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Three l-oop free energy for high-temperature +ED and +CD with fermions
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We compute the free energy density for gauge theories, with fermions, at high temperature and
zero chemical potential. Specifically, we analytically compute the free energy through O(g ), which
requires the evaluation of three-loop diagrams. This computation extends our previous result for
pure gauge QCD.

PACS number(s): 11.10.Wx, 12.20.Ds, 12.38.Bx

I. INTRODUCTION

The perturbative expansion of the Bee energy of high-
temperature gauge theory has the form

ZE = @ (cl„—igA„T ) p„@+—(O„A„—O„A„

+gf 'A„A'„) + (gauge fixing), (2.1)

E ~ T [co+ c2g + csg + (c4liig+ c4)g + O(g )]1

(1.1)

where the c; are numerical coefficients (with some de-
pendence on the choice of renormalization scale) and
where we have assumed the temperature high enough
that fermion masses can be ignored. In a previous work
[1], we showed how to compute the coefficient c4 of g
in pure, non-Abelian gauge theory &om three-loop dia-
grams. We shall now incorporate fermions into the theory
and so obtain a three-loop result for QED and real QCD.
This computation is a mostly straightforward extension
of our previous work, and so we refer the reader to that
work for motivation and pedagogy. In fact, the basic cal-
culations we need to do for fermions very closely parallel
those we did previously for bosons, and our object in this
paper will simply be to point out the relevant differences,
catalog results for the basic building blocks of three-loop
calculations, and present our final results.

In the next section, we fix our notation and conventions
for coupling constants, group factors, and so forth. In
Sec. II, we outline the basic integrals that are needed
in order to compute fermionic contributions to the &ee
energy. In Sec. III, we show how to derive analytic results
for those basic integrals, though many of the details are
left for appendices. Finally, in Sec. IV we present our
result for the free energy and discuss its sensitivity to
the choice of renormalization scale.

where the T are the generators of a single, simple Lie
group, such as U(1) or SU(3). To siinplify presentation,
we will not derive results for an arbitrary product of sim-
ple Lie groups such as SU(2) x U(l), but such cases could
easily be handled simply by adjusting the overall group
and coupling factors on the results we give for individual
diagrams. dA and CA are the dimension and quadratic
Casimir of the adjoint representation, with CA given by

fabcf dbc O gad (2.2)

dF is the dimension of the total fermion representation
(e.g. , 18 for six-flavor QCD), and SF and Szp are de-
fined in terms of the generators T for the total fermion
representation as

SF = tr(T'),
dA

S2F = tr (T )
dA

(2.3)

dA=N —1, Cp ——N, dF ——Nnf,

1
SF — nf )2

N —1
S2F = nf .

4N
(2.4)

For U(l) theory, relabel g as e, and let the charges of the
nf fermions be q,.e. Then

where T = T T For SU(N) .with ng fermions in the
fundamental representation, the standard normalization
of the coupling gives

II. NOTATION AND CONVENTIONS dA = 1) CA=0, dF =n

We' ll consider gauge theories given by classical Eu-
clidean Lagrangians of the form

SF =) q,', S.F =):q,' (2.5)
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fE p2
p

4m
(2.6)

To denote summation over discrete loop frequencies and
integration over loop three-momenta, we use the short-
hand notation

We shall work in the Feynman gauge. We also work
exclusively in the Euclidean (imaginary time) formula-
tion of thermal field theory. We shall conventionally re-
fer to four-momenta with capital letters K and to their
components with lower-case letters: K = (ko, k). All
four-momenta are Euclidean with discrete frequencies
ko ——27rnT for bosons and ghosts, and ko ——2' (n+ &) T
for fermions. We regularize the theory by working in
d = 4—2~ dimensions with the modified minimal subtrac-
tion (MS) scheme, which corresponds to doing minimal
subtraction (MS) and then changing the MS scale p to
the MS scale p, by the substitution

1= g b' C~(d —2)2

(2.11)

This is accomplished by rewriting our Lagrangian den-
sity, in &equency space, as

CE = (i:E+ i2M AoAo6p, ) —2M AoAohp, , (2.12)

where bp, is shorthand for the the Kronecker delta func-
tion bp, 0. Then we absorb the first Ao term into our un-
perturbed Lagrangian Zo and treat the second Ao term
as a perturbation.

M p T

for bosonic momenta and

(2.7)
III. THE BASIC INTEGRALS

The most basic one-loop integrals that appear in high-
temperature field theory are of the form

3—2E' (2.8) 1
~2n '

P
(3.1)

for fermionic momenta, where

):
pp po ——2n nT

We shall also sometimes use the notation

The bosonic form of these integrals needed for the calcu-
lation were reviewed in Ref. [1] and are given by

bi —— 1+a
~

21n +2 +2
~

+O(e ),
T2 f p ('(—1)
12 ( 4mT —1 )

(3.2)

P+(P) P (P)
(2.10)

b2 —— —+ 2 ln + 2ps + O(e) .
1 1 P

4m 2 4vrT
(3.3)

We handle the resummation of hard thermal loops
[which is required to make perturbation theory well-
behaved beyond O(g2)] as we did in Ref. [1]. Specifically,
we must improve our propagators by incorporating the
Debye screening mass M for Ao, which is determined at
leading order by the self-energy diagrams of Fig. 1:

As noted in Ref. [2], the f are then easily determined by
considering f„+b„and then scaling the momenta (po, p)
by 2 so that it becomes proportional to 6 . One finds

(3.4)

In Ref. [1], we reviewed how three-loop diagrams con-
tributing to the free energy can be reduced to some sim-
ple sum integrals at O(g4). The most basic was

Ibb ,rr', a,',ball —
2

(3.5)

(a) which corresponds to the basketball diagram of scalar
theory, depicted in Fig. 2(a). IIb is defined by

(3.6)

FIG. 1. The (a) bosonic and (b) fernuonic contributions to
the one-loop gluon self-energy.

and we have introduced the superscript b for II to
indicate that it is defined with a bosonic &equency
sum. When fermions are included, the reduction of dia-
grams to a few simple integrals requires introducing some
fermionic relatives of Ib &&.
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(a)

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~

~ ~ ~ ~
~ ~ ~ ~ ~

4 ~ ~ ~ ~ ~

(b)

However, it is sometimes convenient to also know the
pieces of If„„corresponding to restricting the &equency
sum in various ways, and these are discussed in Ap-
pendix E.

Finally, the pure gauge theory calculation required the
integral corresponding to the bosonic piece of Fig. 4(l):

FIG. 2. The (a) bosonic, (b) fermionic, and (c) mixed
scalar basketball diagrams. Solid (dotted) lines correspond
to scalar propagators with bosonic (fermionic) frequencies.

1
dAC~g IqcD = 4 tr [XII~„(P)]

P
(3.13)

where II„„is the bosonic contribution to the vector self-
energy, given by Fig. 1(a), and the notation

all„„(P) = 11„„(P)—ll„„(0)S„. (3.14)

Ib &&

—— II (P)
P

II'(P)11'(P),
P

II (P) =

(3 7)

(3.8)

(3.9)

has been used.
We shall need the saxne integral with the complete self-

energy, which means we need

1
d~SF'g IccD = tr [AII'„„(P)]', (3.15)

P
1

dACASFg 1&CD = tr AII„„(P)AII„„(P), (3.16)
P

These are depicted by Figs. 2(b) and 2(c).
Another basic integral encountered in the pure gauge

theory case was the one associated with the scalar sun-
set diagram of Fig. 3(a), evaluated to leading order in
masses:

where II „ is the ferxnionic contribution given by
Fig. 1(b).

I,„„(m~,m2, ms)

1
3.10

/g (P + m2~)(q + m22)[(P+ q) + m2s]

(e)

When fermions are included, one also needs

I 1 1 f
sllH P2Q2(P q)g P2 ( ) & ( ' ) (g)

corresponding to Fig. 3(b). The above integral is in-
&ared Gnite because fermionic Euclidean &equencies po
are never zero; so, unlike the bosonic case, the masses
can be dropped at leading order in m/T. By using the
same contour-trick arguxnent that was used in Appendix
F.l of Ref. [1], one can easily show that

g~~l

I.'„„=O. (3.12)

~ ~ ~ ~ ~ ~~ ~ ~ e

~ ee ~ ~ ~ ~ ~ e

(a)

FIG. 3. The (a) bosonic and (b) fermionic setting sun dia-
grams.

FIG. 4. Diagrams contributing to the free-energy in pure
gauge theory. When fermions are added, we include the
fermionic contribution to II„„ in diagram (I) and include
the diagrams of Fig. 5. The crosses are the "thermal
counter-terms" arising from the last term of (2.12), and the
dashed lines are ghosts. We have not explicitly shown any
zero-temperature counter-terms, and each diagram should be
multiplied by the appropriate multiplicative renormalizations
for vertices and propagators.
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In the pure gauge theory case, all three-loop diagrams
except Fig. 4(l) could be reduced to the basketball inte-
gral Ib &&

by the application of a few simple tricks. For
instance, Fig. 4(i) is equal to

1 2 4 P (Q —K)(P —K) Q
8 "

~&~ P2qzK2(P q)2(q K)~(K P)z

)~)
(o)

(3.17)

and is reduced by (1) expanding numerator factors in
terms of denominator factors to cancel factors between
numerator and denominator, such as

FIG. 5. Diagrams that must be added to Fig. 4 to include
fermions in the calculation of the free energy.

requires us to introduce a new fundamental integral, as
was done by Parwani and Coriano in Ref. [2]:~

P . (Q —K) = —,'[(K —P)' —K' —(P —Q)'+ Q'],

(3.18)

(2) performing appropriate changes of variables to collect
similar terms, and (3) using the identity

~ K
(p)pic P Q K (P + Q) (P + K)

(3.22)

P„ Q„+K„
~ (P+ Q)2(P + K)2 2

1

~ (P+ Q)'(P+ K)2
'

(3.19)

If P were bosonic, this would be reducible by (3.19).
Figures 4 and 5 show all of the diagrams contributing

to the &ee energy up to three loops. The reductions of all
the three-loop diagrams to the basic integrals are given
in Appendix A.

The last identity follows by changing variables
Pw P Q —K,— —

IV. RESULTS FOR INTEGRALS

A. The fermionic basketball Ib &&

P„
~ (P+Q)2(P+K)'

The derivation of Ib &&
closely parallels that of the

bosonic Ib &&
in Ref. [1) with the main difference being

that the bosonic sum identity

P„
s (P + Q)'(P + K)'

1
")g (P+ Q)~(P+K)~ ' (3.20)

) e l«l e l"'+ 'l' = (cothr + Ip&l)e
qp

is replaced by

(4.1)

and then moving the first-term on the right-hand side
over to the left-hand side. Unfortunately, this trick does
not generalize to the case where Q+K is fermionic in-
stead of bosonic. If Q+K is fermionic, then

) e
—l«l"e leo+«I (cschr + I@oil)e

Eqo)

where po represents bosonic frequencies and

(4 2)

r = 27rTp, po = pp/2vrT. (4 3)

P„
~ (p+ q)'(p+ K)'

P„
(p& (P + Q) (P + K)

) (P+ Q) (I +ID) (3.21)

This has the efFect of simply replacing occurrences of coth
(and its small r expansion) in the bosonic derivation by
csch (and its small r expansion). So, for instance,

and there is no simple way to solve for the bosonic in-
tegral on the left-hand side. The failure of this trick

We have adopted their notation, H3, for this integral. Their
H& and H& correspond to our Ib &&

and Ib &&, respectively, and
their H4 is discussed in Appendix F.
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rl'~ l(P) = T, 1, ., & 11
d r —e'P'

~

cschr ——
~

e ~"'~" + O(e),
(4m. )2 r2 ( r)

where II ~ ~ is the Gnite-temperature contribution to G . Similarly,

(4.4)

(2
I~i Q')

, (
dr r

~

cschr ——
~

+ O(c)
327C2 r)
1 /T2 ) ('(—3) 73

(4~)2 (12) ((—3)
' 15

6
5

ln2 + O(e) .

T4 t' 11 (-r '1
dr r

(

cschr ——
[

—
( [

(cothr —1)
32K 0

(4.5)

The integrations in the last equation were performed. using the method of Appendix C. Putting the above result
together with (3.2), (3.3), and (3.4) gives

)T2i ' 1 p '( —3) '(—1) 133 26
[II& l] =

~

'~ —+6ln +2 ' '+4 ' '+ ——I 2 +O().
(4m. ) ( 12 ) e 47l T ((—3) ((—1) 15 5

(4.6)

The remaining terms needed to evaluate Ib &&
are discussed in Appendix D. The final result for the fermionic

basketball is

Ib u
—

~ ~

—+gin —3 + 12 + ——ln2 +O(e).1 (T2 i 3 P g'( —3) g'( —1) 173 63
4m 2 12) 2e 4+T —3 —1 20 5

This agrees with the numerical result of Ref. [2].

(4.7)

B. The mixed basketball Ib

As has been noted by Parwani and Coriano [2], Ibbf&& can be written in terms of Ibbb&& and Ib+
&&

by the trick of rescaling
momenta (ps, p) by a factor of 2:

so that

h(P+ Q+ K+ R)
~pa~ P Q K R

23d—11

P+(P} Q+(Q} K+(K} R+(R}
3d—11 bb bf= 2 Ib~)) + 6Ib~)& + z~~~~

b(P+ Q+ K+ R)
P2Q2K 2R2

(4.8)

(4.9)

To simplify the notation above, we have used the shorthand

—26h(P+ Q+ K+ R) = p ' —h~, +~,+g,+, (2m) 'h~" '&(p+g+k+r) . (4.10)

C. The neer integral Hq

We now turn to the integral Hs of (3.22), which is
the one integral that is not directly analogous to a pre-
vious bosonic calculation. However, our attack on H3 is
inspired by our derivation of I,&,fP (b,li„„)2 in

Ref. [1],where we noted that the orthogonality of IIb„ to where

Hs —— [A„(P)]
(P}

(4.11)

P~ lead to useful algebraic simpli6cations. We will there-
fore rewrite H3 in an analogous form. First note that 03
is of the form
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) g qs(p q)s (4.i2)

Our method is to replace A„by something that is or-
thogonal to P„. So de6ne

Then

axld

P2
ds(P) = (ssr — ', P„)je(P) (4.i7)

P, I:J~(P))'
1

fP}
(4.13) —,I~.(P))

1 . 2

(P) ~
(4.is)

where

(2Q+ P)„
dt( ) Q2(P Q)2

P„(
I~) Q')

(4.14)

d~Q (2Q+ P)„
(2vr)" Q'(P + Q)2

(4.19)

The next simpli6cation occurs by noting that J„vanishes
at zero temperature because

It is easy to verify using our standard reduction tricks
that P ~ J=O and that

IIs = -Is+ -Ib.)i+ -(~i —fi) f2 —-(~i —fi)I,.1 1 b~ 1 2 1

by antisymmetry under Q -+ (Q+—P). The large P be-
havior of je(P) is therefore the large P behavior of its
finite-temperature piece jo (P), which is O(1/Ps) be-
cause the O(1/P) behavior of the individual pieces can-
cels:

(4.15)

Now focus on I3. The orthogonality of J to P and
Lorentz invariance ixnply that J~ has the form

(2Q+P). ~
'"

I~) Q (P+Q)
P„ t'

«) Q')

4(P) =
I n~ —,P~ I f(P) (4.16)

as fermionic P -+ oo. (4.20)

where n„= (1,0) is the four-velocity of the therinal bath.

As a result, I3 is both UV and IR 6nite as e~O. So we
can set d = 4 and evaluate jo for fermionic po in terms
of the massless scalar propagator L:

+ O(e)je(P) = T) jd re'r' tt(qe r) D(Pe+ qe rj (2qsq-Pe)
qp

) dsr —e' 'e —le&IPe Iso+vol (2&0+ po) + O(e)(4~)2 r2 8 P2
qp

T i .r — — — T — 0&d r —e' ' tt; (cschr —cethr)e ~r'~"

I-
—e ~r'~') sqepe-

16m
i

r2 2

T f sin pr )
dr

I
8„

I
(cschr —coth +r2r) e l"'l"sgnpo+ O(e),8~ o (" pr )

T2
+ O(e)

(4.21)

where sgnp() means the sign (+1) of p(). Plugging into (4.18), doing the fermionic pe sum, and using the identity

1 dsp sinpr sinps 1 1
( )

1

(2')s p2 pr ps 4m r

to do the p integration then yields

rp4 oo

I3 =
128+2

dr r (cschr —cothr + r) cschr + O(e)-2

(4.22)

)+-~ +-+ I 2 +O(
(4m)2 ( 12 ) 2 ((—3) ((—1) 2 2 10

(4.23)

Again, we have used the methods of Appendix C to do the integrations. Using (4.15) to relate Is to Hs finally gives
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('T' ') 3 9 P 3 ('(—3) 3 ('(—1) 9 361 57

(4vr)2 12 8e 4 47rT 2 ((—3) 2 ((—1) 4 160 10

This agrees, within errors, with the numerical results of Ref. [2].

(4.24)

V. JESUITS AND DISCUSSION

The evaluation of the final basic integrals I+,& and Ibr& closely parallel the derivation of I,"& in Ref. [1], and we
leave the details for Appendix F. Combining all the results for individual graphs collected in Appendix A, our final
result for the &ee energy is

4'' 1 f'7dp) gZ = dAT' ———
~

1+
~

+ — (CA + -', S,)9 5 (, 4dA) 4vr

16 g S g )' g
(CA + Sp) 2 —48 — CA(CA + Sp) ln

4~ 4'
CA+ Sp~

3 )

g 4 20 P 8 ('(—3) 16 ('(—1) 1 88
+ — S ——ln +— —— —4p ——+—ln 2

3 4~T 3((—3) 3 ((—1) 3

105
4

+241e 2 + O(g')) .+ — S2F
e

Evaluated numerically for QCD with nr quark flavors, this is

g 4 22 P, 38 (,"(—3) 148 ('(—1) 64
+ — cA' —ln 4p

4~ " 3 4~T 3((—3) 3 ((—1) 5

g 47 P, 1 ('(—3) 74 ('(—1) 1759 37
CASF —ln +— —— —8p + +—ln 2

4m 3 4~T 3((—3) 3 ((—1) 60 5

(5 1)

8~'T' 1+ nr —0.0949—9g (1+ i2nr) + 0.12094g (1+ snr)45

+g 0.08662 (1+ snr) ln
~ g 1+ snr

~

—0.01323 (1+ i2nf) (1 —ssnr) ln—

+0.01733 —0.00763eee —0 00088eee + O(g )) . (5.2)

For QED with nr massless charged fermions with charges q, e, the free energy is

E = — 1+ —nf —0.07916e q; + 0.02328e q,

4-e —0.003324-0.001341e — (Pq,. ) +0.00193+9; +O(e )). (5.3)

Our QED result agrees, within errors, with the purely numerical derivation of Ref. [2]. Ref. [2] also gives the QED
result for the O(e ) piece.

We have also made a xnore precise numerical test of our analytic methods by computing (4.18) by brute force: we did the p
integration and Euclidean po sum numerically and used the contour trick to get an integral form for jo(po, p), which we also
evaluated numerically. The po sum converges quite quickly, and summing po up to +5/2 gave agreement with our analytic
result to G.05+0.
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As in Ref. [I], we can now investigate whether the
perturbative expansion of the @CD &ee energy is well-
behaved for physically-realized values of couplings. Fig-
ure 6 shows the result For six-Bavor @CD when o.,(T)=0.1
(which corresponds to scales of order a few 100 GeV).
The free energy is plotted vs. the choice of renormahza-
tion scale p, . We have taken

1 1 I pi p—Pp ln —+ —ln 1 Pog (T) ln
g'(I ) g'(T) T Po T

(5 4)

14 0 ' 995
'0
N 0.99 .

~st

0.985
0

0.98

0.975
-4 0 2

lo'g 10( & /T )

~ ~ ~ ~ ~ ~ y ~
~ ~ ~

~ ~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~

~Igg~ ~ Ise I%HI'

QI4 ~ ~ ~gs
~ ~

~ t
~ s

~ 0
~ 0

~ 0

~ t As(T) =0.02
~ 0

where

1
P. =

(, ), (-—CA+ -', S.),
FIG. 7. The same as Fig. 6 but for n, (T) = 0.02.

1
pi = (——C + —CASF+. 8S2F) .

(4~)4

If the expansion is well behaved, the result for E should
become more independent of p as higher-order correc-
tions are included. Instead, we see that it does not. In
Ref. [1), we argued that the g term involves difFerent
physics than the g term, and that it should perhaps be
treated separately when discussing the behavior of the se-
ries. Ideally, one should calculate the free energy through
g, which is the Grst order that compensates for the p
dependence of the g term. With our present results,
however, we can at least follow Ref. [1] and plot results
where (1) we artificially exclude the gs term, or (2) we
improve our O(g ) result with the gs ln p term required
by renormalization-group invariance:

0.99926- us(T) ~0.001

~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~ yO

~ ~ ~
~ ~ ~

~ ~ ~

-10 0
log so(P/T)

14 0.99924 .

+o 0.99922 .

0.9992 .

0.99918..
0

0.99916.
~ ~ ~

~ ~ ~

0.99914
~ +so

FIG. 8. The same as Fig. 6 but for a.,(T) = 0.001.

thru g4
thru g3
thru g~
thru g4 exclucling g3
thru gslog P

0
0.95-

~ ~ ~ y e e
~ ~ ~ ~ ~

s ~ ~ 0
~ ~ y4

~ ~ ~ ~ ~ ~ ~ ~ ~

y ~
~ ~ 1.4-

u, (T) 0.2

0.9-

0
I

2 4

log qp(P /T)

(Xs(T) =0.1

6 N

~ ~ ~ ~ ~ ~ gree

FIG. 6. The dependence of the free energy I' on the
choice of renormalization scale p for six-Bavor +CD with
n, (T) = O. l. The free energy is normalized in units of
the ideal gas result —(—dA + —dF)z T . The thick solid,
dashed, and dotted lines are the results for I" including terms
through g, g, and g, respectively. The light solid curve is
the g result plus the g In(p/T) term required by renormal-
ization group invariance. The light dashed curve is the g
result minus the g term.

g0. 8-0

~ ~ ~ ~ ~ ~ ~
~ ~ ~

y ~ ~ ~ ~ ~

~ ~
~ ~

0.6-

0
I

2

log gp(p/T)
4 6

FIG. 9. The same as Fig. 6 but for n, (T) = 0.2 and nq = 5.
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4+2 16 g 3
b.F = dAT —— — (CA+ Sp) & (11CA —4Sp)

9 vt3 4vr

The resummation of the gauge boson line in diagram (o)
is similar to the resummation of diagram (e), discussed
in Ref. [1]. In particular,

x ln P
4mT

(5.6) I bPp
res um p2P(Q) +

bp,
P2

2 2
gp gp

Q2(P+ Q)2 Q4

Either modification can be seen to somewhat improve
the behavior of the perturbative expansion of Fig. 6. For
comparison with our previous results for the pure gauge
case in Ref. [1],Figs. 7 and 8 show similar plots for the
smaller couplings n, (T)=0.02 and n, (T)=0.001, where
the perturbative expansion becomes progressively better
behaved, as it should. For those readers who might be
interested in the behavior of the expansion at scales of
order several GeV, Fig. 9 shows our results for the case
n, (T) = 0.2.
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= O(g', e). (A2)

APPENDIX B: LARGE P BEHAVIOR OF II (P)

The last equality follows &om a derivation similar to the
bosonic case treated in Ref. [1], and means that Ir„„
can be ignored at the order under consideration.

The multiplicative renormalization constant used for
the coupling is given by

11|~g 2 SFg 4
gg+ 6 (4~)ge 3 (4~)2e (g )

(A3)

The vector mass M is given by (2.11), and M4 is the
piece of M2 due to the fermion contribution of Fig. 1(b).

APPENDIX A: RESULTS FOR INDIVIDUAL
GRAPHS

Writing F=p, 'dAX and ignoring terms of O(e), the
diagrams of Fig. 4 are given in Appendix A of Ref. [1]
except that

In Appendix B of Ref. [1], we derived the large P be-
havior of the bosonic Ilb&+&(P) to be

—X' = ——(M,'+ M,'+ M,'+ M,')MT,
8~

(Alc)

where

+O(T /P ),

A qcn+ A p qcn+ p qcn] + (g ).
(All)

&4~p21 ' F(3—2e+n)((3 —2e+o. )

( T2
p 47rs/'F (-', —e)

(B2)

The diagrams of Fig. 5 are given by

~II F
dA

= Spg Zg [(d —2) fg(2bg —fg) + hs],

";II'(P) —4I,'..„+-
—» = (--,'SpCA+ S")g'(d —2)

(6 —d) ex Iba)) —2eIba]]
2

(Aln)

(Alo)
II (P) = 2 "II (2P) —II (P) . (B4)

Applying this identity to (Bl) then gives the same for-
IIlula)

The easiest way to get a similar expression for the
fermionic Ilr~+& is to note that, by scaling momenta (qp g)
by a factor of 2, one gets

= 2",(B3)
q+(ql Q'(P+ Q)' q Q'(2P+ Q)' '

aIld so

CASpg (d —2)Ib

(Alp)
—W~ = S2pg (d —2)

C

—Ib~„+ 2IIs —f2(f~ —bl) ]
(Alq)
(Alr) Jf (22

—d —n 1) gb (B6)

+O(T'iP'), (B5)

for the fermionic case but with
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APPENDIX C: NEW INTEGRALS OF
HYPERBOLIC FUNCTIONS

In Appendix C of Ref. [1], we showed how to evaluate
convergent integrals of the form

and also use

dxx'coth" xcsch"x = dx[x coth"+ xcsch" xz ~ p ~~

~

~

z ~

z ~~

p «

2

2

~2

0 0
—x' coth x csch" x] . (C8)

I = dx c „x coth" x
0 fA jA

+) d x e (C1)

APPENDIX D: COMPLETION OF THE
CALCULATION OF Ib+ g,

by regulating the individual terms by introducing an ex-
tra factor of x~ and taking b~O at the end. In the current
work, we need to extend our set of integrals to

I = dx ) c „„x coth" x csch"x
~,n,p

In this section, we complete the evaluation of the
fermionic basketball integral. The derivation directly
parallels the bosonic case treated in Appendix D of
Ref. [1],with hyperbolic cotangents becoming hyperbolic
cosecants as we discussed earlier. We therefore refer the
reader to Ref. [1] and shall here simply present the dif-
ferences for a selected few intermediate results.

As in the bosonic case, we write

+) d x e (C2)

To handle this, we need in addition to our previous basic
regulated integrals where

II ~ ~II~ ~ = I + Ib + I, ,
P

(D1)

dxx =0,
0

f dx x' coth x = 2 'I'(z + 1) ((z + 1),
0

dxx e = a 'I'(1+ z),
0

the new integral

(C3)

(C4)

11&'l(~)—
P

11'~~lP ) —11'„' &P )(47l.)
2

(D2)

(D3)

dx x'cschx = (2 —2 ')I'(z + 1) ((z + 1) .
0

(c6)
(D4)

=f d. z
x coth" x csch"x@+n —1

In addition, we need to generalize our previous recursion
relation to

f dx x coth" x csch"x
0

and

P

T2 T4 2

'I's (d —1

(D5)

n —1+ x coth" xcsch"xp+n —1 (C7) The zero-temperature piece II~ ~ of II is the same as the
bosonic case. One finds

T 1 dr ( 1 r 7r l ( r d )
~

cschr +
~ ~

1 ———
~

(cothr —1)(4~)'2, r'
q r 6 360) g 2dry

(+
~

cschr ——+ —
~

+ O(e)

1 (T2 l 29 g'( —3) ('(—1) 21 43 27
(4m)~ 12 ) 10 g( —3) t,'(—1) 10 30 10 (D6)
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Io = (I—o 2J o) J o A
[ [ So(o) [So(2) SSo(2)])b r &4~v'l 8'

(47r)2~ ' ' '
q

T' d —1

(T2) 29 (I(—3) (,'I(—1) 21 43 27

(4vr)2 ( 12) 10 (,'(—3) ((—1) 10 30 10+ 5 ——pa + ———ln 2 + O(e),

I = 2AT
[ o [

I oSo(1+o) + [So(2+o) —SSo(2+o)])
d —1

1 (T l 1 3 [9, 21 (,"(—3) ('(—1) 21
+ —ln + — —6 + —pE

(4m)2 ( 12) 20m 10 47rT 10 ((—3) ((—1) 5

43 17
8 10

+ ln2 + O(e),

where A and S (n) are defined in Ref. [1]. Putting together (D6), (D7), and (DS),

(D7)

(D8)

y(r) (o) 1 (T ] 1 3
l P 37('(—3) ('(—1)

(47r)2 g 12 y 20' 10 4vrT 10 ((—3) ((—1)
301 37
120 10

——ln2 + O(e) . (D9)

The result for f II(o) is given in Ref. [1], and adding
it to (4.6) and (D9) yields the final result (4.7) for the
fermionic basketball.

hp, (1 —b~, )
P2Q2(P + Q)2

T 1 2T——+ ln
(47c) 4E p
+O(m, e) .

2

(E3)

APPENDIX E: THE PIECES OF I~„„

As mentioned earlier, the fermionic setting-sun integral
I,„„vanishes when particle masses are ignored. However,
it is useful to also know the piece corresponding to

bp, f 1 b„, (El)

This can be easily evaluated by relating it to the compa-
rable bosonic piece using (B4) and then scaling momenta
by 2:

"'II (P) = "' 2 II (2P) —II (P)bp

P2 p2
b22(4—~) 1 "o IIb p

APPENDIX F: DERIVATIONS OF I~~D AND
bfIqao

The calculations of I&cD and IcD also closely parallel
those of the purely bosonic case in Appendix H of Ref. [1].
In that previous work, we found it algebraically conve-
nient to rewrite the bosonic contribution II„„ofFig. 1(a)
to the vector self-energy in terms of

(' + ) (' ' -
( ))2~ &~ Q2 q2(P + q)2

vxa

hp, (1 —b'~, )

p ~ P2Q2(P + Q)2
T2

, ln2+ O(e),
4m 2 (E2)

2(P b„„—P„P—„) 2P+q2
(F2)

where the last equality follows &om the bosonic result of
Ref. [1] that

In order to make our presentation of the fermionic case
as similar as possible to the bosonic one, we shall do the
same for the fermionic contribution Ilr„„ofFig. 1(b):s

(II„) (P) = Spy b 2II„„(P—) —2(P b„„—P„P„)
(QI

' P+ (F3)

where

(2Q+ P)„(2Q + P)„
I22o &" q2 q2(P + q)2

(F4)

The main advantage to this is simplicity of presentation; one could just as easily do the calculation with II~„directly.
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And now let's focus on computing

[~11„'„(P)j'
sctED = PP

all„'„(P)&11'„„(P)
Is+ED- P4 (F5)

Following through the same steps as in Appendix H of Ref. [I], one gets the obvious generalizations of Eqs. (H27)—
(H29) of that reference:

, all'„(„)(P) = 11'( )(P) + 4(d —2)b, f,' i O(s),
P P

DII„(„)(P)DII„(„)(P)= II )(P)II ( )(P) +4(d —2)b b f +O(s),
P P

(F6)

(F7)

P

P

11'( )(P)rr(')(P) + 2 f, , II'()(P),
d —1 (d —1) p P'

II ( )(P)II( )(P) + 2 b , 11 ' (P),d —1 P (d —1) p P2

(F8)

(F9)

(Flo)

Summing these results, and incorporating the results for the assorted basic integrals, gives

1 (T2 ) ll p 1 ('(—3) 20 g'( —1) 281

1 (T2 ) 59 59 P ll g'( —3) 70 g'( —1)
(4~)2 g ]2 ) 12' 2 4~T 6 ((—3) 3 ((—1)

Using (F2) and (F3) and our standard reduction tricks yields

—13 ln 2 + 0(s),

2063 169
120 10

(F11)

(F12)

I~CD ——4I,qED+ 4(d —3)Ib u
—16(d —2)f P II (P)

1 (T2 ) 40 p, 32 g'( —3) 224 ('(—1) 124 448
(4m.)' 12 3e 4' T 3 t,'(—3) 3 t,'(—1) 3 5

/ /

LCD = (2 —d)I,cIED
—3(d —2)Iq u+8(d —2)f II (P) +2(d —2) b II (P)

1 (T'l 29 p, 38 ('(—3) 104 ('(—1)———58 ln
(4z-) ( 12 y 3e 47rT 3 ((—3) 3 $(—1)

251 398+16' — + ln2 —961n(2') +. O(e) .
10 5

(F13)

(F14)

Before leaving this section, we note that one can use our results to derive the basic integral

(Q K)'
p(qrrl P4Q2K2 (P + Q) 2 (P + K) 2 (F15)

de6ned by Parwani and Coriano. By applying our usual reduction techniques to I,ED, and using the fact that
I,„=0, one can derive that

I,qED
——16H4 —I~~u + 4(d —4)b2 f~ . (F16)

Because of our slightly different methods of bookkeeping of infrared divergences, our reduction of I&&D differs from a similar
reduction in Ref. [2] by M4 f(1 —8~ )P II (P). There is a canceling difference in our treatment of diagram (o) of Fig. 5.
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So1ving for H4 and using our results for I,&ED and Ib &&
then yieI~s

1 &T2) 5 5

(4 ) ]2) 24 4 4 T
1 C'(—3) 7 &'(—1) + —p, + ———ln2 + O(e),6 C(—3) 6 C(—1) 4 24 5

(F17)

which agrees with the numerical result of Parwani and Coriano within errors.
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