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We consider infinitesimal field-dependent BRS transformations. We show that they can be
integrated to yield finite BRS field-dependent transformations and have the same BRS form. We
discuss a number of applications of the latter. We show that for certain special field-dependent BRS
parameters (evaluated in a closed form), these can be used to connect the Faddeev-Popov efFective
action in a linear gauge with a gauge parameter A to (i) the most general BRS—anti-BRS symmetric
action in linear gauges, (ii) the Faddeev-Popov effective action in quadratic gauges, and (iii) the
Faddeev-Popov effective action with another distinct gauge parameter A'. In each case, the extra
terms in the latter action are shown to arise from the jacobian for the nonlocal field-dependent BRS
transformations. Some applications of these ideas are suggested.

PACS number(s): 11.15.—q, 11.15.Bt

I. INTRODUCTION

On account of gauge invariance, gauge theories
are described by a large number of equivalent effective
actions. They are equivalent in the sense that they are
supposed to give identical results for the physically
observable quantities. There are the usual covariant
Lorent gauges [1], the axial gauges [2], radial gauges [3],
nonlinear covariant gauges [4], and Becchi-Rouet-Stora-
(BRS—)anti-BRS invariant formulations [5] to name a
few. In each of these, there can be one or more free
continuous parameters.

As the above are equivalent formulations, these should
be, and are in principle, connected to each other by field
transformations. To take a simple example, the effective
action in Lorentz gauges with two gauge parameters A

and A + LA differing infinitesimally are related to each
other by an infinitesimal transformation

bA~ = D~PM iBA~
P~

Such infinitesimal transformations have been generally
used to prove the independence of physical observables
&om the gauge parameter in a given set of gauges. To our
knowledge, constructing finite transformations explicitly
[finite analog of Eq. (1.1)] that relate fields in a, say,
Lorentz gauge with parameters A and A' (differing by
finite amounts) are not constructed, nor are they easy
to construct. One could also seek finite transformations
connecting fields in Lorentz gauges to fields in BRS—anti-
BRS invariant action, for example. Such transformations
are not known.

While for the purpose of proving the gauge indepen-
dence in a given set of gauges, infinitesimal transforma-
tions of the type (1.1) may prove sufficient, finite trans-

A' = UAUt —cl„UUt, U = exp(iT 8 ) (1.2)

does not preserve the simple linear form of an infinitesi-
mal transformation

However the "finite" and infinitesimal BRS transforma-
tions have the same form. The infinitesimal transforma-
tion

formations could find applications to a number of uses.
While the purpose of this work is not to study the prac-
tical applications in detail, we should mention a few to
motivate our approach. It would, for example, be nice to
construct a field transformation that relates axial gauges
to Lorentz gauges. This could find applications in re-
moval of discrepancy of the anomalous dimension calcu-
lation [6] in the two sets of gauges. It would also make it
possible to make axial gauge calculations more rigorous.
Such transformations could help in connecting results in,
say, Landau and Feynman gauges. They could also be
utilized in formal treatments. Thus it would certainly be
nice to have finite field transformations connecting vari-
ous different formulations of gauge theories.

In this work, we shall tackle the problem of finding such
finite transformations connecting the usual Faddeev-
Popov (FP) efFective action in Lorentz gauges with the
parameter A to (i) the BRS—anti-BRS invariant effective
action, (ii) the FP action with quadratic gauges, and
(iii) the FP action in Lorentz gauges with the parameter
A'. We do not, however, find it profitable to general-
ize the field-dependent gauge transformation such as in
Eq. (1.1). We shall find it much more profitable to find
a BRS-type field transformation transforming all gauge,
ghost, and antighost fields simultaneously. This is be-
cause of the property that a finite gauge transformation

~&' = ~BRs(&)~A (1.4)
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(written symbolically) goes into a "finite" BRS transfor-
mation
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&' = hBRs(&)A .(') (1.5)

(This happens in effect because of A2 = 0.) The BRS
transformations we shall be using are not, however, as
simple as Eqs. (1.4) and (1.5). We shall consider bA not
as a Geld-independent quantity but as a Beld-dependent
quantity, preserving bA = 0, however. This is much the
same way as Eq. (1.1) uses a field-dependent 8 defined
in Eq. (1.3). We shall allow

ear gauges given by Baulieu and Theirry-Mieg [5] that
has BRS—anti-BRS invariance, when expressed entirely in
terms of necessary fields A, c, c (and no auxiliary fields):

S,i'd[A, c, c] = d x «F—„„F""—)
CX

(2.1)

bA = 8'[A, c, c]dw, (1 6)
with

where 0' = 0 and is a field-dependent but x-independent
quantity, and K is a parameter. We show that such trans-
formations are indeed a symmetry of the action. We shall
call (1.4) with bA of Eq. (1.6) the "infinitesimal field-
dependent BRS transformations. " We show that these
can be integrated in K and that they preserve the BRS
form of Eq. (1.5) with A given by

Z~ = (1 —2n)B"cD„c+ D"cB—„c
2

+-'n(l —'n) -g[—f ~7ci c7]
A

= 8"cD„c+ gf—~78. A c c7
2

—I~n(1 —2n)Ag f ~7c c7f "~c"c~ .

(2.2a)

(2.2b)

A = O(P),
where 8[/] is derivable f'rom 0'[P]. The transformations

y! = y'+ h".(y)e(4)
though the symmetry of the FP effective action, are, how-
ever, nonlocal Gnite transformations generating nontriv-
ial Jacobians. It is shown that, in fact, these Jacobians
are responsible for the differences in the effective actions
of various formulations. In fact, for each of three con-
nections dealt with, we make an ansatz for 0' and ex-
plicitly show how the Jacobians explain the difference
between the effective actions in various pairs (say, FP
action in Lorentz gauges and BRS—anti-BRS invariant ac-
tion). These Jacobians are obtained by integrating out,
in a nontrivial procedure, the infinitesimal Jacobians as
done in Sec. IV.

We now explain the plan of the paper. In Sec. II, we
shall review the results on the BRS—anti-BRS invariant
actions and on quadratic gauges. In Sec. III we shall in-
troduce the inGnitesimal Geld-dependent BRS transfor-
mations and show how these can be integrated out to
yield Gnite Geld-dependent BRS transformations. In Sec.
IV, we show how the Jacobians for such translations can
be evaluated. In Sec. V, we do the evaluation of the Ja-
cobians for three cases of 8' and show that they indeed
explain the differences of effective actions in the three
cases mentioned earlier. In Sec. VI, we summarize our
results and give directions for possible applications. We
do not discuss the applications in detail but hope to do
it elsewhere.

[T,T~] = i f ~7T7,

Covariant derivative:

(D„c):—D ~P = (g h ~ + gf ~7A7)cs

f ~7 are totally antisymmetric.
This action has the global symmetries under the fol-

lowing transformations.
BRS:

hA„= (D„c) hA,

bc = 2gf ~7c—c7bA,

(a A-
hc —2nf ~7c c7 bA .

(2.3a)

Anti-BRS:

8A„= (D„c) hA,

hc = —-'gf 7c c7hA
2

&a A- —(1 —', n) f-~7c c7 h A-.bc

(2.3b)

In anti-BRS transformations the roles of c and c are in-
terchanged in addition to changes in some coefBcients.
Note that the o. = 0 case yields the usual Faddeev-Popov
action and o. = 1 yields an action symmetric in c and c.

Here we are assuming a Yang-Mills theory with a simple
gauge group and introduce the notation

Lie algebra:

II. PRELIMINARY REVIEW B. Quadratic gauges

A. BRS—anti-BRS symmetry

In this section, we shall review the known results on
BRS and anti-BRS symmetries of the effective action in
gauge theories in linear gauges and BRS symmetry in
quadratic gauges.

We consider the most general effective action in lin-

f [A] = 0.A + d P7A~A7" (2.4)

Here d ~7 is symmetric in P and p. The efFective action

Next, we shall consider quadratic gauges. These are
given by the gauge function f [A] that is quadratic in
Gelds. For example,
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according to Faddeev-Popov is given by

S,ir[A, c, c]

d'x ', F—„„-F" ——) f [A]'+ &a (2.5)

with

C. Gauge transformations that change A

Next we recall how a transformation of gauge parame-
ter is performed on a path integral involving the Faddeev-
Popov action [n = 0 in (2.1) or (2.5)]. To change the
gauge parameter A by an infinitesimal amount bA, one
performs an in6nitesimal gauge transformation on the
gauge field in which the gauge parameter is field depen-
dent:

8~[A, c, c] = —c (B„b ~+ 2d ~~A~)(D„c)~ . (2.6)

This action has only a BRS invariance given by with

A„- ~ A'„= A„-+ D„-~e~(x) (2.8)

bA„= (D„c) b'A, 8~(x) = —
—,'Mp '[A]f [A]—, (2.9)

b'c = 'gf »—8-'c'hW,
2 (2.7) where

bf [A] paP —
gAP P

It is easily seen that this leads to

(2.10)

Unlike linear gauges, this Faddeev-Popov action has no
anti-BRS invariance nor can it be generalized to another
local functional of A, c, c so as to have a double BRS
invariance.

—) & ["] = —) & IA] +O(a~').
2A .2(A+ hA)

It is also known that [1]

(2.11)

'VA 'Vc'Vcexp —i cMcd x
~

= PAdetM = 'VA'detM A' = PA' 'Vc&cexp —i cM A' cd x (2.12)

All discussion of in6nitesimal change in the gauge pa-
rameter is then based on the infinitesimal gauge trans-
formations of Eq. (2.9). It leads to the parameter change
A~ A+bA via

( f A'VA Pc27cexp — + cMc ~d x
2A )

y-[A']'= PA' 'Vc&cexp l

— + cM A' c d z

(2.13)

A'„= A„+D„~0~(x) (3.1)

does not depend on whether the local parameters 8~(x)
are field dependent or not as long as they are infinitesi-
mal. [In fact, we mention a field-dependent gauge trans-
formation in Eqs. (2.8) and (2.9)]. In a similar manner
the BRS invariance of the Faddeev-Popov action,

S @ = 4F„F""—— —cMc d x, (3.2)
(8 A )'

I

of infinitesimal (field-dependent) BRS transformations.
We note that the invariance of the gauge invariant La-

grange density under in6nitesimal gauge transformations

When one wants to change the gauge parameter by a
finite amount A —+ A+ 4 one must perform a 6nite gauge
transformation:

A m A' = U[U B„U+ A]U (2.14)

III. FINITE FIELD-DEPENDENT BRS
TRANSFORMATION

In this section, we shal'1 discuss finite Geld-dependent
BRS transformations that can be obtained by integration

with U = e' ~ ~, whose in6nitesimal form must yield
Eq. (2.9). Such a transformation is not easy to construct
explicitly by integration of Eq. (2.8).

under the global BRS transformations of Eq. (2.3a), de-
pends only on the global and anticommuting nature of
bA and not on its in6nitesimal nature or on whether
bA is field independent or not. Thus we are at lib-
erty to choose bA finite and field dependent as long
as it is x independent and anticommuting. [For exam-
ple, bA = f d4y f ~~( (y)(~(y)c~(y). ] Thus a finite BRS
transformation has the same form as an in6nitesimal one.
The BRS transformation which we will be interested in
will have the general structure

A'„(x) = A„(x) + D„~d'(x) O[P],
c' (x) = c (x) —2igf ~~cJ (x)c~(x)O[P], (3.3)

0 A' (x) = c (x) + O[g],
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where 8[P] is an x-independent anticommuting func-
tional of fields A, c, c (not necessarily arbitrary, however).

If we are interested in using such a Gnite Geld-
dependent 0 in the BRS transformation, however, the
integration measure is nontrivially affected by it; i.e. , the
Jacobian may be noiitrivial. [Note that if 0 were field in-
dependent the Jacobian would be as if for an infinitesimal
transformation (as 8 = 0) in which case antisyinmetry
of structure constants and/or vanishing of h~ l(0) in di-
mensional regularization makes the Jacobian trivial. ] As
we shall see, the Jacobian for such a finite BRS trans-
formation is indeed nontrivial generally, and one needs
a procedure for obtaining it. Rather than calculating
the superdeterminant involved, we shall Gnd it easier to
follow the following method.

First, consider the fields as a function of the parameter
r. : 0 ( r. ( 1: For a field P(x, r), P(x, 0) = P(x)P(x, r =
1) = P'. We define infinitesimal BRS transformations

—A„(x, r) = (D„~cj )(x, r)0'[P(x, K)],

—c (x, r.) = ,' gf ~—~—c( (x, ~)c~ (x, r.)8'[P(x, v)],

";(, ) = ~(*'")o'[p(, )], (3.4)

d
d„p(&) = hBris[p(&)]8'[p(K)1 . (3.5)

with boundary conditions (BC's) A„(x,0) = A„(x),
c (x, 0) = c (x), and c (x, 0) = c (x). We shall now
solve these equations and, by integrating from K = 0 to 1,
show that fields A (x, K = 1), c (x, r = 1), c (x, r = 1)
are precisely related to A„(x),c (x), c (x) by finite BRS
equations (3.3) (with 8 related to 8'); thus showing that
Eqs. (3.3) for a certain choice of 0[P] can be obtained
by a succession of infinitesimal BRS transformations of
Eq. (3.4). We shall show that the transformation (3.3)
can be broken up as a succession of infinitesimal Geld-
dependent BRS transformations. The Jacobian for an
infinitesimal transformation is easy to calculate and will
be used to obtain, by integration, the net Jacobian. We
shall first of all derive a result that gives us 0'[P(K)] in
terms of 0'[P(0)], a result very useful at diff'erent stages
of the calculation. We shall also obtain, using this result
an expression for 8[P(v), r], that, as we will see later,
enters the integration of Eqs. (3.4).

For later convenience, we write Eqs. (3.4) compactly
as

Now let us calculate (d/dr) 0'[P(v)] and integrate out the
result

1
I 80—8'[P(&)] = h»sP' 8'[P(&)]

dv. hP;

—= f [p(~)10'[p(K)] . (3.6)

This has the obvious solution

0'[P(")] = O'IP(o)]exp f[P(&')]«'
0

(3.7)

Thus 0'[P(r)] contains 0'[P(0)] as factor which is as-
sumed to be nilpotent: 8' = 0. Now in Eqs. (3.6) we
carry out a Taylor expansion of f [P(r)] in r:

f[P(~)] = f[P(0)]+~
h

hf dP;

m=O

hfdP;
hP; dv2

m=O

h'f
+

hP;bP~ dr dr
K +.

m=O

(3 8)

each term on the right hand side except the first is easily
seen to contain 8'[P(0)]. 8'[P(r)] on the right hand side
of Eq. (3.6) also contains 8'[P(0)]. Hence, in the right
hand side of Eq. (3.6), we may drop all terms in the
Taylor expansion of f [P(r)] and write

—d„8'[P(~)] = f [P(o)1o-'[P(K)1

with the consequent simplification in Eq. (3.6)

0'[P( )1 = o-'[P(o)l ( f [P(0)1) .

In the future we shall need the quantity

(3.10)

8[4(~), e[ = f dm'0'[t((~')[

exp(&f [P(0)]k
—1

f[P(o)]

(3.11)

(3.12)

formally. (Actually the right hand side is an infinite se-
ries.

In particular, we shall see that 8[P(0)] of Eq. (3.1)
will turn out to be

0[P(0)] = 8[P(~), ~]l„ , = 8'[P(0)] (3.13)

= 8'[P(0)] 1+ z f [p(0)] + 3, f [p(o)1'+ " (3.14)

a known quantity. In particular, it follows that

8[p(~), K]8'[p(r)] ~ 0'[p(0)] = 0 . (3.15)

I

just shown below Eq. (3.7), for any local functional
g[p(~)]

Now, we can proceed to integrate Eq. (3.4). As was [P( )]o-'[P( )] = [P(o)]0'[P( )] (3.16)
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hence we could write Eqs. (3.5) as

dP(r. ) = bBRs[( (0)]0 [g ( )]

This immediately integrates to

P( ) = P(0) + bBns[g(0)] 8'[P( ')]d ',
0

(3.17)

(3.18)

IV. METHOD FOR EVALUATION OF
JACOBIANS

In this section, we shall present a procedure for evalu-
ation for Jacobians for finite BRS transformations of the
type of Eq. (3.3) for certain specific 8[/]'s, utilizing the
fact that they can be written as a succession of infinites-
imal transformations of the type (3.4). We define

1.e. )

p(e) = p(0) + bBRs[p(0)]8[/(K), +] (3.19)

'DADcDc = J(~)DA(r) Dc(r) 17c(K)
= J(r + dr)DA(K+ dr)

x'Dc(K+ d~)Dc(K+ dr) . (4.1)
where 0 is defined in Eq. (3.11) and is given in terms of
P(0) by Eq. (3.12). Again, as O[P(r), r] is proportional
to 0'[P(0)] [see Eq. (3.12)] we have

Now the transformation from A(r) to A(r. + dr) js
infinitesimal one and one has, for its Jacobian,

byes [g(K)]8[/(K), r] = bBRs[g(0)]8[/(r), r] (3.20)
J(r) ~ bg(x, r. + dr)

J(r. + dr. )
- bg(x, r.)

(4.2)

and we can invert (3.18) to yield

p(0) = p(K) —bBRs[p(K)]O[p("), r] . (3.21)

y' = y+ b,R, [y]8[y], (3.22)

where gV = P(r = 1) and P = P(r = 0). These are
precisely the finite BRS transformations of Eq. (3.3) for

8[/] obtainable from a local 8'[P] via definitions (3.13)
and (3.11). This thus proves the result announced earlier.

Using the definition of 8[/] of Eq. (3.13), Eq. (3.19) at
K = 1 reads

) ).hA„(x, r+ &)
hA„(x, K)

bc (x, r. + hK)
bc~ (x, r.)

bc (x, r+br)
/ ~ex

. (4.3)

Dropping those terms which do not contribute on account
of the antisymmetry of the structure constant [these
terms also do not contribute in dimensional regulariza-
tion on account of b (0)], we have the expression (4.3) as
(reverting back to the summation convention)

where g& sums over all fields in the measure A„,c,c
and the + sign refers to whether P is a bosonic or a
fermionic field. We evaluate the right hand side as

D pp( )
b8'[P(x, r)], ~p~@( ) )

b8'[P] 8 A (x, r) b8'[P]
bA„(x, K)

' ' ' bc-(x, K) W bc-(*, K)

J(r)
J(r. + dK)

1 dJ(r)=1- 0K
J(r) dr.

(4.4)

(4.5)

Now consider

gr — ~gZ)cZ)g g «& I

O
is ff [P(x,o) j (4.6)

~P(x r„+ dr) J(K +. dK)eas~ff[d'(x, ~+d~)]

X)K+(7K J K 1+ — dK
1dJ
JdK

where $(x, 0) generically denotes fields A, c, c at r. = 0.
This equals is ff tI@(~,K+drc) I (4.8)

Vy(x, ~)J(~)"'--[4[*"lti (4.7)

where invariance of S,~ under P(x, 0) -+ P(x, r) of Eq.
(3.21), which is a BRS transformation, has been used.
This expression is further equal to

We would now like to show that J(r.) in Eq. (4.3) can
be replaced by exp(iSi[P(K); r]) for a certain functional
Si (to be determined in each individual case). To this
end, consider expression (4.8) with J(r +dr) replaced by
e* '[~["+ "l'"+ "j and call this quantity W'(K + dr):
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yy( d. d ) f ytd( d. d )
's, ti(+s t; +s) 's „ti.t +s ))

~y( )
( ) iSy [p(sy), sy] 1 + d~ i Scyy [pt[sy)]e

r

t

I

I~
II e

dS,
J(r. + d~) dr.

(4 9)

(4.iO)

where dSi/dK is a total derivative of Si with respect
to r. in which dependence on P(K) is also difFerentiated.
S,~[/(r)] = S,fr[/(r + dr)] has also been used. Hence

I

W' = W; in the expression (4.7) for W one can replace
J(r) by e' ' [&["l'"]. Setting r = 1 in (4.7) we could write,
in terms of P' = P(r = 1).

1 dJ .dSgW'(r. + dK) = 17$(K) 1 —— dr 1+ i drJ dK dK
+ I 'S, [y'j+'S.«[@']I (4.i5)

Thus the 3acobian yeilds a new piece to the action. Our
procedure, then, in evaluating Jacobians is (i) calculate
the infinitesimal Jacobian change (1/ J)(dJ/dr) dK of Eq.
(4.5) for the infinitesimal BRS transformations of Eq.
(3.8), (ii) make an ansatz for Si, (iii) prove the equation
(4.13) for this ansatz, and (iv) replace J(r) by e'~' in the
expression for W of Eq. (4.7). Setting r = 1, this would
then yield the new effective action S,'& ——Sz + S,g.

To proceed further, it is necessary to assume a partic-
ular form for O[P].

Case I:

zSx+zSe« (4.ii)
(4.12)= W'(r)

if and only if (iiF)

zSi+zS~«0dSg
'dK 'f 'Dp(s) (4.13)

Further, if Eq. (4.13) is satisfied, dW'/dK = 0 and hence
W' is independent of r.. Hence W' = W'~„0, so that

)
's, ts( I, t+'s.„ts( )I f iyd(tt)c's „Istcll.e

s

1

s

C

8'I&(»c)] =itd f d'yf S'c (y c)d'ly, s)c'ly s);
(4.16)

clearly, from Eq. (4.5),
I

(4.14)
provided Si vanishes identically at K = 0. But the right
hand side of Eq. (4.14) is just W of Eq. (4.6). Hence

1 dJ~
iPdK —2—g d y f ~~c (y, r)c (y, r) f~"~c"(y, K)c~(y, r)J(r.) dr.

+2 Q y ~~ yKc+ yK
t9 A y K

(4.i7)

Case II:

8'[d(y, c)] = i(d f d yd Ssdy(y, c)dsc(y, c)c (y, s)

(4.18)

1 dJr
J(r) dr

=iy f d yc (y, c)(Mc) (y, r)

4 1+ d y —t9-A y~ (4.21)

1 dJ(r) = iP 2 d y d ~~D~"c~(y, rc)J(r) dr

xA~"(y, K)c (y, r)

The net Jacobian, or properly (J(r)), the expectation
values of the Jacobians, will be evaluated in the next
section by the procedure outlined earlier.

d y d ~~A~A~" y, K,
(9 A„(y, r) V. EVALUATION OF JACOBIANS

Case III:

0'[ii(y, c)] =iaaf
d y (sy, )cttd (y, c)

(4.i9)

(4.20)

In this section we shall evaluate the Jacobian explic-
itly for three particular choices of O'. These choices are
not, however, arbitrary: they correspond to three partic-
ularly important cases. These are BRS transformations
that take the Faddeev-Popov effective action in linear
gauges to (i) the most general BRS—anti-BRS invariant
effective action, or to (ii) quadratic gauge efFective ac-
tion, or to (iii) the Faddeev-Popov efFective action with
changed gauge parameters. We shall follow the procedure
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outlined in the previous section.
Before we proceed, we shall need an identity which

occurs in the examples. Hence we shall derive it first.
Consider the quantity

8'[P] = iP f g x f gcc (y, e)c (y, e)cc(y, c) . (5.5)

A= 'V h Moc 0' e' "+' '

Here h [P] is some functional of P = A, c, c.
The I'addeev-Popov ghost term in linear gauges is
—jd xcMoc. 0'[P] is the appropriate 8' function in
a given example; e' ' is the Jacobian equivalent being
tried as an ansatz. We note

We shall introduce the shorthand notation jfccc to
mean the integral in the above quantity in O'. We
shall also write (fcc) = f ~~c) c~ and I fccfcc
I d4y(fcc) (fcc) . We recall the logarithmic derivation
of the Jacobian of Eq. (4.17), viz. ,

1dJ . 2

Jd~ d«, = iPdK ——-g fccfcc+ — f0 Acc] .
2

Hence

is(M c)- =i e"«
bc

~ b,s 8 e ~&

bc

(5.2)

(5.3)

(5.6)

This suggests the terms linear in K in Sq. But S~ could
have higher powers of e. We make an ansatz for Sq and
show that it works with the choice of parameters in it.
I et

We now integrate by parts in c . The result is

bh, b8' . , bSg
A = —i B 0'+h +xO'h e' '"+' '

bc bc~ bc

(5.4)

Case I. Consider

&pK
S~ [P(x, r); r] = —(Pr g fccfcc

)
2 K

fB Acc

when ( is yet to be determined. Now

(5.7)

Z) iSg+iS ff
cLK

—iP 2iPB exp iSq + S,~ g cc cc+ 0.Acc
2

+2i(Peg f fggfcc+iP(e —2ge )g f cfcc8
O. A

A

2iP« 2iPr
(—-'g) f8 . Ac(fcc)~8' — f (Mac)cc8'

2 2 (5.8)

Here (i) the BRS invariance of fcc and (ii) the antisymmetry of structure constants have been used to drop two of
the conditions. In the last term in Eq. (5.7) we use Eq. (5.4) by setting h = f ~)c~c~ (and use the antisymmetry
of the structure constant to set bh /bc = 0) to obtain

2iPr 2iP«
22t( exp[ipc i- iS e] f (Mcc)cc8' = 22/ exp[ipq + iS e] f (fcc) (fcc) 2P

2 K+8'((Pc —2(Px ) f f(fcc)c(fcc)+ f(S.A)(fcc)c) (5.9)

Now we use

f(fcc)c(fcc) = f ~~f "~c"c~c f~ c c- f "~Pc&f ~'c~f" c c = 0

f t 1 dJ .dS, I
17/ — —i exp[iSq + S,~] = 0(Jd«dK) (5.10)

on account of the repeated use of the Jacobi identity. We
also note (fcc)(fcc) = ——(fcc)(fcc) From Eqs. (5..6),
(5.8), and (5.9), we easily see that g (5.11)
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Substituting for P in (5.7) we obtain

S'~ = So+ S .g + d & —CMoc+ 29 K 8 ~ Acc

Case II.

8' =ipf d ycc (yx)Ay(y, x)Ace(yx)d y . (515)

(1 —2(x) f f cfyccg2(rA
2

(5.12)
The discussion proceeds very much the same way as in
case I; hence we only give minimal analogous steps. We
note

In view of the fact that only one combination of ( and K,

viz. (r, is appearing in Eq. (5.12), we parametrize it as
1dJ = 2iP dc(D„c)A" + — d(c) . A) A„A",

This gives

2(r = —.
2

(5.i3)
(5.16)

using the obvious notation dgqg2gs = d»gP~Q~~&P~~.

[Also we shall use (dP) P2) = d»5'~&gP2. ] We make an
ansatz

Se~ = So + Seg + d & CMoc+ —g Acc

A 2 O.——g 1 —— n cc CC
8 2

(5.i4)

This is precisely the action of Eq. (2.2b) of Thierry-Mieg
aud Baulieu [5] having both BRS anti-BRS invariances.

Sl 2px f dc(D„c)A" + d(8 A)A.„A"
A

+5x f [(dA„Ae) (5.17)

We note that after using Eq. (5.4) with h, = d~»A&A~)
once we can write, after straightforward cancellations,

. dSg
'Dd( —i) exp(cS, + iS x) = f 'Ddexp[1S, i- iS x]

I
—21Sf dc(Dc)A

dK

d(B A)A~A" + 2i(r (dAA) + (dAA) (dDeA) 0'2iP r.

+ (dAA) +4i(K (dAA) (dDcA) 8'
A

(5.18)

Thus

f 1 dJ .dSg
17$exp[iS, + S g] — —iJ dK dK

p2
iff 2(= ——.

(5.19)

(5.2O)

0 =Xi c gK8 ~ A g ~ Kd g

with p to be yet determined. Here

(5.2S)

We now set r = 1. We can choose P = —1 also as it is
arbitrary;

1 dJ . . (B.A)Moc+JdK
(5.24)

0' = —i d ~~c A~A~" d y (5.2i)
We expect this 0' to take us &om one gauge parameter
A to another gauge parameter A'. So we try an ansatz

and

1
Si ———— d(19 . A) AA —2 dc(D c)A"

P

AP 2 (5.22)

(5.25)

1.e.)

0- A~2—i ' = —id'(x) f ' —2cd(x) f Mcc8' .

S,'& ——S,g + Sq is then precisely the effective action of
quadratic gauges given in Eq. (2.5).

Case III. Hence we have

(5.26)
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f 1dJ
1)$(r)exp[iSi + S,~]

.dS—Z

dK
B exp iSl + iS,~ ip c MDC

+i [p —('(pc)] —2i((K) Mpco'(cj. A)2 . B.A
(5.27)

We apply Eq. (5 3) with Ii = c,8' ~ 1 to the first
term on the right hand side to find it oc hl l (0) which we

drop in dimensional regularization. We apply Eq. (5.3)
to the last term (with h = 8 A /A and 8' = ip J cB A)
to learn that we may effect the substitution

dP(x, K) = [hans/(x, v)]8'[P(x, r)]dK . (6.2)

We have shown that this set of three equations can be
simultaneously integrated out to yield again transforma-
tions of the BRS form itself: viz. ,

(x) = P(x) + 88ns(f)8[/(x)] (6.3)

Thus the right hand side of Eq. (5.27) is then seen to
vanish ifF

—i[—p+ ('(K) —2i((~)p] = 0,
i.e. , ((K) must be a solution of

('(v) + 2p((K) —p = 0

with the BC ((0) = 0. The unique solution is

in~1 —2((k)~ = 2pr . —

(5.28)

The net gauge-fixing term is then

(0 A)', (cj A)'
2A 2A'

(5.29)

This leads to p = ——1n(A'/A). Thus

Thus at v = 1 the extra term in the net effective action
&om the Jacobian is

[where gV(x) = P(x, K, = 1); P(x) = P(x, e = 0)]. We
call (6.3) the finite, field-dependent transformation as it
relates P(x) to P (x), differing from it not by an infinites-
imal amount but by a finite amount. Here, given 0', 0
is known in a closed form, given formally by Eq. (3.12):
VlZ. )

(6.4)

where f is defined in terms of BRS variation of 8' by Eq.
(3.6).

We have applied transformations of the form of Eq.
(6.3) to correlate different effective actions of the gauge
theory, yielding the same S matrix. We have shown that
the corresponding difference in effective actions is on ac-
count of the Jacobian for corresponding finite BRS trans-
formations of Eq. (6.3). We have, by suitable conjecture
duly verified in Sec. V, obtained 0 for such transforma-
tions in each case; and we have dealt with three cases in
all. These are summarized below.

(A) Faddeev-Popov-+BRS —anti-BRS. Here, setting
v = 1 in (5.12) and using (5.10) in (5.5) we find

(x'0'= —2ln — c 0 A (5.30)
iAn8'[Q]= — g d yf ~~c c c~,

4
(6.5)

leads one &om a Faddeev-Popov efFective action with the
gauge parameter A to the same effective action with the
gauge parameter A'.

f[P] = ——g d y f ~~(B.A) c c~
2

o.A g' f O'c Pf "Cc"c
8

(6.6)

VI. CONCLUSIONS AND POSSIBLE
AP PLICATION S

and 8[P] given by Eq. (6.4). Thus in the generating
function of the Faddeev-Popov the efFective action given
by

hP(x) = (bans/)hA (6.1)

We have taken the infinitesimal BRS of the form nor-
mally given in obvious notation by

A„' = A„+D„cO[P],
c ' = c —2gf ~~c c~o[$],

0-A
c '=c + 8[/]

(6.7)

and considered its modifications in which bA = 8'dK is a
Geld-dependent, x-independent, anticommuting parame-
ter involving the difFerential of a parameter K(0 & K & 1):
viz. )

converts it into a generating functional of general BRS—
anti-BRS invariant action having parameters n and A.

(B) Faddeev-Popov (linear gauge)+ Faddeev-Popov
(quadratic gauge). Here
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0']ii] = —i/d ~»c A~A»" (6.8)

(~l
0'[P] = lni —, c ]9.A d y,

(A')
(6.10)

(a. A-)'
f[P] = ln —,

~

+ln —, cMocd y .
&')

(6.11)

A discussion analogous to that following Eq. (6.6) holds
here also.

dnPp
f]p] = —i ii A Ai A»" —2f d ~»c ]D„f)i'A»"

(6.9)

A discussion similar to that below Eq. (6.6) applies here.
(C) FP covariant linear gauge parameter A —+FP co-

variant linear gauge parameter A'. Here

We shall now brieQy indicate the possible applications
of our results. Our aim here is not, however, to discuss
them in detail, which we hope to do elsewhere. We shall
merely indicate directions which could be profitable.

By these methods, a finite BRS transformation could
be constructed to connect linear Lorentz gauges with ax-
ial gauges. This finite BRS could be useful in compar-
ing results in two gauges. One may be able to make an
axial gauge prescription rigorous by connecting it with
Lorentz gauges which are known to be rigorous. It may
also be possible to compare results in covariant linear
gauges with two different gauge parameters: e.g. , the
Feynmann gauge and the Landau gauge.

On the formal side, renormalization in quadratic
gauges could perhaps be understood easily by their con-
nection with linear gauges given in (B) above. The same
applies to renormalization of BRS—anti-BRS invariant ac-
tions given by Baulieu and Thierry-Mieg [5]. Here the
discussion in (A) above could be useful.

To the best of our knowledge, this is the Brst time
a BRS transformation and/or gauge transformation con-
necting various actions has been written in a closed form.
It should find various applications in the future.
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