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Eleventh-order calculation of Ising-limit Green s functions for scalar quantum field
theory in arbitrary space-time dimension D
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This paper extends an earlier high-temperature lattice calculation of the renormalized Green s
functions of a D-dimensional Euclidean scalar quantum field theory in the Ising limit. The previous
calculation included all graphs through sixth order. Here, we present the results of an eleventh-order
calculation. The extrapolation to the continuum limit in the previous calculation was rather clumsy
and did not appear to converge when D & 2. Here, we present an improved extrapolation which
gives uniformly good results for all real values of the dimension between D = 0 and D = 4. We find
that the four-point Green's function has the value 0.620 + 0.007 when D = 2 and 0.98 + 0.01 when
D = 3 and that the six-point Green's function has the value 0.96 + 0.03 when D = 2 and 1.2 + 0.2
when D = 3.
PACS number(s): 11.10.Ef, 11.10.Jj, 11.10.Kk

There have been many attempts to calculate the co-
eKcients in the effective potential of a Euclidean scalar
quantum field theory in the Ising limit. These coefFicients
are just the dimensionless renormalized 2n-point Green s
functions evaluated at zero momentum. Techniques that
have been used to determine these Green's functions in-
clude high-temperature lattice expansions, Monte Carlo
methods, and e expansions. For the case D = 3, a com-
plete list of references is given in a recent Monte Carlo
study by Tsypin [1].

In a series of papers [2,3], high-temperature lattice
techniques were used to obtain the dependence of the
Green's functions upon the Euclidean space-time dimen-
sion D for D ranging continuously between 0 and 4.
In this work a strong-coupling calculation to sixth or-
der was performed analytically on a hypercubic lattice
in D dimensions and Pade extrapolation techniques were

l

invented to obtain the continuum limit [4]. Here we ex-
tend the strong-coupling calculation in Refs. [2,3] to 11th
order. Furthermore, we use an improved Pade extrapo-
lation method that relies on information taken &om the
results of a large-N calculation and our recent studies of
dimensional expansions for quantum field theory [5—7].

Our strong-coupling calculations are identical to those
described in Ref. [2] except that the graphs were gen-
erated using a FORTRAN program and evaluated analyt-
ically using MACsYMA. The 11th-order calculation in-
volves several hundred times as many graphs as the sixth-
order calculation. We have verified the accuracy of our
expansions for the specific cases of D = 2, 3, and 4 di-
mensions by comparing them with previous calculations
[8]

The lattice series for the renormalized four- and six-
point Green's functions are

and

g
—D12

[1 + 4D„+ (4D —10D)y + 16Dy + (30D —80D )y + (256D + 104D —192D)y

+( 704D —1—736D + 2508D —656D)y + (1792D + 10432D —11 232D —3872D + 4992D)y

+(—4352D —45 600D + 11456D + 123 672D —128 440D + 35 542D) y

+(10240D + 168 320D + 181248D —1 052 576D + D + 76 664D — D)y

+(—23 552D —558 208D —1 630 272D + 5 391 904D — D —10 102 936D + D 2720 752D)y-
+(53248D + 1 718 272D + 9081856D —18 274 816D — D + D3 3

292976128D3 + 18425408D2 + 14 757984D) 11 + (1)3 3

—D
[1+6Dy+ (12D —6D)y + (8D —12D —20D)y + (48D + 48D)y + (—96D —816D + 528D)y

30
+(192D + 4640D —2736D —560D)y + (—384D —18 432D —10 800D + 46 512D —23 040D) y

+(768D + 61 440D + 188 352D —510 816D + 357 324D —72 492D) y

+ (—1536D —184 576D —1 274 880D +2 653 440D —77 496D —2 911496D + 1 698 240D) y

+(3072D + 517632D + 6 280 704D —6584832D —27 745 840D
+65 401 176D —49 332 608D + ll 853 912D)y

+(—6144D —1 382 400D —25 928 448D —13343 232D + 286 690 784D
—516057392D +211594432D +210150872D —153291366D)y + . .], (2)
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1.0

12I'(2 —D/2)

Thus we have forced the continuum limit of the four-point
function to take the form of the large-N result in (5)
apart &om f(oo), which is a smoothly varying function
of D.

There is an immediate indication that the Borel sum-
mation leading to (12) has a significant impact. We find
that the polynomials Rg(D) in (11) are significantly sim-
pler than the original polynomials P~ (D) in (7); the poly-
nomials Ri, (D) have maximum degree [k/2 —1, about
half the degree of the polynomials Pl, (D) [9]. The poly-
nomials Ri, (D), k = 0, 1, 2, . . . , 11, are

0.8

0.0

k=11

RG(D) = 1,
Ri(D) = —2,

R2(D) = '3',

R(D)=-—',
R,(D) = ,',D+-",,—',

R5(D) = 3D—

FIG. 3. First 11 approximants to 74 plotted as functions
of D for 0 & D & 4 [see (12)]. The approximants form a
monotonically increasing sequence of curves; the labeling in-
dicates the order. Note that the approximants are smooth
curves that seem to be tending uniformly to a limiting curve.
We have obtained this limiting curve (dotted curve) by means
of fifth-order Richardson extrapolation [10]. The exact result
p4 ———at D = 1 is indicated by a plus sign; the limiting curve
passes within 1+0 of this point.

7( ) 1134 + 1260 2635
13 3 98323 2 8837 2627137

8100 + 170100 3240 544320
(D) 163 D3 14699D2 + 17111D 235681

) 3150 14175 5670 64800 )

457 4 1338257 3 2015579 2
10( ) 267300 5613300 + 1403325

9257497D + 230357209
3207600 89812800 )

611 4 6066953 3 3923681 2
69300 + 11226600 2245320
110092603D 75132389 .+ 44906400 44906400

(D) = 112 (1 + 1.177D + 0.640D + 0.195D

+0.028D —0.004D
—0.003D = . .) . (14)

We may then compare this Taylor series with that re-
cently obtained [7] using dimensional expansion methods:

The resummation of the lattice series as performed
above reduces the problem of extracting the continuum
limit to finding the value of f(oo) This is .done using
the same Pade techniques as were used in Ref. [2]. If we
perform this numerical calculation, we obtain a sequence
of approximants, one for each new order in perturbation
theory. The first 11 such approximants for p4 in (12) are
plotted in Fig. 3. Each approximant is a continuous func-
tion of D for 0 & D & 4. Note that the approximants are
smooth and well behaved; the sequence is rnonotonically
increasing and appears to converge uniformly to a limit-
ing curve. The dotted line on Fig. 3 is an extrapolation of
these approximants to this limiting curve obtained using
Richardson extrapolation [10].

There are a number of ways to assess the accuracy of
the limiting curve. First, one can Taylor expand this
limiting curve about D = 0 as a series in powers of D.
This Taylor series has the form

dimensional expansion (D4 1 (1 + 1 18D + 0 62D 2
12~

+0.18D + 0.03D + . ) .
(15)

Note that the coefBcients of these two series are almost
identical [11].Second, we can examine the limiting curve
at D = 1, for which the exact value p4 ——

4 is known. At
this value of D, the limiting curve has the value 0.2526,
and so it is slightly higher by about l%%uo.

In Figs. 4 and 5, we demonstrate how we obtain the
limiting curve for the cases D = 2 and 3. We have plot-
ted the nth-order Richardson extrapolants for the ap-
proximants in Fig. 3 for n = 1, 2, . . . , 5 versus the inverse
order of the approximants. We then determine where
each of these extrapolants crosses the vertical axis (each
intersection is indicated by a horizontal bar). Finally,
we extrapolate to the limiting value of these intersection
points. This procedure gives the value p4

——0.620+0.007
at D = 2, indicated in Fig. 4 by a fancy square. This re-
sult is to be compared with p4

——0.6108+0.0025 obtained
by Baker and Kincaid [12,13]. Similarly, in Fig. 5 we find
that the limiting curve gives p4 ——0.986+0.010 at D = 3.
This value compares reasonably well with previous re-
sults, as tabulated in Ref. [1]. For example, Baker and
Kincaid obtain 0.98, Monte Carlo studies give results be-
tween 0.9 and 1, and renormalization group studies give
results around 0.98. Note that the limiting curve in Fig. 3
has a maximum extremely close to D = 3; numerically,
the maximum occurs at D = 3.03.

The same procedure that was used to extrapolate (1)
to the continuum and thereby to obtain a plot of p4 as a
function of D can be applied to (2). We perform a Borel
summation of the series in (2) as follows. The lattice
series in (2) for ps has the general form
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p4 Bt D —2
yD/2 j dt t2e '[e 2'sI (2ty)]~

SOp6

OO

dt tl —D/2 —t (t )D/2
0

(18)

C

0.61 t—

where we define

0.60
0.0 0. 1 0.2

FIG. 4. Plot of the nth-order Richardson extrapolants for
the approximants in Fig. 3 for n = 1, 2, . . . , 5 versus the in-

verse order of the approximants for the case D = 2. Each
Richardson extrapolant is linearly extended (dot-dashed line)
until it intersects the vertical axis. Each intersection is indi-
cated by a horizontal bar. We then extrapolate to the limiting
value of these intersection points, indicated by a fancy square.
This procedure predicts that p4 ——0.620 at D = 2.

OO

) S (D) le (16)

where Sg (D) are polynomials of maximum degree k. One
can read off the first ll polynomials Si,(D) &om (2).
From the structure of ps in (4), we are motivated(N=OO)

to rewrite (16) in the form

D/ f dt t2e '[e 2'sIo(2ty)]D0, o y L&/2 ) Z (D) k

p6 A:=0

(17)

where Ts(D) is another polynoinial in D. Again, we in-
sert the identity (9) for each term in the sum in (17).
This converts (17) to the form

where Us(D) are polynomials in D of degree [k/2] —1
similar in structure to those in (13) [9].

Next, we take the continuum limit of the expression
(18). Assuming that g(oo) exists in the limit y ~ oo, we

find that (18) separates into a product of several terms
and we have

(4-)-D/'~(3 —D/2).
sor (2 —D/2) s (2o)

1 ' 5 [ I I

1.0—

Thus we have forced the continuum limit of the six-point
function to take the form of the large-N result given in

(6) apart &om g(oo), which is a slowly varying function
of D.

Again, the resummation of the lattice series reduces
the problem of extracting the continuum limit to finding
the value of g(oo). This is done using the same Pade
techniques as were used in Ref. 2. We perform this
numerical calculation and obtain a sequence of approx-
imants, one for each new order in perturbation theory.
The first ll such approximants for ps in (20) are plot-
ted in Fig. 6. Each approximant is a continuous function
of D for 0 & D & 4. As in Fig. 3, the approximants
are smooth and well behaved; the sequence is monoton-
ically increasing and appears to converge uniformly to a

0,99—

Qt, D —3
k=11

0.98
0

I

g 09V—

0

0.96—iX

0 95 I I I I I I I I

0.00 0.05 0.10 0.15

FIG. 5. Same as in Fig. 4, except that D = 3. This ex-
trapolation procedure predicts that p4. ——0.986 at D = 3.

0.0
0 1 3 4.

D

FIG. 6. First 11 approximants to p6 plotted as functions
of D for 0 ( D ( 4 [see (20)]. The approximants form a
monotonically increasing sequence of curve as indicated by
the labeling. As in Fig. 3 for the four-point function, the
approximants are smooth curves that seem to be tending uni-

formly to a limiting curve. This limiting curve (dotted curve)
is a fifth-order Richardson extrapolation. The exact result

4 at D = 1 is indicated by a plus sign; the limiting
curve passes within 4'Po of this point.
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limiting curve indicated in Fig. 6 by a dotted line. This
limiting curve is again obtained using fifth-order Richard-
son extrapolation. The limiting curve at D = 1 passes
through the value p6 ——0.240, which di8'ers &om the ex-
act value ps ——

4 by about 4%.
The limiting curve predicts that p6 ——0.96 + 0.04 at

D = 2 and p6 ——1.2 + 0.1 at D = 3. The value at D = 3
is lower than most previous results, as tabulated in Ref.
[1],but it is certainly finite. An earlier conjecture [7] that
p6 might be singular at D = 3 seems unjustified now in
light of this result [ll]. By comparison, an e expansion
around D = 4 gives [1,14]

20,= 2e ——e + 1.2759t' +
(p4) z 27

This series may be divergent, but a direct optimal trun-
cation of the series after one term with e = 1 gives the
value ps ——1.9 + 0.7. (Here we have substituted the
value p4 ——0.986 given above. ) However, if we perform

a (1, 1)-Pade summation of this series, which seems jus-
tified because of the alternating sign pattern, we obtain

= 1.66+ 0.28 with a central value in better agreement
with that of our predicted value. Of course, the numer-
ical results for p6 at D = 3 that have been obtained
thus far with Monte Carlo and strong-coupling lattice
calculations are not yet very good; hopefully, they will

be improved in the future.
Finally, we observe that the maxima of p2, as a func-

tion of D appear to follow a pattern. We observed already
that p4 has a maximum that is close to D = 3. Here we

find that the limiting curve for p6 has a maximum at
D = 2.66, which is very close to z. An interesting con-
jecture is that in general the maximum might be located
at Dm „= '+.

, the value of D for which a P '+ theory
becomes free.
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