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Nonperturbative renormalon structure of infrared unstable theories
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The properties of a generalized version of the Borel transform in infrared unstable theories with
dynamical mass generation are studied. The reconstruction of the nonperturbative structure is un-
ambiguous in this version. Various methods for extracting the singularity structure of the Borel
transform for lattice formulations of such theories are explored and illustrated explicitly with the
O(N) o model. The status of the first infrared renormalon in QCD is discussed. The feasibility
of a proposed technique for analytically continuing from the left-hand Borel plane (where nonper-
turbative information is available via simulation of lattice field theory) to the positive real axis is
examined using the o. model.

PACS number(s): 12.38.Cy, 11.15.Ha, 11.15.Pg

I. INTRODUCTION

The problem of the divergence of (renormalized) per-
turbation theory, which can be traced back to the sem-
inal work of Dyson in quantum electrodynamics [1], is
now recognized to lie at the core of any precise analytic
understanding of the nonperturbative structure of field
theory. The need to face this problem squarely is par-
ticularly apparent in massless quantum chromodynamics
(/CD), where the underlying dynamics is specified by
a single parameter N [for gauge group SU(N)]. Dimen-
sionless ratios of hadron masses in this theory depend
only on N, which is of order unity (N = 3) in the phys-
ical world. Apart &om the technically intractable 1/N
expansion, there is no natural intrinsic expansion param-
eter for the spectral and other low-energy properties of
the theory. If one insists on computing such quantities
in a conventional weak-coupling expansion, they either
vanish formally to all orders, or yield asymptotic expan-
sions in terms of a running coupling which is naturally of
order unity. Such expansions are quantitatively useless
in the absence of a reliable "resummation" procedure.

Certain superrenormalizable field theories (e.g. , Pi 2 s
in the unbroken phase) have been shown rigorously [2,3]
to possess Borel-summable perturbative expansions, so
that the full content of the theory (at least, information
theoretically) is exhausted by perturbation theory. The
spontaneously broken phases of these theories is typi-
cally not Borel summable, but even here an optimized
reorganization of the perturbation theory can be shown
rigorously [4] to converge to the exact partition function,
provided the theory is formulated at finite volume. The
failure of Borel summability is far more severe in /CD
[5], and no systematic analytic procedure is known, even
in principle, whereby the full nonperturbative structure
of the theory could be obtained on the basis of purely
perturbative information.

The divergence of the perturbation theory in /CD is
far more than a merely technical embarrassment, as has
recently been emphasized by Mueller [6]. It fundamen-
tally limits our ability to reliably compute important cor-

Quite generically, one may identify subsets of graphs in
perturbation theory which contribute factorial growth to
the dimensionless coefEcients c at large n:

/'b, )"c„~—
~

n~n!, (2)

where bo, bi = bop/2 are the first two coefficients of the
p function and P is a positive integer. Using Stirling's
approximation, the nth term in the asymptotic series (1)
may be written

(q2)ra n ln(nboa/pl n-(ba&"
(3)

which is minimal at

jI1
b (q2)

The error in an asymptotic expansion is typically at least
as large (it may of course be much larger) as the smallest
term; here

/'A2)"
m 1ri

Q2 (4)

which is power suppressed at large Q in just the way we
expect for a higher twist term. The moral is clear: higher

rections (such as higher twist effects) to the vast phe-
nomenology of high energy processes described by per-
turbative /CD. Specifically, in those cases where one
attempts to weld analytic perturbative with numerical
or phenomenological nonperturbative estimates for the
same process, the precision of the result is clouded by
unavoidable resummation ambiguities on the perturba-
tive side. Consider, for example, a renormalization group
controlled amplitude II(Q2) in /CD, expressible as a for-
mal (divergent asymptotic) series in the running coupling
~(q'):

II(Q2) = ) c„n"(Q ).
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twist effects are not precisely calculable in the absence of
a reliable resummation procedure. The same arguments
in fact apply in a variety of other important situations:
for heavy quark expansions, where 1/M" effects (M =
heavy quark mass) may be confused with resummation
ambiguities arising in a static-quark quantity evaluated
via the renormalization group in terms of a perturbative
expansion in n(M), or in estiinating analytically power
corrections to lattice quantities in the lattice spacing a.

The conventional Borel transform approach (for a thor-
ough review, see [7]) attempts to reconstruct the full
nonperturbative structure of the theory &om knowledge
of the behavior of weak-coupling perturbation theory at
large orders. There are two serious problems with such
an approach in in&ared unstable theories such as /CD.
First, it is becoming increasingly apparent that the large-
order behavior is exceedingly complex [8]. It is very dif-
ficult, even restricting oneself to a strictly limited subset
of graphs, to precisely identify the terms which give the
truly dominant behavior at large order, due to the subtle
interplay of combinatoric and kinematic eKects. Second,
in a non-Borel-summable theory (and any infrared un-
stable theory with dynamical mass generation falls into
this category) there is in any case no reliable reconstruc-
tion theorem based on the usual perturbative Borel trans-
form, which develops singularities (renormalons) on the
positive real axis of the Borel variable 8, i.e., on the Borel
integral contour. Fortunately, an alternative formulation
of the Borel transforin exists, first discussed in /CD by
't Hooft [5], and later by Crutchfield [9] and David [10].
This form of the transform is closely connected to the
"naive" perturbative definition in Borel-summable the-
ories, but can be used to give a precise reconstruction
theorem in a much wider class of theories. The singular-
ity structure of this transform is unambiguously related
to the exact nonperturbative structure of the full theory.
But by the same token, this structure is not directly ac-
cessible in conventional perturbation theory, but must be
studied in an explicitly nonperturbative way.

The primary objective of this paper is to suggest
that useful information about the renormalon structure
(i.e. , positive s singularities) in infrared unstable theo-
ries can indeed be obtained using nonperturbative tech-
niques (such as the large 1V expansion or lattice theory).
In Sec. II we review very quickly the conventional pertur-
bative Borel transform B(s), and explain its relation to
the generalized transform B(s) and the density of states
function B(s) = discB(s). A classification of renormalon
singularities into those which are already present at fi-
nite volume ("type 1") and those which are only strictly
speaking present at infinite volume ("type 2") is given.
The basic interconnections are further illustrated using
spin models in one and two dimensions (the nonlinear
o. inodel) in Sec. III. In Sec. IV we explain the per-
turbative camou8age of renormalon singularity structure
in disconnected quantities such as the partition function
(vacuuin-vacuuin amplitude). The status of the first in-
&ared renormalon singularity in /CD (recently raised
by Brown, Yaffe, and Zhai [11];see also [12]) is discussed
in Sec. IV. It is shown that certain renormalon singu-
larities of the full Borel function B(s) are immune to

in&ared cutouts in ordinary perturbation theory which
remove the usual IR renormalons. Moreover, the pres-
ence of such a singularity appears to be a generic feature
once dynamical mass generation is assumed. In Sec. V
we study the cr model at large N on the lattice in order
to establish the numerical feasibility of extracting renor-
malon singularities by analytic continuation of nonper-
turbatively computed (say, by Monte Carlo simulation)
Euclidean amplitudes. Section VI summarizes our con-
clusions and indicates directions for further study.

II. BOREL TRANSFORM TECHNOLOGY

The archetypal example of a Borel-summable pertur-
bation theory is the non-Gaussian integral

+ (Z(f)—: exp
~

——V(x)
~

dx,
(f) .

V(x) = x'+ x'

n 2 n+1

n=o

Evidently the coeKcients c in the asymptotic expansion
of Z(f) for f ~ 0+ have the large order behavior c
(—1) 4 n!. Define the "naive" Borel transforin

B(s):—) —", s" (8)

z(y~ = f.— ~.~»~*

d~S 8 —V~ (10)

ds e '~~B(s),

so that Zo(f) =
f~ e '~~B(s)ds and Z(f) have the

same asymptotic expansion for small f In this ca.se the
analytic properties of Z(f) are such (see [7] for precise
conditions) that Zo ——Z and knowledge of the "naive"
transform leads to a precise reconstruction of Z for all
f We shall a.ctually be using a more powerful version of
the Borel method in most of this paper, which will cir-
cumvent the need for theoreins of this type which certify
the preceding procedure. The shortcomings of B(s) for
non-Borel-summable theories, where the sign oscillation
in c is absent in some uncanceled set of contributions at
large order (not necessarily the dominant ones) are im-

mediately apparent: B(s) develops singularities on the
positive real 8 axis, rendering the reconstruction integral
ambiguous (if the singularities are nonintegrable). The
most straightforward way in which such singularities can
arise is illustrated in Fig. 1, where the "action" V(x)
possesses a secondary nonperturbative extremum.

To expose the singularity in B(s) write [13]
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or QCD in four dimensions (4D), defined by a functional
integral

Sp

S)

where P is a generic set of fields, S[g] the Euclidean ac-
tion, and f a bare coupling constant. A compact lattice
formulation (I 17/ = 1) of the theory is supposed, so that
a UV cutoQ' is always present, and we have logarithmic
asymptotic &eedom:

Xp X) 6() ln(A/m)
' (i4)

FIG. 1. Non-Gaussian action leading to singular B(s)

where

B(e)—:f de 6(e —V(e))

1

v(. ) . IV'(*')I
(i2)

If V has a nontrivial extremum where V'(2:;) = 0,
s; = V(z;) ) 0 we will have necessarily B(s;) = oo,
a singularity (in this case, an integrable square-root sin-

gularity, as B 1/gs —s, ) for positive s. To the extent
that the interchange of integrations carried out in Eq. (9)
is legal, the reconstruction of Z &om B must be precise.
In fact B is intimately related to the more general Borel
function to be introduced below. In general, however,
B g B!.Of course, the asymptotic expansions for small
s of B,B, which determine the asymptotic expansion of
Z(f) for small f, must agree. As pointed out originally
by 't Hooft [5], the existence of Euclidean extrema of
the action (instantons) in QCD implies in a similar way
the presence of singularities in B(s) at s = S;„,i. More-
over, the location of the singularities (though not their
strength) is universal (see [5]): once a singularity appears
in any amplitude of the theory, it is expected to propa-
gate to all others.

For a class of non-Borel-summable theories (the
archetype is the double well anharmonic oscillator) an
optimized reorganization of perturbation theory can be
shown to converge with exponential rapidity [4] to the
exact partition function. These convergence proofs ap-
ply only when the theory is formulated at 6nite volume,
however, limiting the practical usefulness of such meth-
ods in higher dimensional field theories. The approach
taken here will be to employ a generalized Borel trans-
form which allows a "bulletproof" reconstruction of the
full theory, avoids resummation ambiguities, and is more
closely tied to the path integral formulation of the theory
[9]. Our ultimate objective is to explore the potential of
the presently available nonperturbative lattice techniques
for computing the singularity structure of this transform.

Consider a typical infrared-unstable (asymptotically
free) theory, such as the O(N) (T model in two dimensions,

The integral is convergent at large f for all s [as
e')' Z(f) -+ 1] and for Re(s) ( 0 as f + 0+. Thus
B(s) is left-half-plane analytic, with a cut on the posi-
tive real axis for 0 & 8 & S . Indeed, inserting the
functional integral expression (13) in (15), and defining
~ —= i/f,

~*( —~I&l) d~

which is manifestly analytic in the s plane cut along the
positive real axis between 8 = 0 and 8 = S „. The
discontinuity of B(s) across this cut is

Iee66(e = eR + ee) = er J D6e6(eR —S(6))'
= vrB(sR) .

The physical interpretation of this discontinuity is clear:
B(s) is the density of configurations in the functional in-
tegral with action equal to s [cf. Eq. (12)]. Singularities
of B are expected wherever there is a sharp local en-
hancement in the number of configurations, for example,
wherever the action has a local extremum.

The rigorous reconstruction of Z(f) froin B is trivial
in this &amework. The vertical contour of the inverse
Laplace transform may be wrapped around the cut on the
positive 8 axis to give an integral over the discontinuity of
B(s), i.e., over B. More directly, we may simply observe
that it follows from Eqs. (13) and (18) that

Z(f) = f 66(e)e '~ede . (19)

This reconstruction is exact: there are no routing am-

where m (physical correlation length), A (short-
distance cutofF) . For both 0 models and QCD on a
finite lattice, 0 ( S[P] ( S „ is a bounded continu-
ous function of the fields, and the integral f 17/ is coin-
pact. Define the generalized Borel transform B(s) as the
Laplace transform with respect to inverse coupling, as

+no t'1)B(s):— e')'~Z(f)d
I

—I, Re(s) ( 0 .
o
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biguities in the s integral. Of course, B is in general a
distribution (containing potentially h singularities), not
obtainable purely &om knowledge of weak-coupling per-
turbation theory. Instead, it must be computed nonper-
turbatively by analytic continuation of B(s), computed
nonperturbatively in the region Re(s) ( 0, where the
defining integral (15) exists. It should be noted at this
point that B(s), in contrast to B(s) may have 8ingulari-
ties in the left-half-plane [corresponding to non-principal-
sheet singularities of B(s)]: the ultraviolet renormalons
of the renormalized perturbation theory in @CD are of
this type.

It is convenient to distinguish between two types of
singularities appearing in B(s). Exact local extrema of
the Euclidean action may exist even for systems with a
finite number of degrees of freedom (e.g. , field theories
formulated on a finite lattice). Such extrema give rise
to actual singularities (henceforth called "type 1") of B
even at Gnite volume, when the theory is cutofF in the
in&ared. For example, one can 6nd lattice analogues of
the instanton solutions of the classical 2D O(3) o model
using a simple numerical annealing procedure to solve the
lattice Euclidean field equations. Other singularities of
B only appear at in6nite volume and will be called type
2 singularities. The famous infrared renormalons of large
order perturbation theory are connected to singularities

I

of this type. As numerical simulations of nonperturba-
tive behavior are necessarily restricted to Gnite volume
lattice theories, the question arises whether singularities
of this type are really accessible using simulation tech-
niques. We shall see below that the question is compli-
cated by the nonuniformity of the analytic continuation
to positive s in the large volume limit, which will require
a modification of the definition (15) in the finite volume
situation. For the time being, let us illustrate the absence
of a true singularity in (15) in a discrete system with a
simple toy model. Consider a mass gap relation connect-
ing a bare coupling f and a dynamically generated mass
m of the form

1 1 . 1—= —) -+in( (, L —+oo. (20)
(1+m)

L m+nL g m

The "infinite volume limit" thus gives m = e i~t/(1—
e i~~), and Borel traiisforms B(s) of any analytic func-
tion G(m) expandable at m = 0 will display simple poles
at s = 0, 1, 2, 3, . . . . For example, if G(m) = 1/(1+ m)
we have (at L = oo) B(s) = —1/s —1/(1 —s) [for other
choices of the "momentum" in the denominator of G(m),
there will typically be poles at all integer s]. On the other
hand, for finite I, we have

B ()=
0 1+m (fy

1 1 1 ( 1 1
exp( s- dm,

L (m+ n/L)2 1+m ( L m+ n/L)
(21)

where the m integral in (21) is convergent for Re(s) ( 0.
We may analytically continue to s = 1 by deforming
the m contour to avoid a singularity &om the n = 0
term in the exponent, i.e., by keeping arg(s/m) fixed
near m = 0. This can be done without encountering
any pinches of the integration contour. Consequently,
Bi,(s = 1) is perfectly finite for finite L. In Sec. VI
we shall see that BL,(s) needs to be modified so that
a smooth approach to the infinite volume behavior for
positive s is obtained.

III. NON-BOREL-SUMMABLE SPIN MODELS

Here P; are unit three-vectors and free boundary condi-
tions are chosen so that the model factorizes in a trivial
way. Indeed, the partition function is

showing a trivial separation of the "perturbative" (oc f )
and "nonperturbative" (oc f+e 2"~~) terms. For L = 1,
the Borel transform of Z is

A. Separable models (D = 1) (24)

A simple model which already serves to illustrate sev-
eral features of the renormalon singularity structure in
more general non-Borel theories is the 1D spin chain de-
6ned by the action

with discontinuity

=1 = 1Bi(s)—:—ImB (s + is) =
2 8(s)8(2 —s) . (25)

L

~ = ) (1 —~; ~;+.) (22)
Note that poles only appear in Bi(s) after a derivative
with respect to s. This effectively [cf. Eq. (15)] removes
the overall perturbative factor of f (associated with the
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separable model of 2D pure lattice gauge theory is found
to have an essentially identical Borel structure. If we take
the gauge group to be SU(2), the partition function for a
system of L plaquettes (with free boundary conditions)
is found to be

Zl(f) = 2fe ' Ii
I

—
I

(lb

0.05-

10 14

FIG. 2. Borel transform H for L = 8 spin chain.

16

For I = 1, the Borel transform is Bi(s) = gs(2 —s).
The Borel discontinuity (=density of states in functional
integral) for a system of 8 plaquettes is also plotted in
Fig. 2 for comparison with the spin chain case. Once
again, the singularities at 8 = 2, 4, 6, . . . , are numerically
invisible.

measure in the path integral), exposing the nonperturba-
tive behavior. For L large, BI,(s) is even smoother (each
prefactor of f effectively integrates with respect to s).
The singularity structure is numerically invisible in this
case. In Fig. 2 we show Bs(s). It is clearly difficult to tell
that there are actually singularities at 8 = 2, 4, 6, 8, . . . .
In Sec. IV we shall see that this perturbative camou-
Qaging of the singularity structure is typical of discon-
nected quantities such as Z, but is not a problem when
connected quantities (with a well-defined infinite volume
limit) are considered.

In agreement with the usual analogy between spin
models in D and gauge models in 2D dimensions, the

I

B. Borel structure of 2D cr model

The partition function of the continuum 2D o. model
is given by the Euclidean functional integral

(
Z(f) = 17$(x) exp

I

—— d2xIB„QI'
I

(26)

Here P is a unit N-vector field, f is a bare coupling, and
a UV cutofF is presumed. On a finite two-dimensional
L x I lattice, the corresponding quantity is

Ze(f) = f II„dg„pdeep e) p„„(P„—1) ——)
Il-d4. dp- exp i) .p-(O' —N/f) ——).I&~4'. I'

(fq ' (
gNJ

(27)

Here n labels lattice sites and an auxiliary condensate
field p has been introduced to implement the nonlinear
constraint. Integrating out the P fields,

ZL(f) =
I

—
I

II„dp exp
I

~.e[p ] I
(28)

(f)
EN

where

2 ' 2X
S,ir = Tr ln( —A —2ip) + —) p„.

For large N, the functional integral in Eq. (28) is domi-
nated by a translationally invariant complex saddle point
atp =p, nowhere

1 1 - 1
I2 ) d(k) +m'

Here the kinematic momentum factor appearing in the
propagator denominator is d(k) = 4[sin(vr A,'/L) +
sin(n k„/L) 2]. Thus the 1/N expansion [14] generates im-
mediately a dynamical (squared) mass m(f). Note that
for any finite L, the dynamical mass m(f) defined im-
plicitly in Eq. (30) is actually analytic at f = 0. Any
analytic function of m (e.g. , the large N limit of the P
propagator at momentum k, namely, 1/[d(k) + m]) will

therefore have a conventional Borel transform B(s) which
is entire in s. The full Borel transform B(s) of the large
N propagator has a cut on the positive axis, but no true
singularities of B for finite L. The problem of recover-
ing the singularities of the large volume limit &om lattice
data will be discussed in Sec. VI. Type 1 (instanton) sin-
gularities which would surface already at finite L are of
course absent in the large N limit.

The large % result for the partition function is

ZL, (f/N) exp ) ln[d(k) + m] —m/f (31)
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Again, as for the spin chain case, the perturbative pref-
actor will numerically camouBage the nonperturbative
structure.

For future reference we list here several important fea-
tures of the large N limit in the continuum theory. Ini-
tially, assume both infrared and ultraviolet cutoffs to be
present for the modes of the @ field: A & k2 & A. The
mass gap equation then becomes

mentum space,

1 1———+q2+ m q2 q4 q6
(34)

possesses a meromorphic Borel transform B(s). Taking
A = 0 for sixnplicity and changing variables to x—:1/ f,

1 d'k 1

f (2~)2 k2+ m

(A+ m)
4m (A+ m) (32) =A"

/(47m —s
+

4vr(n+ 1) —s
+ ".

I (35)

giving a dynamical squared mass

~.-4-~~ —~
] ~—4nif

displaying the characteristic essential singularity at f =
0. The singularity is present even though A g 0 (and
conventional perturbative IR renormalons are absent: cf.
Sec. V). The large N limit of the P propagator in mo-

so there are simple poles at 8 = 4', 8m, 12m, . . . . Switch-
ing on the in&ared cutoff A modi6es the residue, but not
the location of these poles. This apparently paradoxical
situation is elucidated further in Sec. V.

The meromorphic character of the Borel transform of
the propagator extends to other Green's functions in the
large N limit. The two-current correlator, for example,
is de6ned by

II "(q) = d x(0~ J"&(x/2) J"&(—x/2)~0)e

(36)

Neglecting terms of O(q /A) and subtracting at q = 0, one has (in the large N limit)

1 ( „q"q") q2111""= ——
I

a""—,
I

d»n
I
1+*(1—*)—

I

~8~( q') m)

The Borel transform can be computed by leaving the Feynman parameter integration to the end. Again neglecting
terms of order q /A (but not m/q2) the relation between m and f is efFectively m = Ae 4 )~ so

B""(s)=— A'~'
~

""—
~

d d ' '~'1
32~2

& q' ) o o m ) (38)

We are interested in the singularity structure of B"v(s) for Re(s) ) 0 (the generalized Borel transform is left-half-plane
analytic). Since

x 1 —x 2-i-.(4.1
~

1~ ( )
m (39)

is analytic for Re(a) ) 0, we may complete the m integral to f without altering the singularity structure in the
right-half-plane. One then 6nds

( „„qq" y (Ay"" r(a/4~)r(-a/4~)r(l —a/4vr)'
32m ( q ) (q I'(2 —s/2m)

(40)

which has double poles at 8 = 4m, 8m, . . . . These poles
would be visible as sharp peaks if B""(s)could be com-
puted at Re(s) & 0 and then analytically continued to
a = sR + ip, p « sR, sR ) 0. Note that B""(s)satisfies
the Brown- Yaffe-Zhai relation [11]

discB""(s;q = —Q )

1= sin(vrbos)B""(a; Q ), bo ———. (41)4'
From the foregoing, it is apparent that the nonlinear
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o model in the large N limit exhibits an interesting and
elaborate renormalon pole structure [10] in the right-half
Borel plane. This is so even though a conventional per-
turbation expansion applied to the large N result leads
to trivial results, insofar as the nonperturbative struc-
ture enters in this limit entirely through the quantity
I, e /f which vanishes to all orders in a formal ex-
pansion around f = 0.

IV. PERTURBATIVE CAMOUFLAGE
OF RENORMALON SINGULARITIES

Formally the most convenient field-theoretic quantity
&om the point of view of the generalized Borel function
B(s) is the basic partition function Z(f) of Eq. (13),
as the discontinuity of B(s) in this case is nothing but
the density of configurations in a given action shell in
the functional integral. Unfortunately, Z does not pos-
sess an infinite volume limit, and as we saw in Sec. III
the type 1 singularities of B(s) for a system of large but
finite volume V are in any event camouHaged by pertur-
bative prefactors fv which smooth the s dependence
(as multiplication by f is equivalent to integration by
s). The Borel transform of Z(f) is very accurately com-
putable by Monte Carlo techniques: &om the density of
states interpretation described in Sec. II one has only
to histogram the &equency of configurations generated
in a Monte Carlo simulation (relative to a conveniently
chosen reference action) versus action. The result of a
simulation of B(s) for an 8 x 8 2D o. model is shown in
Fig. 3, to be compared with Fig. 2 for the spin chain
or 2D @CD. Note that the singularities at positive s are
numerically invisible.

The connected vacuum amplitude W(f):—lnZ/V is
clearly preferable to Z in this regard. Apart &om having
a well-defined infinite volume limit, perturbative prefac-
tors in Z appear as additive contributions in W, elec-
tively uncovering the renormalon structure of the the-
ory. We may expect the same to be true of other con-
nected Green's functions (e.g. , two-point functions) of

the theory, which are expressible as source derivatives of
O'. For example, consider the trivial spin-chain model of
Sec. III A:

l
WJ. = —ln ZL, = ln( f/2) + ln(1 —e ~ )L

(42)

1 1
1mB~(s~+ ip) - p) - n (sR —n)2 + p2

'

(43)

Assuming the Borel discontinuity B(s) of Z has been
computed (say, by Monte Carlo simulation) sufficiently
accurately, the analytic continuation of Z(f) to x
1/ f = iy (y positive real) is available as the Fourier trans-
form of B. Recall

while

+OO

Z(x = 1/f) = ds B(s)e'*
0

(44)

B~(s) = dxe' lnZ(x), Re(s) ( 0 .
0

(45)

Analytically continue B~ &om real negative 8 to s =
s~ + ip (s~, p ) 0) by simultaneously deforming the x
contour in Eq. (45) to x = iy. Thus

1mB~(sR + ip)

OO ~max
= Re dy e""" ~" ln ds B(s)e"" . (46)

0 0

The result of this computation for the spin-chain model
is shown in Fig. 4 for p = 0.05. The singularities at
s = 2, 4, 6, . . ., are clearly visible. (The oscillatory struc-
ture visible in Fig. 4 is due to the fact that the integral

the Borel transform B~ of which exhibits simple poles at
s = 2n, n = 1, 2, . . ., with residue 1/n. The continuation
to positive 8 thus exhibits Lorentzian peaks:

. 1 1
Bvi (s) - ) n8 —n '

0.8
0

0.6

CQ

E
0.4

-20
E

0.2 -40

32 96 128
I

160 192 224 25(.

FIG. 3. Density of configurations for 2D O(3) o. model. FIG. 4. Borel singularities of W in 1D O(3) spin chain.
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over y, performed numerically, was cut ofF at the upper
end. ) It would be clearly of great interest to locate the
type 1 singularities in more interesting lattice field theo-
ries along these lines. At present most of the discussion
of renormalon structure centers on correlation functions
(e.g. , the Euclidean current-current correlator) and we
shall focus instead on an alternative approach which al-
lows the extraction of renormalon singularities (of both
types) of connected Green's functions.

ing an in&ared cuto6 A, the contribution of the subset of
graphs shown in Fig. 5 is found to be [6]

~(q')
I+ boa(Q~) ln (f)

V. STATUS OF THE FIRST INFRARED
RENORMALON IN +CD

It has been known for some time that evidence for a
nontrivial singularity structure in the right-half-plane of
the Borel variable s can be detected within the &ame-
work of conventional (weak-coupling) perturbation the-
ory. Consider an asymptotically free field theory (such as
massless @CD) with no intrinsic mass scale at the classi-
cal level. Any scalar Euclidean momentum space correla-
tion function II(Q2) corresponding to a renormalization
group invariant quantity will have a formal perturbative
expansion in powers of the running coupling of a(q ):

(47)

An example of great phenomenological interest is the
hadronic electromagnetic current correlator, where

II(Q ) = d xe' '

(O~T[j"(x)j„(0)]~0).
1

Perturbative in&ared renormalons are associated with
subsets of graphs which result in a contribution to the
coefficients c at large n of the form

If no infrared cutoff is present (A = 0), the large n
behavior of the x integral is dominated by x n and we
have

(boy"
c„

/

—
/

n!
E2) (50)

implying a singularity in B(s) at s = 2/bp. The absence
of a singularity at the first possible renormalon location
s = 1/bp can be related to the absence of a local gauge-
invariant operator of dimension 2 in @CD [the extra fac-
tor of l2 in the numerator of (49) is a direct consequence
of gauge invariance]. The nouperturbative ambiguity as-
sociated with the singularity at s = 2/bp is of the form

exp
I

——~(q') I-
bo )

exactly the leading power behavior associated with coef-
ficient functions of the lowest dimension nontrivial oper-
ator F appearing in the operator product expansion of
this current correlator.

With an in&ared cutoK present, the renormalon singu-
larity disappears, as the large n behavior is dominated
by x ln(Q /A ) and

(bp)"
c„- n!

/

—
/kpJ

(48)

where bp = (11—2Ny/3)/4vr is the first nontrivial coeffi-
cient in the P function and p is an integer. The behavior
(48) implies a singularity in the naive Borel transform
B(s) at s = p/bp. Such terms can be seen to arise from
sets of graphs generating the leading in&ared logarithms
in the current-current correlator (see Fig. 5). Introduc-

Q-&

This power growth means that the contribution &om
these graphs to B(s) is entire in s. Of course, the Tay-
lor series generated by the coefficients (51) has a finite
radius of convergence (before the Borel transform). The
divergence occurring when A is decreased to the point
where ln(Q /A ) 1/bpn(Q2) is just the entrance of the
Landau singularity into the range of the momentum in-
tegration.

The preceding discussion applies almost word for word
to the two current' correlator (36) in the 2D 0 model. A
typical set of diagrams giving an in&ared renormalon in
this theory is shown in Fig. 6. Here the current insertions
do not decouple at zero momentum and we have, instead
of (49),

~(Q')
1+ boa(q*) ln (&.)

FIG. 5. One of a set of bubble graphs contributing to the
leading perturbative renormalon in +CD.

1n(Q /A )n"+ (Q )bp x"e dx . (52)
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FIG. 6. One of a set of bubble graphs contributing to the
leading perturbative renormalon in the 2D o model.

If the in&ared cutofF is set to zero, the large order be-
havior is c„bon., leading to a singularity in B(s) at
s = 1/bo This c. orresponds to a local operator ~(9„$~ of
dimension 2. If A g 0, the perturbative renormalon dis-
appears completely, as the large order growth is power
rather than factorial.

An important advantage of the 2D o model is the avail-
ability of the large N saddle-point technique as a reliable
tool for exhibiting the mechanism of dynamical mass gen-
eration in the theory. It was pointed out previously that
dynamical mass generation occurs even if an infrared cut-
off is imposed on the modes of the elementary P fields
of the theory [recall (33), where m, A, and A, respec-
tively, represent the squared mass, UV, and IR cutoffs].
From (33) it is apparent that even if A g 0, the Borel
transform B(s) of the propagator 1/(q + m) has sim-

I

pie poles at s = 4vrn, just as in (35). However, we have
just seen that if A g 0, the usual perturbative sources of
infrared renormalon singularities in the naive transform
B(s) disappear. In fact, the renormalon structure of the
full Borel function B(s) in this case is associated with
the appearance of a zero-momentum condensate for the
auxiliary O(N) singlet field p(x) [see (27)], which couples
to the singlet two P channel. Even though the individual
P constituents are restricted to have nonzero momentum
k & A, pairs of these quanta can condense at zero mo-
mentum, precisely as in the case of Cooper pairs in BCS
superconductivity. The moral of this example is clear:
the full Borel transform B(s) can have singularities of
purely nonperturbative origin, not associated (at least
in any direct fashion) with the usual IR renormalons of
perturbation theory.

The preceding discussion applies to the renormalon
structure of the continuum field theory in which the mo-
mentum modes are still continuous, but a sharp in&ared
cutofF is introduced. The introduction of a finite lattice
imposes an in&ared cutofF uniformly on all fields of the
theory, including the condensate Geld p, thereby elimi-
nating the singularities at s = 47m of B(s).

It was pointed out in Sec. II that a singularity in B(s)
for the Borel transform of the partition function Z(f) is
directly related to a singularity in the density of configu-
rations in the defining functional integral for Z. Con-
sider the current-current correlator in quenched QCD
(i.e. , dropping internal quark loops). The UV cutoff
will be implemented on a lattice (with a bare couplinga—:go/4vr) and the compact link integrations written
J27A„ for simplicity. Then (again, representing the lat-
tice Fourier transform in continuum notation for simplic-
ity),

II(Q ) = N(Q; f)/Z(f),
4 iN(Q; f):— d x e' ' 17A„Tr[p"A(x; A„)p„D( x; A„)]exp

~

———8[A]
~

BA&P A;q exp ——S A
1

where A(x; A) is the quark propagator in the background
field A. The Borel discontinuity of N(Q; f) is

Bss(s;Q') = f DAs P[A;S]b(s —S[A„])''
= &(s g)Bz(s)

Bs(s) = J DAsS(s —S[A„]) . '

(54)

Here 'P(s; q ) is the average of V[A&', q] over all configu-
rations with action equal to s. Bz(s) is the fundamental
density of configurations in the theory. As pointed out by
't Hooft in his seminal study of the renormalon structure
of QCD [5], Borel singularities in the transform of N(f)
or Z(f) will generically transfer, via the convolution the-
orem, to the Borel transform of the connected ratio N/Z,

barring some miraculous cancellation. In fact, the loca-
tion of renormalon singularities (though not their type
and strength) are expected to be substantially indepen-
dent of the specific Green's function under consideration:
rather, they derive &om the basic structure of the func-
tional configuration space of the theory.

It has sometimes been asserted that the presence or
absence of renormalon singularities can be inferred solely
&om the assumption of nonperturbative validity of the
Wilson operator product expansion. For example, the
absence of a perturbative IR renormalon in B(s) at
s = 1/bo was related above to the absence of local gauge-
invariant operators of dimension 2. Such a singularity
will never be visible in dimensionally renormalized mass-
less perturbative QCD, where the only mass scale in the
theory is introduced via the regularization procedure in
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d3
Z~ =1+V "e-«~&'+ l+ ",

(2vr) s

p —&/boa

(55)

The higher order terms are suppressed at low tempera-
ture, so cannot be expected to cancel (except acciden-
tally) any renormalon singularity found in the first non-
trivial terxn. The Borel transform Bi(s) of the one-
glueball contribution to the free energy ln Z/V thus be-
comes

such a way as to result in purely logarithmic (rather than
power) contributions to renormalized quantities. Rather,
we are concerned with intrinsically nonperturbative con-
tributions to the coeffxcient function Cx(x) of the iden-
tity operator, which is present regardless of the subse-
quent set of nontrivial operators in the theory. Such con-
tributions, of the form mx in coordinate space, where
m is a dynamically generated squared mass of the form
~ e /' ' o. -+ 0, inevitably produce a Borel singular-
ity at the first location s = 1/bp. On the other hand,
they vanish formally to all orders in a weak coupling ex-
pansion, and (in a non-Borel theory) are not necessar-
ily reconstructibLe &om conventional sources of factorial
growth in perturbation theory (cf. situation discussed
above for the 2D o model in the presence of an IR cut-
off).

Finally, let us note that the presumed existence of a
mass gap in the theory can be viewed as prima facie
evidence for a universal infrared renormalon singularity
at the 6rst available location. It is very dificult to see
how a singularity at s = 1/bp can be avoided in almost
any physical quantity in QCD once such a mass gap is
assumed, together with the renormalization group and
asymptotic &eedom. As the simplest example, consider
the finite texnperature partition function of pure QCD
at low temperature P i. Evidently, for large P, the one
glueball sector dominates and [defining xn = (glueball-
mass

VI. FINDING RENORMALON SINGULARITIES
ON A FINITE LATTICE

If, as we have argued, weak-coupling perturbation the-
ory is not a reliable guide to the full renormalon struc-
ture in an in&ared unstable theory with dynamical mass
generation, it will be necessary to carry out a fully non-
perturbative evaluation of the Borel function B(s) for the
relevant physical quantity. In QCD this restricts us to a
numerical (Monte Carlo) sixnulation of the lattice gauge
theory. There are two obvious diKculties which must
be overcome. Firstly, the information obtained in such
a calculation is necessarily subject to statistical errors.
Consequently, any technique employed for the extraction
of the singularity structure of B(s) for Re(s) ) 0 [ob-
tained by analytic continuation from Re(s) ( 0] must be
fairly resistant to the inevitably noisy input information.
Secondly, simulations can only be performed of systems
with a 6nite number of degrees of &eedom, i.e., at finite
volume. The Borel transform B(s) (15) will in this case
lack the type 2 singularities associated with the conden-
sation of zero momentum modes in the theory. In this
section we shall explain one possible modi6cation of the
definition (15) capable of revealing the precursors of the
in6nite volume singularity structure on a finite lattice.

As usual, a convenient model for studying the renor-
malon structure on a finite lattice is the O(N) cr model
in two dimensions: the large N limit of the theory is
analytically solvable, even on the lattice. We shall use
this model to gain insight in formulating a modi6ed lat-
tice Borel transform. We begin by pointing out a basic
difficulty in the definition (15) of the full Borel function
BL, (s) when the transform is applied to a lattice system
with a mass gap generated via logarithmic in&ared diver-
gencies. To make the algebra as transparent as possible,
consider the toy model of Sec. II where the gap equation
is modeled by the discrete sum

1 1 . 1 fl+ml
f =X~- +. „/I, =' (

C d pBi(s) = dm m s" e X ~~" +~l . (56)
p (2w)s

Integrating by parts to expose the pole at s = 1/bp we
find

I, ~ ~. (58)

Here m is the analogue of the squared dynamical mass
and we take G(m) = 1/(p2 + m) as our model of the
momentum space propagator, with Borel transform

1 dsp PeBx(s)-
1 —bps 2m 2p

(57) Bl,(s) = e' G[m(f)]d
~

—~, Re(s) ( 0
(11

0

A similar singularity is expected to arise in all connected
Green's functions of the theory once dynamical mass gen-
eration occurs.

Of course, to settle this contentious issue definitively, it
will be necessary to perform reliable, fully nonperturba-
tive calculations of the generalized Borel function B(s).
The only tool available for doing this in the case of QCD
is lattice theory, so we must now face directly the issue
of extracting renormalon structure of field theories for-
mulated on a (necessarily) finite space-time lattice.

s'I (m)e"'~ lG(m)din .
0

(59)

Bl, (s) = —e"~ G(0) + — e" ~ lG'(rn)dm . (60)se 0 1

This integral defines the analytic function Bl,(s) for
Re(s) ( 0. The problem is that the I ~ oo limit does
not commute with the desired analytic continuation to
the right-half s plane. This becomes clear if we subject
(59) to an integration by parts:
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For 0 (Re(s) ( 1, the integral in (60) is now well defined
as L ~ oo (as the integration is convergent for m ~ 0),
but sl, (0) ln(I) causes a power divergence oc L' if the
large volume limit is taken after the analytic continuation
is performed.

In the case of the o model at large N, where we have
analytic control of the theory, one may devise the fol-
lowing cure for this problem, which arises &om the de-
viation at 6nite L in the integration measure for small
m &om the infinite volume form; namely, one devises
a modified Borel transform on the lattice which has a
smooth analytic continuation to Re(s) ) 0 at large L.
In the L M oo limit, the integration measure goes over
to m i 'dm. Choosing an in&ared cutofF P = O(1/L)
(the precise value is immaterial) we may define an alter-
native transform of the (nonperturbatively determined)
propagator G(m) on the lattice as

10

5-

0-

-10
0

I

0.5
I

1.0 1.5 2.0

FIG. 7. Borel transform of propagator, inverse propagator
on a 30 x 30 lattice (p = 0.1, IVAN = 10).

B g(s) =—e"' m-'-'G(m —p) dm + B~(s) (61) continuation to positive real 8 can be performed in a nu-
merically stable way by writing

with rl, P satisfying g = sL, (0) —ln(l/P), i.e. , (66)

s[sg (0)—qj p
—s

1 1 1
L2 —- d(k)+m

= —sL, (m), (63)

The relation (62) ensures that the integrand m, 'G(m—
P) in the first term in (61) inatches (at m = P)
smoothly to the corresponding lattice determined inte-
grand e" (~)G(m) in B~(s). The suppleinentary contri-
bution generates a term —(1/s)e"'G(0) I' as L -+ oo,
exactly canceling the pathological terin in (60). We have
checked that the above procedure leads to a numerically
stable detection procedure for renormalon singularities
using the test case of the 2D o model. As input to
the Borel transform, the feasibility of the method can
be studied by using the analytic large N results (instead
of actual Monte Carlo data). Statistical noise can also be
introduced by hand to check the robustness of the pro-
cedure. The mass gap equation on a finite lattice for the
2D 0. model is

and Taylor expanding around m = in [where B g(s)
is analytic]. The circle of convergence has radius vr, as
B g is analytic in the cut plane, and we can evaluate
ImB g(s~+ip) by summing the series to some finite or-
der NT at tu ip. The result for NT ——10, p = 0.1 on a
30 x 30 lattice is shown in Fig. 7 for the Borel transform
of both G [with d(g) = 1] and the inverse propagator
G . The efFect of keeping more terms in the Taylor ex-
pansion is shown in Fig. 8 for the Borel transform of G
The peak at the erst renormalon becomes sharper as NT
increases. However, the results become (for fixed p) less
accurate as 8~ increases, which requires m to approach
the edge of the circle of convergence.

Finally, the sensitivity of the continuation procedure
to a random superimposed 1/0 statistical noise on G(m)
(well within the reach of Monte Carlo simulations, for
example) is shown in Fig. 9. The first renormalon is still
clearly visible at 8 1, with the efFects of the noise be-
coming serious only for 8 ) 1.5. In all of these cases
we should emphasize that the first term in (65) is abso-

where k = [(27r/L)k, (2vr/L)ky], k, ky = 1, 2, . . . , L,
and d(k) = 4[sin(mk /L) +sin(ark&/L)2]. In the large N
limit the momentum space P propagator is

1
G f;cl

d(g) + m(f)
' (64)

In analogy to (61) we analytically continue the modi-
fied transform (suppressing for notational simplicity the
momentum dependence)

B .,(s) —= e"' m 'G[m( f)]dm I

0.5 1.0
I

1.5
I

2.0

C

s' (m) e" G(m) dm
0

(65)

with P = O(l/I ), il = sl, (0) —ln(1/P). The analytic
FIG. 8. Borel transform of inverse propagator on a 30 x 30

lattice (NT = 6, 10, 14).
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FIG. 9. Borel transform of noisy propagator on a 30 x 30
lattice (NT = 10).

lutely essential to obtain stable results &om the analytic
continuation.

VII. SUMMARY AND DISCUSSION

In this paper we have used the nonlinear 0 model as
a convenient analytical platform for examining the inter-
relationship of various versions of the Borel transform.
In&ared unstable theories (such as @CD or the 0 model)
with dynamical mass generation are inevitably non-Borel
summable, and a precise Borel reconstruction of such the-
ories is only possible starting from the generalized Borel
transform B(s), defined as the Laplace transform with
respect to the inverse bare coupling of the relevant am-
plitude. (The complex nonperturbative behavior of such
theories is entirely connected with the in&ared structure,
so it suKces to work throughout with an ultraviolet cut-
off: in the case of @CD, this implies a lattice formula-
tion. )

Unfortunately, the conventional definition of the Borel
transform in terms of the formal perturbative series [for
which we have used the notation B(s)] does not lead to
a precise reconstruction theorem in the non-Borel case.
This function extends (in the sense of having an identi-

cal asymptotic expansion for small s) to a function B(s),
the discontinuity of the generalized transform B(s) intro-
duced above, which does however yield such a reconstruc-
tion. The essential difference between the two functions
can be seen explicitly in the large N limit of the nonlin-
ear cr model, where an in&ared cutoK in the elementary
modes of the theory can be seen to eliminate the conven-
tional in&ared renormalons of perturbation theory, while
leaving the singularities in B(s) intact.

The necessity for a fully nonperturbative approach to
the generalized Borel function B(s) leads us to the con-
sideration of simulations on a finite lattice which is often
the only tool available for reliable nonperturbative calcu-
lation. The Borel singularities on the positive 8 axis have
been seen to fall into two types. Type 1 singularities are
present (as actual singularities) already in the finite vol-
ume theory: however they are numerically camouflaged
by perturbative prefactors in disconnected Green's func-
tions. Finding such singularities on a finite lattice will
therefore require removing disconnected vacuum contri-
butions (cf. Sec. IV). Type 2 singularities (the usual IR
renormalons fall into this category) are strictly speaking
only present in the infinite volume limit. Moreover, the
interchange of analytic continuation to Re(s) ) 0 and the
infinite volume limit is not uniform, requiring a modifi-
cation (discussed in Sec. VI) of the definition of the Borel
transform on a finite lattice in order to allow detection of
the renormalon precursors. Such a modification indeed
allows us to extract the location of renormalon singu-
larities for the analytically tractable test case of the 0.

model at large JV The appli. cation to situations (say, the
cr model with K = 3, or quenched @CD) where Monte
Carlo methods must be employed to compute the non-
perturbative structure of the theory is presently under
study.
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