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This paper extends an earlier high-temperature lattice calculation of the renormalized Green’s
functions of a D-dimensional Euclidean scalar quantum field theory in the Ising limit. The previous
calculation included all graphs through sixth order. Here, we present the results of an eleventh-order
calculation. The extrapolation to the continuum limit in the previous calculation was rather clumsy
and did not appear to converge when D > 2. Here, we present an improved extrapolation which
gives uniformly good results for all real values of the dimension between D = 0 and D = 4. We find
that the four-point Green’s function has the value 0.620 £ 0.007 when D = 2 and 0.98 + 0.01 when
D = 3 and that the six-point Green’s function has the value 0.96 + 0.03 when D = 2 and 1.2 £ 0.2

when D = 3.
PACS number(s): 11.10.Ef, 11.10.Jj, 11.10.Kk

There have been many attempts to calculate the co-
efficients in the effective potential of a Euclidean scalar
quantum field theory in the Ising limit. These coefficients
are just the dimensionless renormalized 2n-point Green’s
functions evaluated at zero momentum. Techniques that
have been used to determine these Green’s functions in-
clude high-temperature lattice expansions, Monte Carlo
methods, and € expansions. For the case D = 3, a com-
plete list of references is given in a recent Monte Carlo
study by Tsypin [1].

In a series of papers [2,3], high-temperature lattice
techniques were used to obtain the dependence of the
Green’s functions upon the Euclidean space-time dimen-
sion D for D ranging continuously between 0 and 4.
In this work a strong-coupling calculation to sixth or-
der was performed analytically on a hypercubic lattice
in D dimensions and Padé extrapolation techniques wereI

invented to obtain the continuum limit [4]. Here we ex-
tend the strong-coupling calculation in Refs. [2,3] to 11th
order. Furthermore, we use an improved Padé extrapo-
lation method that relies on information taken from the
results of a large-N calculation and our recent studies of
dimensional expansions for quantum field theory [5-7].

Our strong-coupling calculations are identical to those
described in Ref. [2] except that the graphs were gen-
erated using a FORTRAN program and evaluated analyt-
ically using MACSYMA. The 11th-order calculation in-
volves several hundred times as many graphs as the sixth-
order calculation. We have verified the accuracy of our
expansions for the specific cases of D = 2, 3, and 4 di-
mensions by comparing them with previous calculations
[8]-
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where y = (Ma) ™2, a is the lattice spacing, and M is the
renormalized mass, which is obtained from the two-point
function as explained in Ref. [2].

The quantity ,/y is the dimensionless correlation
length. The continuum limit @ — 0 corresponds to infi-
nite correlation length. To obtain the continuum Green’s
functions, it is necessary to extrapolate the formulas in
(1) and (2) to their values at y = co. Direct extrapola-
tion to the continuum limit of either series in (1) or (2)
leads to a sequence of extrapolants that becomes badly
behaved when D increases beyond 2; we find that extrap-
olations as functions of D do not converge to a limiting
curve (see Figs. 1 and 2). However, for D near 0 these
extrapolants are well behaved and converge rapidly to
the known exact values [2] v4 = 2 and ¢ =1 at D=1.

To improve our extrapolation, we make the following
observation. We consider a scalar field theory having
an O(N) symmetry. The model we have studied above
corresponds to the case N = 1. In the limit NV — oo, one
can solve for the Green’s functions exactly. We obtain
the lattice results
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4 [;7 dt te—tle—2ty I (2ty)|P
and
—D [o° 2,—t[,—2t D
—oo Yy dt t?e"t[e %W, (2t
N2 N=oco __ fo [ 0( y)) , (4)

12{f;° dt t e~t[e=2tvIo(2ty)]P}°

where we have summed over the external indices. In the
continuum limit y — oo, we have
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FIG. 1. First k Padé approximants, k = 1,2,...,11, to the

continuum limit of the four-point Green’s function. These
approximants are constructed from the lattice series in (1)
using the Padé procedure explained in Ref. [2]. Observe that
the approximants are well behaved when D is near 0; in par-
ticular, they converge nicely to the exact value 41 at D=1
(indicated by a plus sign). However, when D increases be-
yond 2, the approximants become irregular and do not seem
to converge to a limiting function of D. (Some of the approx-
imants reach zero and terminate as D increases because they
become complex.)

and

(4m)PT(3 — D/2)

120z —-D/2)F (6)
where D lies in the range 0 < D < 4. Each of these func-
tions rises from its value at D = 0, attains a maximum,
and falls to 0 at D = 4.

Under the assumption that the Green’s functions for
N =1 vanish at D = 4 like those in (5) and (6), we can
extract such a behavior from the series (1) and (2) by
performing a Borel summation as follows. Consider the
lattice series in (1) for 4. This series has the general
form
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where Py (D) are polynomlals of maximum degree k. One
can read off the first 11 polynomials P, (D) from (1). We
can rewrite (7) as
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where Qg (D) is another polynomial in D. Next, we insert
the identity
1 oo
= e dt thtle?
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for each term in the sum. This converts (8) to the form
1 oo
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where we define
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where again Ry (D) are polynomials in D.

We now take the continuum limit of the expression
(10). Assuming that f(oo) exists in the limit y — oo so
that (10) separates into a product of two terms, we have
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FIG. 2. Same as in Fig. 1, except that we have plotted
the first k approximants to the six-point Green’s function
for k = 1,2,...,11. Again, we find that the approximants
converge to the exact value % at D = 1, but that they are

irregular for D > 2.
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_ f(oo)_D/2
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Thus we have forced the continuum limit of the four-point
function to take the form of the large-N result in (5)
apart from f(oo), which is a smoothly varying function
of D.

There is an immediate indication that the Borel sum-
mation leading to (12) has a significant impact. We find
that the polynomials Ry (D) in (11) are significantly sim-
pler than the original polynomials P (D) in (7); the poly-
nomials Rg(D) have maximum degree [k/2] — 1, about
half the degree of the polynomials P(D) [9]. The poly-
nomials Rg(D), k=0,1,2,...,11, are
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The resummation of the lattice series as performed
above reduces the problem of extracting the continuum
limit to finding the value of f(co). This is done using
the same Padé techniques as were used in Ref. [2]. If we
perform this numerical calculation, we obtain a sequence
of approximants, one for each new order in perturbation
theory. The first 11 such approximants for v4 in (12) are
plotted in Fig. 3. Each approximant is a continuous func-
tion of D for 0 < D < 4. Note that the approximants are
smooth and well behaved; the sequence is monotonically
increasing and appears to converge uniformly to a limit-
ing curve. The dotted line on Fig. 3 is an extrapolation of
these approximants to this limiting curve obtained using
Richardson extrapolation [10].

There are a number of ways to assess the accuracy of
the limiting curve. First, one can Taylor expand this
limiting curve about D = 0 as a series in powers of D.
This Taylor series has the form

yyTnE curve () — (1 4 1.177D + 0.640D? + 0.195D°
+0.028D* — 0.004D5
—0.003D® —...) . (14)

We may then compare this Taylor series with that re-
cently obtained [7] using dimensional expansion methods:
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FIG. 3. First 11 approximants to v4 plotted as functions
of D for 0 < D < 4 [see (12)]. The approximants form a
monotonically increasing sequence of curves; the labeling in-
dicates the order. Note that the approximants are smooth
curves that seem to be tending uniformly to a limiting curve.
We have obtained this limiting curve (dotted curve) by means
of fifth-order Richardson extrapolation [10]. The exact result
Y4 = % at D = 1 is indicated by a plus sign; the limiting curve
passes within 1% of this point.

’Y;:limensional expansion(D) — 1_12(1 +1.18D + 0.62D2
+0.18D° + 0.03D* + ---) .
(15)

Note that the coefficients of these two series are almost
identical [11]. Second, we can examine the limiting curve
at D = 1, for which the exact value y4 = % is known. At
this value of D, the limiting curve has the value 0.2526,
and so it is slightly higher by about 1%.

In Figs. 4 and 5, we demonstrate how we obtain the
limiting curve for the cases D = 2 and 3. We have plot-
ted the nth-order Richardson extrapolants for the ap-
proximants in Fig. 3 for n = 1,2,...,5 versus the inverse
order of the approximants. We then determine where
each of these extrapolants crosses the vertical axis (each
intersection is indicated by a horizontal bar). Finally,
we extrapolate to the limiting value of these intersection
points. This procedure gives the value v, = 0.620£0.007
at D = 2, indicated in Fig. 4 by a fancy square. This re-
sult is to be compared with v4 = 0.6108+0.0025 obtained
by Baker and Kincaid [12,13]. Similarly, in Fig. 5 we find
that the limiting curve gives 4 = 0.986+0.010 at D = 3.
This value compares reasonably well with previous re-
sults, as tabulated in Ref. [1]. For example, Baker and
Kincaid obtain 0.98, Monte Carlo studies give results be-
tween 0.9 and 1, and renormalization group studies give
results around 0.98. Note that the limiting curve in Fig. 3
has a maximum extremely close to D = 3; numerically,
the maximum occurs at D = 3.03.

The same procedure that was used to extrapolate (1)
to the continuum and thereby to obtain a plot of 74 as a
function of D can be applied to (2). We perform a Borel
summation of the series in (2) as follows. The lattice
series in (2) for ¢ has the general form
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FIG. 4. Plot of the nth-order Richardson extrapolants for
the approximants in Fig. 3 for n = 1,2,...,5 versus the in-
verse order of the approximants for the case D = 2. Each
Richardson extrapolant is linearly extended (dot-dashed line)
until it intersects the vertical axis. Each intersection is indi-
cated by a horizontal bar. We then extrapolate to the limiting
value of these intersection points, indicated by a fancy square.
This procedure predicts that y4 = 0.620 at D = 2.

_DOO

Y6 = Y5 30 ES’k(D)y (16)

where Si (D) are polynomials of maximum degree k. One
can read off the first 11 polynomials Sk(D) from (2).
From the structure of 'y(N ) j
to rewrite (16) in the form

yD/z fooo dt tze—‘t[e—'ztylo(zty)]p
30’75

in (4), we are motivated

oo 3
— [yD/Z Z Ty (D)yk] ,
k=0
(17)

where T} (D) is another polynomial in D. Again, we in-
sert the identity (9) for each term in the sum in (17).
This converts (17) to the form
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FIG. 5. Same as in Fig. 4, except that D = 3. This ex-
trapolation procedure predicts that v4 = 0.986 at D =
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where we define
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where Ui (D) are polynomials in D of degree [k/2] — 1
similar in structure to those in (13) [9].

Next, we take the continuum limit of the expression
(18). Assuming that g(oco) exists in the limit y — oo, we
find that (18) separates into a product of several terms
and we have

(4m)~P/21(3 — D/2)
30r(2 - D/2)3

) = miUk(D)z" . (19)
k=0

ye = g(oo)——SD/Z .

(20)

Thus we have forced the continuum limit of the six-point
function to take the form of the large-IV result given in
(6) apart from g(co), which is a slowly varying function
of D

Again, the resummation of the lattice series reduces
the problem of extracting the continuum limit to finding
the value of g(co). This is done using the same Padé
techniques as were used in Ref. 2. We perform this
numerical calculation and obtain a sequence of approx-
imants, one for each new order in perturbation theory.
The first 11 such approximants for g in (20) are plot-
ted in Fig. 6. Each approximant is a continuous function
of D for 0 < D < 4. As in Fig. 3, the approximants
are smooth and well behaved; the sequence is monoton-
ically increasing and appears to converge uniformly to a
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FIG. 6. First 11 approximants to ve plotted as functions
of D for 0 < D < 4 [see (20)]. The approximants form a
monotonically increasing sequence of curve as indicated by
the labeling. As in Fig. 3 for the four-point function, the
approximants are smooth curves that seem to be tending uni-
formly to a limiting curve. This limiting curve (dotted curve)
is a fifth-order Richardson extrapolation. The exact result
Yo = i at D = 1 is indicated by a plus sign; the limiting
curve passes within 4% of this point.
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limiting curve indicated in Fig. 6 by a dotted line. This
limiting curve is again obtained using fifth-order Richard-
son extrapolation. The limiting curve at D = 1 passes
through the value v¢ = 0.240, which differs from the ex-
act value 76 = 1 by about 4%.

The limiting curve predicts that v¢ = 0.96 £ 0.04 at
D =2and v¢ =1.2+£0.1 at D = 3. The value at D = 3
is lower than most previous results, as tabulated in Ref.
[1], but it is certainly finite. An earlier conjecture [7] that
~v¢ might be singular at D = 3 seems unjustified now in
light of this result [11]. By comparison, an € expansion
around D = 4 gives [1,14]

Ve 20 , 3
—— = 26— —€° +1.2759¢” + --- . 21
Gu = 21
This series may be divergent, but a direct optimal trun-
cation of the series after one term with ¢ = 1 gives the
value 76 = 1.9 = 0.7. (Here we have substituted the
value y4 = 0.986 given above.) However, if we perform

a (1,1)-Padé summation of this series, which seems jus-
tified because of the alternating sign pattern, we obtain
~e¢ = 1.66 +-0.28 with a central value in better agreement
with that of our predicted value. Of course, the numer-
ical results for 46 at D = 3 that have been obtained
thus far with Monte Carlo and strong-coupling lattice
calculations are not yet very good; hopefully, they will
be improved in the future.

Finally, we observe that the maxima of vz; as a func-
tion of D appear to follow a pattern. We observed already
that 4 has a maximum that is close to D = 3. Here we
find that the limiting curve for ¢ has a maximum at
D = 2.66, which is very close to %. An interesting con-
jecture is that in general the maximum might be located
at Diax = gij—l—), the value of D for which a ¢?**2 theory

becomes free.
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