it is very helpful to first have a clear picture of
how dual potentials work in ordinary electrodynamics.
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(a)
V. D=O

VxH —BOD=0

(b)
V-B=O

V x E+BpB=O

(c)
D=em

B=pH,

(A1)

can be solved by introducing vector potentials in either
of two ways. The conventional choice is to write

Therefore, in this appendix we present an elementary
discussion of Dirac's method applied to electrodynamics
and work out some simple examples. Our discussion is
entirely pedagogical and contains nothing new although
some speci6c results obtained here may not be readily
accessible elsewhere.

Consider 6rst a sourceless linear dielectric medium.
Then Maxwell's equations

Gauss' law
V. D= p

Ampere's law
VxH=j+ ~, .

(A7)

|9Pp= —N P, j=VxM+
Bt (A8)

where P is the dipole moment per unit volume and M
is the magnetic moment per unit volume. Inserting Eq.
(A8) into (A7) we obtain

Suppose that the total charge Q = I p dx = 0. (If Q g 0,
then there will be Dirac strings extending to infinity, but
nothing essential will be changed. ) Then we can always
find a polarization vector P and a magnetization vector
M so that

B=V x A E= —t9pA —VAp (A2a) V (D+P) =0, V x (H —M)—B(D+ P)
Bt

=0.
in which case Eqs. (Alb) become kinematical identities
and the dynamics is contained in Eqs. (Ala). The vector
A" = (Ao, A) is called the vector potential. The alter-
nate (dual) choice is to write

D = —V x C H = —BpC —VCp (A2b)

in which case Eqs. (Ala) are kinematical identities and
Eq. (Alb) contain the dynamics. The vector C&

(Co, C) is called the dual vector potential.
Let us erst use C~ to solve the source-f'ree Maxwell

equations (Al) in order to get accustomed to using the
dual potential. We first write Eqs. (A2b) in covariant
form by de6ning

Hence,

D= —V x C —P, H= —VCO — +M. (A9)
OC
Ot

G„„=O„C —O„C„+G„'„,
where the tensor G'„has components

(A10)

Equation (A7) then become kinematical identities and
Eqs. (Alb) contain the dynamics as before. Using the
definitions (A3) of G„„wecan write Eqs. (A9) in the
covariant form

Gpk ——Hk) G;~ = e,~kDk (A3)
Gok =Mk, G,2

= —6'2kPk, (A11)

so that Eqs. (A2b) take the form

G„„=O„C —O„C„. (A4)

In a relativistic medium e = 1/p. Then using Eq. (A3)
we can write the constitutive equations as

PE,. = —e;~kG~k) B; = pGp; )
2

(A5)

and Maxwell's equations (Alb) as

8 pG~p =0 (A6)

Equation (A6) for C~ have the same form as the usual
Maxwell equations for A„,obtained from (Ala), with the
replacement p ~ e, and they are solved in the same way.
Equation (A5) then gives the electromagnetic fields E
and B in terms of C„.

Electric current sources j& ——(p, j) appear only in Eqs.
(Ala) and not in Eqs. (Alb). Hence in the presence of
electric currents, Eqs. (Alb) remain valid and are still
kinematic identities in terms of A&. Equations (Ala), in
contrast, are no longer identities in terms of C". How-
ever, Dirac has shown how to generalize Eqs. (A2b) in
order to satisfy Eqs. (Ala) with dual potentials C+ even
in the presence of electric currents.

When charged particles are present Eqs. (Ala) become

and we have now specialized to the case where P and M
arise &om Dirac strings connecting the charged particles;
hence the superscript s on G„'„.Equation (A10) is just
the generalization of Eq. (A4) to account for the presence
of charged particles. Equation (All) shows that G„'„is
the dual of the polarization tensor. Equation (Alb) and
(Alc) are unchanged so that Eqs. (A5) and (A6) remain
the same as does the definition (A3) of G„.The efFect
of the charged particles is to change the relation (A4)
between G&„andC„to (A10) where G„'„is determined
in terms of p and j by solving Eq. (A8) for P and M.

Substituting Eq. (A10) into Eq. (A6) we obtain

8 p(8 Cp —BpC ) = OpG'p, —(A12)

which determines the dual potentials C„in terms of G'„„.
Equation (A12) provide an alternate form of Maxwell's
equations which are completely equivalent to the usual
form expressed in terms of the vector potential A~:
namely,

8 e(0 Ap —BpA )=jp. (A13)

All text books on electricity and magnetism could be
rewritten using only dual potentials C~ satisfying Eq.
(A12) and the same electromagnetic forces between
charged particles would be obtained. The potentials
themselves, however, could be completely difFerent. For
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example, in a dielectric medium having a wave number
dependent dielectric constant e(q) -+ 0 as q2 -+ 0 (corre-
sponding to antiscreening at large distances), the poten-
tials A„determined from Eq. (A13) would be singular
at large distances, while the dual potentials C„satisfy-
ing Eq. (A12) with p, = I/e —+ oo as q ~ 0 would be
screened at large distances. Use of the potentials A„to
describe this system would introduce singularities which
do not appear in the dual potentials C„.Hence the dual
potentials are the natural choice to describe a medium
with long-range antiscreening.

Note that for p = e = 1, B = H, D = E and substi-
tuting Eqs. (A9) in (Alb) gives the equation for the dual
potentials in three-dimensional notation:

y (cr,t

Xl(t)

XI

V (—VCp —BpC) = —V M, (A14)
X2

V x (—V x C) + Bp(—BpC —VCp)

=VxP —™.(A15)
Ot

X
P

These equations are identical to Eq. (A12) with p = 1.
They have the same form as the equations for A„,the
ordinary vector potentials in a polarizable medium with
P and M interchanged. For example, —V M is the
source of Cp. However Eqs. (A14) and (A15) describe the
electrodynamics of electrically charged particles moving
in the vacuum and P and M are the polarization and
magnetization, respectively, of the Dirac strings attached
to these particles, as we shall now see.

We now apply these results to the case of two particles
of charge e(—e) moving along trajectories xi(t) [x2(t)] in
&ee space with p = e = 1. Then

C

FIG. 6. (a) Dirac string L(t) connecting oppositely charged
particles. (b) Closed contour describing path of line integral
on right-hand side of Eq. (A22). (c) Diagram representing
string cancellation mechanism of Eq. (A32).

xj (t)
P(x) = e dyh(x —y)

x2 (t)

p(x, t) = e[h (x —»i (t) ) —h (x —»2 (t) )] (A16) = e do. ' h(» —y(o., t)) .By(o., t)
Bo' (A18)

and

j(x, t) = e[vih (x —xi(t))

Then

x1(t)
—V. P = —e dy. V h(x —y)

x2(t)

—v2h (x —x2(t))], (A17) = p(x) . (A19)

where v; = dx;/dt, i = 1, 2. We must find a polarization
P and inagnetization M satisfying Eq. (A8) with p and
j given by Eqs. (A16) and (A17). The solution of this
problem was given by Dirac [18]. Let y(o, t) be any line
L(t) connecting »2(t) and xi(t), i.e. , y(oi, t) = xi(t),
y(o2)t) = »2(t), o2 & o & oi. [See Fig. 6(a).] On
each element dy of L place a dipole moment dp = e dy.
It is evident from Fig. 6(a) that the charge and cur-
rent density produced by the sum of these dipoles is that
due to the pair of moving oppositely charged particles,
namely, Eqs. (A16) and (A17). To obtain (A16) formally
we note that the dipole moment per unit volume P is

= e do. x h(x —y(o., t)) .
CT1

go Ot
(A20)

Next we show explicitly that Eq. (A18) for P and
(A20) for M give via Eq. (A8) the current density. From
Eq. (A18) we have

Furthermore since the line element dy is moving with
velocity v = (B/Bt)y(o, t), the string I in Fig. 6(a) has
a magnetization

X1
M=e dyx h'(x —y)Ot
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x1(t)
= e— dy(cr, t)b(x —y(cr, t))Dt Bt ( )

dx2 xg (t)
= e b(x —xi(t)) — b(x —x2(t)) + — dy(~, t + bt)b(x —y(0, t + bt))dt dt

xidy(o. , t)b(x —y(cr, t))
X2

e= j(x, t) + — dy b'(x —y) .
bt (A21)

The first term on the right-hand side of Eq. (A21) arises
&om diH'erentiating with respect to the end points with
the path fixed. The line integral in Eq. (A21) is over a
closed contour running froin »2(t) to xi(t) along the path
y(cr, t+ bt) and returning to x2(t) along y(0, t). [See Fig.
6(b).] We denote y(0', t + dt) —y(cr, t) = by and the
element of area dy x by = dS. Then by Stokes' theorem

obtain the explicit form of the covariant version of these
equations we note that

Og 0Q~ 4G'„„=ee„„p— d7- do b (*—y),87 00'
T2 CT2

(A23)

wheree e
dyb(x —y) = —— dS x V„b(x—y)bt bt

by=e dyx —xV x —yht
= —VxM. (A22)

and

x" = (t, x), y" = (y, y),

Equations (A21) and (A22) yield Eq. (A8) with j given
by Eq. (A17) as asserted.

Equations (A14) and (A15) with P and M given by
Eqs. (A18) and (A24), respectively, determine C„.To

Equation (A23) is the standard covariant form for the
Dirac string field G„'„[18].To show that expressions

(All) and (A23) for G'„„arethe same first set p = 0 and
v = Ic in Eq. (A23):

1 1 gym gyAGp„———ecg „d~ do b (» —y)b(yp —t)
T2 ~2 87 Bo

=e
~

x
~

b (x —y)=Mi, .
' (By Byl

')a (A24a)

Next set p = i and v = j in Eq. (A23): 8"G„„=0, (A25)

gyO yak
G;, = —ee;, pg d7. b (x —y)b(yp —t)

Tg 87 BIT

gyA:= —ee,~g do b (x —y) = e,~i,PI, . (A24—b)00

Thus Eq. (A23) is just the covariant version of Eqs.
(A18) and (A20).

Equation (A12) with p, = 1, and G'„given by Eq.
(A23) is the covariant forin of Eqs. (A14) and (A15)
determining the dual potential produced by a pair of op-
positely charged particles moving in the vacuum. The
resulting C„willdepend upon the location of the string,
but this dependence will drop out in the expression for
the electromagnetic field tensor G~ . We will show below
how Eqs. (A14) and (A15) with P and M given by Eqs.
(A18) and (A20) produce the usual expressions for the
electric and magnetic fields of slowly moving particles.

Finally we note that the equation of motion (1.12) with
p = 1, namely,

can be obtained &om a Lagrangian density 8 given by

(A26)

Vx(—VxCD) =VxP, (A27)

where we have denoted the static solution C = CD (for
Dirac). Equation (A27) has the form of the equation of
the vector potential due to a polarization current pro-

We will see in Sec. V that this Lagrangian gives not
only the field equations but also the particle equations of
motion.

To understand better how dual potentials work we will
solve Eqs. (A14) and (A15) for slowly moving particles.
First consider charges at rest. Then M = 0 and P is
time independent, and Eq. (A14) becomes V Cp ——0
(i.e. , Cp ——0), and Eq. (A15) reduces to
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duced by the superposition (A18) of dipoles. Thus, C~
is just the vector potential produced by a superposition
of point dipoles of strength —e dy distributed uniformly
along the string [see Eq. (A18)], CD is given by [21] Then

e x —yC~(») = —— dy x
4m

„
i» —yi'

' (A28)

P+Dc ) (A29)

where

e (x —xi
C = DCoulomb— 4~ ( x-»,

so that

x —x2
x —x21')

(A30)

D= —VxC~ —P=D~. (A31)

The above elementary derivation of Coulomb's law indi-
cates that it really is not too much larger to work with
dual potentials and strings then to work with ordinary
potentials and localized charges. The string cancellation
mechanism in Eq. (A31) is depicted in Fig. 6(c) in which
we have taken the string to be a straight line connecting
x2 and xi. We see that —V x CD gives a divergence &ee
field distribution. The singular Geld passing through the
line L is canceled by the singular polarization P, leaving
a Coulomb Geld with a source at xi and a sink at x2.

Next, let us solve Eqs. (A14) and (A15) to first order
in vi and v2 and to zero order in the accelerations vi
and v2. First look at Eq. (A15). We choose the gauge
V C = 0 (note V CLi = 0). Then Eq. (A14) becomes

CoD=-VxM, (A32)

where we have denoted the solution Cp ——CpD. Equation
(A32) has the form of the equation for the scalar poten-
tial due to a polarization charge produced by the super-
position (A20) of dipoles. Hence CpD is just the scalar
potential produced by a superposition of point dipoles of
strength e dy x y distributed uniformly along the string;
i.e., Cp~ is [21]

~g (t)
Cpa = — (dy x y) '

4x „,(,) ix —yes
'

Prom Eqs. (A18) and (A33) we see that the time deriva-
tive of M and the time derivative of M and CpD do not
contain terms linear in the velocities. The same is true
for Bp2CD calculated &om Eq. (A31) with xi ~ xi(t),
x2 —+ x2(t). Hence to first order in the velocities Eq.
(A15) reduces to Eq. (A27), and so C = C~ and
D=D

To calculate H we use Eq. (A9) with C = CD and
Cp ——CpD. We Grst calculate

a e a "'(') x —y——CD ———— dy x
Bt 4'il Bt ~ (i) ix

(A34)

I9 e x —y——CD ——HBs+ — dy x
Bt ht

(A35)

where the term

e x —xi(t) x —»2(t)
4vr ix —xi(t) ]' i» —»2(t) is

(A36)

arises from time difFerentiation of xi(t) and»2(t) in Eq.
(A34) leaving the path fixed. The line integral in (A35),
over the same contour occurring in Eq. (A19), arises from
moving the string keeping the end points fixed. Parallel-
ing Eq. (A20) we then apply Stokes' theorem to obtain

The evaluation of the right-hand side of Eq. (A34) par-
allels that of Eq. (A21) and we obtain

e dy (x. —y) e ds x V„x—y
ht 4' ix —yes ht 4' i» —yes

hyl ( x —y ) e by x —y= e
i

dy x —
i i

V„.
/

+ V — dy x —.
, (,) ( ht) ( "

fx —y] ) *4m ht ]x —y]
= —M+ VCpD . (A37)

Equations (A35) and (A37) then yield

OCg)H = — —VCpg) + M = HBs
Ot

(A38)

Thus we see that the Biot-Savart magnetic field HBs
comes from the time derivative of the limits»2(t) and
xi(t) in the integral for C~, Eq. (A34). The remaining
string dependent part of BCD/Bt cancels the contribu-
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tions to H coming &om Cp~ and. M.
We now use the solutions for C~, Cp~, D~, and H~s

to eliminate the fields in the Lagrangian I given by

As a 6nal remark we connect the notation of this paper
to that used in our previous work [7] on /CD where we
have introduced string fields D, and H, defined as

L= d 8= — d H —D
2

(A39) D, = —P, H, =M, (A43)

to second order in the velocities of the charged parti-
cles. The Lagrangian L, de6ned as the integral over
the Lagrangian density (A26) then becomes a function
L = L(»i, x2, vi, v2) only of the positions and velocities
of the charged particles. To higher order in the velocities
one cannot eliminate the field degrees of &eedom in I
because of the presence of radiation.

For particles at rest we have C = C~, Cp = 0, H = 0,
D =Dc, and

2

L(vi ——v2 ——0) = — d» —Dc —— , (A40)
4~1», —«, I

'

where the self-energy has been subtracted. To 6rst or-
der in the velocities, C = C~ and D = D~ given by
Eq. (A30) with xi ~ xi(t), x2 ~ x2(t). In other words
the static 6eld configuration follows adiabatically the mo-
tion of the charged particles. Furthermore since the La-
grangian L is stationary about static solutions of the 6eld
equations we have

so that Eqs. (A9) take the form

D = —V x C + D„H= —VCo — + H, . (A44)
BC
Ot

C1

S = —m1 1 —v1dt —m2
t2 t2

1 —v2 dt

The fields D, and H, then cancel the string contributions
to —V x C and —VCe —OC/Bt yielding fields D and H
&ee of string singularities. For slowly moving particles
this mechanism is explicitly exhibited by Eqs. (A29) and
(A37).

The action S describing the electromagnetic interac-
tions of a particle of charge e and mass m1 with a particle
of charge —e and mass m2 is

1 2=dx —D
2

2

4~~»i(t) —»2(t) [

'

+ dxZ, (A45)

valid to second order in the velocities v1 and v2.
All the velocity dependence in L then comes from jH2

which to second order in the velocities is

dx H = — dx(Hns)
1 2=1 2

2 2

where 8 is given by Eqs. (A26) and (A10). Varying
C„in the action 8 gives the field equation (A25). To
obtain the equations of motion for the particles and for
the string which connects them we vary the string co-
ordinates: y" ~ y" + by" and correspondingly vary the
particle positions z~i ~ z~i + bz~i, z2 ~ z2 + bzz such
that

1 e v1 ~ Rv2 R
V1 'V2+ p2 , (A41)

bzl (~) = by" (~1~ r)~ bz2 (+) by (~2~ r) (A46)

where the self-energies have again been subtracted out
and where R = xi(t) —«2(t). Hence, we obtain, for
the second-order Lagrangian L (first obtained by Darwin
[23])

L(xi, »2 ) vi, V2)

Denote

By~,„By~
Bo' O'T

=y (A47)

d»[HBs —Dc]
2

Then

b
~

— d z G""G„„~= —— d z G""(z)bG'„(z),( 1 4 „)1
e2 1 e2 v1 ~ Rv2 ~ R

4~~ 2 4~~ (A42)
where

(A48)

T1 0'1

bG„'„=—ee„„p dw do(~by'"y' +. y"by' ]b(z —y) + y"y' B„pb(z—y)by~) .
T2

(A49)

Hence,
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1 Tl

dk G""bG' = &—„» dr do G""(y)(by"y' + y"b'y' ) + y y' DPG""(y)&yp
T2 O'2

d= —E& p dr do —b'y"—(G""y' ) —by (G""y")+ bypy"y' BPG""

+—(by"G" y' + (by—G""y")
cL7 do

Tl CF1

e "" dr der by"y' yPBPG"" —b'y y"y'POPG""+ byPy y' &PG""
T2

d+ (~v G" ()") I"do

Tl

d~ do- by y' y —e„„),BpG"" —~„„ppBG"v+ e„„f3BpG""
T2 O2

+e„» (by G""y")
do.

J

(A50)

where we have used the fact that the variations of by" vanish at rq and ri.
Next we use the identity

(el »~&p + ep~p&&~ + ev~~p~&)G = 2e) &~p&~G (A51)

and obtain

1 e Tl

2
——dz G" bG'„„=e dr der 6y"g' y e„pPB„G""+ —e„» dr(bzi G""(zi)zi —bz~ G""(zq)z~) . (A52)

T2 CJ2
P Q v

2 Pv

We must add to the above variation that of the particle action Sp..

Tl

bSp ——b d~ —mg
T2

m2
~ ~ ~ ~ ~ ~ ~

~

Tl Tl

«( mizlabz—i m2z2abzg ) = (mlzlabzi + m2z2abzg ) ~ (A53)
T2 T2

The total change in the action bS due to a change in particle coordinates is

bS = b S~ 4- b
~

—— dz G„„G""
~

( I
4

~ ~ ~ ~

~

Tl
tl1' BX1 1111%1 + Eg 1 G (Xl)T1 + SX1 1112%2 E1 1 G (X2)X1)

2
(A54)

e do y' y' e„pPB„G"(y) = 0, (A55)

in addition to the Lorentz force equations

mlzlcx — engr»G (zi)z]
2

and

In proceeding &om (A52) to (A54) we used the field equa-
tion (A25) which eliminates the string contribution to the
variation of the action in Eq. (A52).

If we had introduced further interactions [7] of the C„
so that o)„G""g 0, then there would have been addi-
tional variations of the action arising &om the first term
in Eq. (A52). In that case Hamilton's principle bS = 0
gives

m, z, = -'e „„~G""(z~)*,",
2

(A56)

following Rom Eq. (A.54). Thus Eq. (A55) provides a
boundary condition along the strings upon the current
OG"

Our purpose in writing the appendix is pedagogical,
though of course, motivated by our interest in using dual
potentials in /CD. We have seen how normal classical
electrodynamics can be handled completely in terms of
dual potentials, and that the use of these potentials gives
the solution to the conventional Maxwell equations for
the electric and magnetic fields and leads to the usual
I orentz force law for the motion of charged particles.
While dual potentials provide a somewhat awkward way
to solve electrodynamics when charges are present, the
are nevertheless the natural variables to describe a di-
electric medium with long-distance antiscreening. This
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is the underlying reason for their utility in describing
long-range QCD.

where p, is the nuclear magnetic moment. Writing this
matrix element in terms of the large g and small f com-
ponents of the Dirac spinor we obtain

APPENDIX B: USE OF THE SALPETER
EQUATION LE dr rgr (B5)

There are several important reasons for seeking a rela-
tivistic treatment of quark-antiquark bound states. First
of all, for quarks moving in a Coulomb potential v/c n
where n is the coefficient of the 1/B singularity, this
number is about 0.5 for our potential, making even the
bb states quite relativistic. This certainly causes some
doubt as to the reliability of calculations that employ
the Schrodinger equation, and quantities that depend on
short-range behavior are particularly suspect. A second
reason is the need to treat lower mass quarks where rel-
ativistic eKects will be even more important.

The Salpeter equation

'+m', + '+m'+ V 4 = EC

I'i
p = —tan

2 (2 )
(B2)

Note that as n —+ 4/vr, p goes to zero. For larger values of
n, the solution of Eq. (B2) shifts to another branch of the
tangent and no normalizable wave function exists. For-
tunately, our value of 30., is about 0.5 so that a solution
exists but p 0.8. If one uses a running coupling con-
stant to weaken the singularity at the origin, the power
behavior disappears, but Durand [26] has shown that a
logarithmic singularity remains and 4(0) is still infinite.

We have developed a method to regularize the b-
function terms. Recall that the b function in V4 is the
result of taking the nonrelativistic limit of the Dirac equa-
tion in which the vector potential of the nucleus is treated
as a perturbation. The hyperfine matrix element is

LE - d'r Co. AC,

where

p, Xr
(B4)

represents a simple generalization to that the quark kine-
matics relativistically. We have used the method pro-
posed by Fulcher [24] employing a finite number of basis
functions to obtain a matrix representation of the oper-
ator on the left of Eq. (Bl). The eigenvalues and eigen-
vectors are easily calculated for our central potential.

The next step in the calculation of quarkonium energy
levels is the perturbative calculation of the splitting pro-
duced by the potentials given in Eq. (5.2). Because of
the b function that appears in V4 this is not a trivial step.

It has been shown by Durand et al. [25] that the
Salpeter wave functions behaves as 1/B ~ for a poten-
tial that behaves as n/R near the origin, where

Note that this is finite even though, like the Salpeter
wave function, the Dirac wave functions are singular at
the origin. If we eliminate the small component we find

AE — dr g r2m dg
(B6)

where V is the Coulomb potential. In this form it is clear
that V in the denominator is regulating the singularity
at the origin. Taking the nonrelativistic limit we obtain

g 1 2AE - — dr g(r) —= ——g(0)dr 2
(B7)

This would be a problem if it were not for the fact that
g now is the Schrodinger wave function which is well be-
haved at the origin. This is exactly the same term that
the b-function potential produces. Evidently the correct
replacement for the b function for a relativistic wave func-
tion is

TABLE IV. Salpeter equation fit to masses of all observed
cc and bb states below threshold. Parameters are 0;, = 0.2876,
o = 0.2285 GeV, m = 1.286 GeV, and mg ——4.701 GeV.
Rp ——0.5 fixed.

State
(is)

Q(1S)
0(»)

y„(1P)
y„(1P)
x.,(»)
h. (1P)
T(iS)
T(2S)
T(3S)
T(4S)

~b, (1P)
x., (»)
~b. (1P)
Xb. (~P)
~b. (2P)
Xb. (»)

Pred. mass (GeV)
2.967
3.126
3.700
3.427
3.497
3.543
3.510
9.511

10.004
10.350
10.642
9.854
9.878
9.896

10.213
10.236
10.254

Exper. mass (GeV)
2.980
3.097
3.686
3.415
3.511
3.556
3.526
9.460

10.023
10.355
10.580
9.860
9.892
9.913

10.232
10.255
10.268

This prescription has the further advantage that no new
parameters have been introduced.

The fit to the heavy quark data using the Salpeter
equation and the potential with a running coupling is
shown in Table IV. The value of y was 2.6, significantly
worse that our Schrodinger results (y2 = 1.25).

For heavy-light quark —antiquark systems the Salpeter
equation predicts the mass of the D, D*, B, and B* to be
all too high by between 300 and 500 MeV. These values
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are the lowest that can be obtained, and occur for a light
quark mass of 425 MeV, also a rather high number.

APPENDIX C: USE OF THE DIRAC EQUATION

In a recent paper Mur et al. [27] give theoretical ar-
guments for the use of the Dirac equation to describe
heavy-light quark —antiquark systems in @CD. We begin
with the investigation of states of a light quark bound
to a c or b quark, and determine the eigenvalues and
eigenvectors of the Dirac equation in the limit that the
heavy mass is infinite. The hyperfine splitting will then
be calculated perturbatively, using the heavy quark mass
obtained in our Schrodinger fit. The radial Dirac equa-
tion in matrix form for the small and large components
1s

(C1)

where V, is the scalar potential and V„is the fourth com-
ponent of a four-vector. The conventional view is that
the confining potential is a scalar and that the Coulomb
term is a vector. For our potentials the fact that the
string tension appears in Vz tends to support this divi-
sion, although in this application we really have no choice
because there is no solution to the Dirac equation for a
linear potential in V .

Each of the four matrices on the left of Eq. (Cl) is ex-
pressed as an N x N matrix using the same basis function
as in the solution of the Salpeter equation. The resulting
eigenvalues and eigenvectors are then used to calculate

TABLE V. Predicted masses of B, B*, D, and D* mesons
from the Dirac equation [28]. m„is the light quark.

State
B
B'

m„=97 MeV
Theory Expt. State

5.304 GeV 5.279 D
5.347 5.325 D*

Theory Expt.
1.880 1.869
1.995 2.010

the hyperfine splitting. For a pure Coulomb potential
(o. = 0.5 and rn = 1) using a 20 x 20 representation
for the individual matrices, we obtained. 0.866 028 for the
ground-state energy to be compared to 0.866025 for the
exact result. For the linear potential we compared our
results with those of Mur et al. [27] and found excellent
agreement.

In the calculation of the masses of the heavy-quark
light-quark systems we first adjusted the light-quark
mass (the only free parameter in this calculation) to give
the correct center of masses of the s-wave states and then
calculated the splitting using this mass and the heavy-
quark mass. The results are not very good.

A simple correction to the infinite heavy-quark mass
limit, described above, is to introduce a nonrelativistic
heavy-quark kinetic energy term [29]. Doing this signif-
icantly improves the results, as shown in Table V. The
four masses of D, D*, B, and B* can be fitted with our
theoretical y of 1.3, using just one parameter the light
quark mass which comes out to be 97 MeV, a very rea-
sonable value. This calculation is done neglecting the
velocity dependence potential, and all but the perturba-
tive part of the spin-spin potential, since this is already
included in the Dirac equation.
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