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Interactions between U(l) cosmic strings: A.n analytical study
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We derive analytic expressions for the interaction energy between two general U(1) cosmic strings
as the function of their relative orientation and the ratio of the coupling constants in the model.
The results are relevant to the statistic description of strings away from critical coupling and shed
some light on the mechanisms involved in string formation and the evolution of string networks.
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I. INTRODUCTION

Phase transitions associated with the spontaneous
breaking of symmetries in gauge theories are expected
to have played a crucial role in the history of the early
Universe. In particular, they imply the production of
topologically stable defects [1]. Such defects, produced at
the energy scale of grand unification, lead to a panoply of
cosmological eKects. The most important consequence of
their existence, however, is their potential to create en-
ergy distribution anisotropies, necessary for seeding the
large scale structure of the present Universe, and compat-
ible with those observed in the cosmic microwave back-
ground [2].

Diferent classes of defects lead to distinct cosmologi-
cal consequences. The most dramatic is that walls and
monopoles are known to come to dominate the energy
density of the Universe, if inBation does not occur sub-
sequently to their formation or some other mechanism
intervenes to enhance their annihilation. Strings by con-
trast, under certain general conditions, seem to be en-
tirely viable on their own. The fundamental difference
arises &om the fact that a network of cosmic strings pos-
sesses natural mechanisms to reduce its own contribution
to the total energy density. Moreover, this is d.one in a
way such that the effective evolution of the energy &ac-
tion in strings decreases in time faster than would be ex-
pected &om the expansion alone and scenarios of string
domination are thereby naturally precluded.

The mechanisms that allow for the viable evolution of
a string network are essentially motivated on topological
grounds and are consequently expected to be model inde-
pendent [3,4]. They consist of a two step process. Firstly,
when two segments of a long string intersect a closed loop
of string will be forxned. This happens when the two seg-
ments exchange ends after collision, which in turn is a
consequence of winding number (i.e., vortex topological
charge) conservation on the plane. This is designated in-
tercommuting. Finally, because closed loops of string are
not globally topologically stable, they can radiate away
the energy trapped in their field configuration as gravi-
tational waves and shrink until they disappear. The Gnal
stage of collapse is probably characterized by vortex an-
nihilation and is expected to produce extremely energetic
cosmic rays.

The realization of this scenario rests crucially upon the
efFiciency of the intercommuting and subsequent string
separation. Strings, however, are known to experience
interactions which depend, in general, both on the un-
derlying Geld theory and on the specific region of its
paraxneter space. In its simplest and most widely used
model strings are the classical nontrivial solutions of the
Abelian Higgs model. In particular, for certain ratios of
coupling constants, they are analogous to the vortex solu-
tion in type II superconductors and to vortices in super-
Huid 4He. This latter case corresponds to the vanishing
of the gauge sector in the model and the corresponding
string solutions are naturally known as global strings.

Typically, when estimating how string networks evolve,
numerical simulations only invoke the underlying Geld
theory in the initial string formation. Thereafter, they
are taken to obey the equations of classical Nambu-Goto
strings, interaction-&ee but for empirical assumptions
about intercommuting. For type II and global strings
these assumptions are buttressed by a nuxnber of numer-
ical studies. They reveal, in particular, that strings in-
deed exchange ends and separate in these cases. Stud-
ies regarding the outcome of collisions of type I strings,
which feel an attractive interaction regardless of orienta-
tion, are much scarcer [5]. On the other hand, analytical
studies concerning the derivation and generalization of
such a range of behavior having the Geld theory as the
starting point are scarce and tend to concentrate on spe-
cific regions of parameter space [6,7]. In this paper we
attempt a xnore general analytic analysis.

The article is organized in two parts. The longer part
is concerned. with classical vortex interactions. The first
sections essentially review the approximate field solutions
for vortices and derive the interaction potential between
two vortices or strings, for all values of coupling con-
stant ratios and arbitrary orientations. Models for string
production typically lead to initial high string densities.
The latter part of the paper examines the initial stabil-
ity of string networks, both classically and quantum me-
chanically. This part of the paper is rather more spec-
ulative. Type I and type II strings are a consequence
of theories that, essentially, undergo either first-order or
second. -order transitions at the time of string formation.
We make a preliminary attempt to relate this to the na-
ture of string forces.
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II. THE INTERACTION ENERGY BETWEEN
TWO STRINGS: GENERALITIES

Prior to considering multiple string solutions we brieBy
review the isolated string 6eld solutions, with particular
attention to the 6eld behavior at large distances from
their axes of symmetry. Although well known, we need
the details for later sections.

U(l) strings are the extrapolation to three dimensions
of the well-known vortex solution of the Abelian Higgs
model [8]. These are finite energy nontrivial static so-
lutions on the plane. The Lagrangian density takes the
form

certain regimes can be derived. In order to show this we
take the Euler-Lagrange equations, assuming cylindrical
symmetry, in the radial temporal gauge A„= Aq ——0,

V'„p — eAs —— + —(p —rI ) io = 02 n
r 2

2V' x V' x Ag + ep eAg —— = 0, (4)

where y is the modulus of the scalar field and n its wind-
ing number. The field P is therefore assumed to be of
the forxn P(r, 8) = y(r)e ' s, where 0 is the angular co-
ordinate on the plane. To probe how the fields approach
their asymptotic values at in6nity, one can expand y
around il as p(r) = rl —f(r), where f is an auxiliary
Geld. Then the Euler-Lagrange equations become

where e is the gauge coupling constant to the scalar Geld,
A the scalar field self-coupling constant, and g the vac-
uum expectation value of the modulus of the scalar field
in the broken phase, as usual.

The 6niteness of the energy alone determines the
asyxnptotic form of the 6elds at infinity. In order for
the scalar field potential to vanish at infinity, P is con-
strained to lie on a circle of radius g. Its magnitude
becomes then well de6ned but its phase remains arbi-
trary. On the other hand, the modulus of the covariant
derivative must also vanish asymptotically which forces
the gauge field to assume the form [9]

1
lim A„(x) = ——B„arg[P(x)].

ix)-++oo e (2)

This also ensures that the energy contribution arising
from the 6eld strength tensor will be 6nite. Moreover, if
we work in polar coordinates, we see that the problem of
paraxnetrizing the behavior of the scalar field at infinity
reduces to the mapping of a circle, in coordinate space,
onto another, in Geld space. These mappings, as is well
known, fall into an in6nite number of homotopy classes,
each labeled by an integer n E S. Each solution, char-
acterized by a given n, cannot in turn, be continuously
deformed into another with m g n, without changing
the boundary conditions for the fields at infinity, since
this would imply expending an infinite axnount of energy
strings that are topologically stable.

Even though the above arguments supply us with
with some information about vortex solutions the way in
which the 6elds tend to their asymptotic forms is only re-
vealed by studying the Euler-Lagrange equations. These
can be solved numerically in all detail but, for certain
purposes, this does not suKce. Such is the case when we
want to discuss analytically the detailed energetics of a
multiple string Geld con6guration.

Exact single solutions exist only for the case of critical
coupling (b =

&
——1) and positive winding number [10].

This is a rather special case since the interactions be-
tween vortices disappear and the equations of motion for
the Gelds become 6rst order; the well-known Bogomol'nyi
equations. In general, however, approximate solutions in

& f = msf +f e Q —2f (Sq —f) —e gQ

V' x (V x Q) = m~Q —e2(2xlf —f2)Q, (6)

where m2s ——rI A, m~ = rIe and Q = As ——,"„.
Equation (6) has an obvious solution for small f, when

the second terxn, on the right hand side, can be neglected
in the face of the first [8]:

Ae(r) = ——k~Kx(m~r),er (7)

where k~ is a constant and Kx(m~r) the modified Bessel
function of order 1. Equation (7) shows us how As ap-
proaches its asymptotic value. This result allows us to
estimate the corresponding behavior for the scalar Geld.
Neglecting the quadratic and cubic terms on the 6elds in
(5) we obtain

f = ksKo(mar), (8)

where ks is another constant and Ko(mar) the modi-
fied Bessel function of order 0. For large arguments the
modi6ed Bessel functions of order 0 and 1 have the same
leading behavior: namely,

K„(mr)- e " 1+0
2mr qmr) (9)

n
As(r) oc —+ O(r).er (10)

This is a special case of the most general solution As(r) =
—,„—k~Ki (eyr), when y const.

The approximate solutions (7) and (8) when taken in
the limit (9) indeed reproduce the exact asymptotic forxn
of the fields at critical coupling [10]. As we have seen
above, however, they are valid for all values of the cou-
pling constants in the model.

For short distances, when (xl —y) xl, Eq. (6) becomes
essentially that for a free gauge field. The corresponding
form for Ag is then
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This form is actually compatible with (7), when the
small argument for the Bessel function is assumed. More-
over, if we impose that the magnetic Qux should vanish
at the origin we will determine k~ ——ng [8]. This is cer-
tainly an acceptable procedure for strongly type II vor-
tices. An approximate solution for the scalar Geld close
to the origin can equally be found by using (10) in (5).
We obtain

(p(r) oc J„
I

(ms ')

2

where J is the Bessel function of order n, which is the
usual winding number. This implies the well-known sxnall
distance behavior for p

1 (ms l"
(p(r) oc —

I
r

I

In particular for n = 1 the field is linear close to the
origin. Because the behavior of the scalar Geld in these
two quite difFerent limits is not directly relatable, kp can-
not be computed with generality. In the rather special
case of critical coupling ('& ——1), however, the dynamical
equations for the fields reduce to

(9„(p 6 (eAe ——) = 0,

(9„Ae + ((p —rt ) = 0,
2

(14)

&(Ir —ril)&(lr —r21)
C (r, ri, r2) =

7l

Ae(r rl r2) = Ae(lr —ril) + Ae(lr —r21). (16)

Here P and Ae are the isolated string field configu-
rations of Sec. II. In order to estimate the interaction
energy between the two vortices one then simply substi-
tutes (15) and (16) in the energy functional

where 6 = sgn(n). These are the Bogomol'nyi equations
for critically coupled vortices in polar coordinates. It is
easy to see that they allow us to relate f and Ae directly
and consequently also k~ and k~. Using the identity of
the two coupling constants we obtain ks ——lnlrI. In prin-
ciple there is no reason for this result to hold in other
regions of parameter space other than the good agree-
ment of its consequences with the numerical results, as
we shall see later. Nevertheless, unless otherwise stated
we will assume it henceforth.

We are now in a position to derive the interaction po-
tential between two string segments, under the assump-
tion that the solution for the two string field configura-
tion can be successfully approximated by the superposi-
tion ansatz [11,12]

&[AArl = J A& Ir.I"" + -I(i.AI'+ --I'Ar4' —(ir41'+ —(l4'I' —~*)' .

We then obtain

E[C', A] = E[gir, A&]+ E[piqAq) + f dV , 2'(r„x—Ar(rz) V„x Ar[r2) + —[rp(rr) —ri ](V„,rp(rr))

2

+[V (r.)' —n'](V-, V (ri))'+ 2V(»)V(r2)V-, V (ri) V..V (r2) + [V (r2)' —n']V (»)'
I eAe(ri) ——'

I"xi
2

+[(p(rx) —ri ]['p(r2)
I

eAe("2)
I

+ 2('p(») y(r2) I
eAe(ri)

I I eAe(r2)2 2 2( ~il (
r2y "i ) l "2 i

+,(Ii (rr)' —n'i[i (r~)' —n'I([v(ri)'+ n'][i (r~)'+ ~*I —2~')))

Finally, we subtract the contributions due to the isolated vortices. We obtain

E;„,[(p, Ae] = dV 2V, x Ae(ri)—V„, x Ae(r2) + —
2 [p(rx) —9 ](V„,P(r2)) + [(p(r2) —9 ](V,(p(rx))2

+2v (")~(r2) V-, ~(rx) V..v (») + [v (r2)' —n']~(r. )'
I

eAe(ri) ——
Ir1

2

+[(p(rx) g ](p(r2) I
eAe("2)

I
+ 2(p(rx) (p(r2)

I
eAe(ri) —

I I
eAe("2)

n2& 2 2( n,x) r(,2 )
F2 ll r2 p

+,(Iir(»)* —n'I[ (rr)' —n']([i (rr)'+ ~'I[i (rr)'+ v'] —2v'))).

This last expression can also be written in terms of the auxiliary field f Assuming cylin.drical syxnmetry the energy
per unit length of the strings becomes
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EI &
—— dS B&B2e, e»+m& q 2eg, . g, — ~ j.V„2e» -e ~+ms &

2

f, Q2 + 2fi Qi Q2 + f2 Qi + 2f2 Qi Q2 + 2fif2(Qi + Q2) + 4fif2Qi . Q2

+&(Sf'f + ~f'f ) rj —S(f + f ) + S&(f'f + f'f ) (20)

where B; = V'„, x As(r, ), i = 1, 2. To obtain the detailed
behavior for the interaction energy one then simply needs
to perform the integrations in (19) or (20) assuming given
functional forms for the Gelds. This procedure is abso-
lutely straightforward but a few cautionary remarks are
in order.

Firstly, unlike the case of critical coupling, the proof
for the existence and uniqueness of multivortex solutions
for general couplings does not exist. In particular, any
such solution will not be static. However, it is known
&om experimental evidence in type II superconductors
that multivortex configurations indeed do occur.

Secondly, the above procedure is clearly not exact. The
superposition ansatz effectively is not an exact solution
of the Euler-Lagrange equations (3) and (4). The result-
ing discrepancy on the value of the interaction energy
can nevertheless be computed. This can be achieved by
assuming residual additive terms to (15) and (16) such
that the resulting fields would solve (3) and (4) exactly.
Their behavior and contribution to the energy can then
be estimated whenever the functional form for the indi-
vidual vortex solutions is known [12]. In particular for
large distances, d, away from the strings' axes, when the
modified Bessel function behavior for f and Q applies,
such contribution is of the order

& [12]. This is a sec-
ond order subleading effect as we shall verify in the next
sections. This whole procedure allows us consequently
not only to state the validity of the superposition ansatz
for a given functional forxn of the fields but also to com-
pute the magnitude of the approximation involved.

Finally, the integrations in (19) or (20) necessary to
obtain the total energy can, in general, also only be per-
formed approximately. This will be the subject of the
two ensuing sections where expressions for the interac-
tion energy are indeed obtained, for all values of b =
and arbitrary orientation of the two string elements.

III. THE INTERACTION ENERGY BETWEEN
PARALLEL STRINGS AS A FUNCTION OF 5

In this section we derive the integrated expressions for
the interaction energy, for all values of b =

&
. For the

sake of simplicity we will restrict ourselves to the case
of two parallel strings and leave the study of arbitrary
geoxnetries to the next section. The problem then reduces
to the study of two coplanar vortices. Because different
values of b imply quite distinct field configurations we

will analyze the cases of critical coupling (b = 1), type II
(b ( 1) and type I vortices (b ) 1) separately.

A. The case 6 = 1

E~~g = g dSnyn2 m~Kp maori Ko m~r2 e„-e,

+mal~i(mArl)I~i(mAr2)es ' es ]

liii I 1~2 I [+»~o(msri) V~, Ko(msr2) ev ' ev,

+ms Ko (msri) Ko (msr2)].

Higher order terms will be much smaller due to the fact
that the fields themselves are exponentially decreasing.
Moreover, their contribution is of the order of the approx-
imation involved in adopting the superposition ansatz for
the two-string field configuration.

To integrate (21) we first note that e, .e, is indepen-
dent of the point on the plane. Then, using the fact that
the modified Bessel functions of order zero satisfy

(V' —m ) Ko(mr) = 2mb(r)—(22)

in two dixnensions, we can write

In view of the approximate field solutions obtained in
Sec. II and the expressions for the interaction energy
(19) and (20) derived in Sec. II, this is the simplest
case to approach. In general there are two length scales
associated with each vortex. They are simply the inverse
classical masses for the gauge and scalar fields i.e., r~ ——

m& and rg ——m&, respectively. When the scalar Geld
acquires a nonzero expectation value ((p) -+ ~ q) both
fields become massive and the modified Bessel function
solutions for the fields constitute a good approximation.
This should happen for distances R, measured &om the
zero of the scalar Geld, such that R ) rg.

These approximate solutions tell us how the fields ap-
proach their asymptotic values, which in turn correspond
to the vacuum of the theory. At distances R larger than
r~ a vortex only perturbs the vacuum by effectively act-
ing as a source for the fields Q and f. The interaction
between two vortices, separated by a distance d ) 2r~
then reduces, in the Grst approximation, to the interac-
tion between these two fields. This picture can indeed be
obtained from (20) if we keep only the terms linear on
the fields of each vortex. Then we have
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2 Icfp [nin2Ko (m~d) —lni l ln2 lKo(msd)]

dSnin2 +0 mgf'2 V KP mgPy +m~Ky mgT1. E] mA. 72 t-g eg,
les

—lnill»l Ko(msr2)V„, Ko(msri) + V.,Ko(msri)V. ,Ko(msr2)e. , e., ' .

Now by noting that
I

for the scalar field, assuming y = rI —f, we obtain

V,Ko(mr) = —mKi(mr),
(24)

, +ol
(msr)2 ( (msr)4) (28)

ri d cos(0i)
V Ko(mrs) = —m Ki(mr2),

and that

ee, eg, ——e» e» ——Ty —d cos Oy

we see that the integral in (23) vanishes and the interac-
tion energy becomes exactly [7]

E; i(d) = 27I'g [ ln 2nK (0mAd) lnln2lKO(msd)]. (26)

This shows in particular that, in the limit of our ap-
proximations, two vortices at critical coupling are &ee.
This is equally true for a pair of parallel cosmic strings,
in agreement with well-known numerical results [9].

B. The case b & 1

Q = —ngKi(m~R) eR (27)

When this form is used in the Euler-Lagrange equation

Away Rom critical coupling the two length scales r~
and r~ become diB'erent and the fields are expected to
change accordingly. In the specific case when e2 ( A,

r~ will be larger than rg. These two lengths now define
a set of three coaxial cylinders, around the axis of the
string, where the fields may behave in quite a diferent
fashion. Essentially, for distances R larger than r~ or
smaller than rs the picture of the last subsection remains
qualitatively unchanged. Indeed, for R ( rs the fields
must vary substantially &om their values at the origin to
a value not too far from their asymptotic forms.

For R & r~, on the other hand, the scalar field should
be very close to its asymptotic value and consequently
will be a slowly varying function of r. Then both fields
will have acquired their classical masses. For this case
the computations of Sec. III(A) are certainly valid and
it follows that two vortices will repel and a pair vortex-
antivortex will attract, with magnitude given by (26).

The behavior in the intermediate region, however,
turns out to be the most interesting. There, R ) rg
and the fields are expected to acquire mass. This im-
plies, namely, that the modified Bessel function form for
Q holds. However, because m~R ( 1, the Bessel function
can be approximated by its small argument behavior

which is the solution for the global string, in the same
regime (R ) rs) [6].

It should now be clear that, as we take e2 ~ 0, this
intermediate region grows to fill all space (from R = rs
to infinity), and the global string behavior is fully recov-
ered. This is not very surprising, of course, since in this
limit the gauge Geld decouples &om the scalar field and
the Euler-Lagrange equation for the latter is that for the
theory exhibiting the global symmetry alone. What is
nevertheless quite interesting is that for an ensemble of
type II local strings to interact as in the global case they
simply need to lie at relative distances smaller than r~.

Let us now see in detail how this picture arises &om the
previous expressions for the interaction energy. The part
of the energy dependent on f can be integrated to give
a contribution which falls with at least, &, . Because

m4s dS

m~d & 1 this contribution will be small. On the other
hand, since the modified Bessel function of order 1 is
still a solution for the gauge field the computations of
Sec. III(A) referring to it will still hold. We then obtain,
keeping the terms on the gauge field only,

E(d) 27rg nin2Ko(mad) —2mvf nin2 ln(m~d), (29)

since m~R is small for R & r~. However, our assump-
tions about the nature of the fields leading to (29) were
only valid for R ) rs, whereas in (26) we implicitly took
it to be applicable in all space between the origins of
each vortex. We must, therefore subtract the energy cor-
responding to R & rg. We then get

E(d) —2m' nin2 [ln(m~d) —1n(moors)]

= —2vrg nin2 ln(msd). (30)

This expression is just what we would expect for the
global string, cf. [6], and ensures the consistency of the
arguments above. As is well known, this results in a
strong, infinite range, repulsive (attractive) force for a
vortex-vortex (vortex-antivortex) pair

We should keep in mind that this result is a direct conse-
quence of the value taken for kz, in Sec. II.

In the case of nonvanishing e, mz provides the natural
cutoK at large r.
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C. The case 5 & 1

In the preceding analysis we were able to compute esti-
mates for the interaction energy between vortices under a
few quite general assumptions. In particular we learned
that the proximity of the scalar Geld to its asymptotic
value (traduced in the criterion R ) rs) introduced a
fundamental qualitative change in the behavior of the
fields, allowing us to use the approximate solutions (7)
and (8) with some confidence. The case of type I vortices
is naturally characterized by the fact that r~ & rp. The
results for b = 1 for the interaction between two vortices
should in particular still be valid as long as their scalar
cores do not overlap, i.e. , for (d ) 2rs). Then, unlike
what happened when 6 ( 1, and because now m~ & mg
the scalar Geld contribution will dominate the energy.
Moreover, since the corresponding term in the interac-
tion energy (26) has no dependence on the sign of the
winding numbers this will always result on an attractive
force regardless of the actual nature of the two vortices
involved.

As may easily be anticipated we will run into a problem
when we try to estimate what happens in the intermedi-
ate region (r~ ( d ( rs). This can be explicitly shown if
we search for the behavior of the fields of a single vortex
in this region of space.

In fact, the way we derived the Bessel function behav-
ior of Q for large distances was to assume that p would
be close to g, so that the mass term in (6) would clearly
be the dominant one. This always holds provided that
R rg, and is thus certainly a good approximation for
the cases above.

If, on the other hand, R is small enough so that (y2-
g ) —g, and Q exhibits its short distance behavior,
then the solution of (3) becomes

E(")= 2~rl lnin21~0(msd) —2~v lnin21 ln(ms"),

(»)
where, again, we implicitly assumed that this regime was
present in the whole region between the two axes. We
should then remove the contribution &om the inner re-
gion where this does not apply. In the absence of another
length scale we can only subtract the energy arising &om
R ( r~. This, however, will result in an overestimate (in
absolute value) for the final result. We then obtain

E(R) = 2irq'~nin2~ ln(m~d).

This always gives rise to an attractive force, as expected.
At distances smaller than rg, the scalar cores of the two

strings will superimpose. This results in a field configu-
ration of winding number nq+n2 as the distance between
the zeros of the scalar Gelds vanishes. Such a transforma-
tion of the two string Geld configuration is accompanied
by the change in behavior between the modified and un-
modified Bessel functions solution for the scalar field of
Sec. II. This change is dictated by the nonlinearities in
the corresponding Euler-Lagrange equations which im-
plies the breakdown of the superposition ansatz. Close
to d = 0, however, it is known numerically [9] that the in-
teraction energy should become approximately constant,
signaling the fact that a type I string of higher wind-
ing number is a stable solution of the Euler-Lagrange
equations relative to its lower winding number isolated
constituents. (Alternatively, type II strings of higher
winding number are unstable with respect to decay into
strings of lower winding number. )

IV. INTERACTION BETWEEN TWO COSMIC
STRINGS: GENERAL GEOMETRY

But this is the behavior we expect for the scalar Geld
very close to the origin, independent, of any particular
value of the coupling constants.

However, we also note that as we progress towards
R = rs, f approaches g and the Bessel function behavior
(7), and (8) start being valid for Q and f, respectively.
When this happens, Q automatically assumes an expo-
nentially decreasing form since m~R is large but f should
still behave approximately logarithmically since mpR is
small. This should happen in a region where the dis-
tance to the string's axis is suKciently close to rp. Con-
sequently, and unlike what happened for type II strings,
this approximate behavior for the fields can only exist for
a thin region of space around a string. Its consequences
for the interaction energy between the two strings will
then only constitute a transient regime between its form
for large distances and the actual superposition of the
two vortices. Nevertheless we can compute what the cor-
responding interaction energy should be. Proceeding in
the same way as in Sec. III(B), but now only keeping the
contribution from the scalar field we obtain

In the previous section we analyzed how the value of
the ratio of the two coupling constants in the model b

changes the field configurations and derived the interac-
tion energy between two vortices, i.e., between a pair of
parallel strings, per unit length.

For a general network of cosmic strings we know [13j
that strings wiggle and bend, possibly on several scales,
and, in general, no two strings are parallel. We shall
expand upon this in the next section.

The assumption of parallel strings, however, conve-
niently allowed us some comfortable simplifications. Be-
cause each string is locally (i.e., for any element of in-
finitesimal length along it& axis) cylindrically symmetric
we could associate the natural frame for the second string
with that for the first simply by translating it by a dis-
tance d, within the same plane. This distance was then
automatically defined for all pairs of string elements and

Unlike cosmic strings, Aux lines in superconductors and vor-
tices in superHuids can be parallel. I or those cases the results
of Sec. III apply.
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the interaction energy for a piece of string due to the pres-
ence of the second is simply that for one element times
the length. For a general configuration of the two strings
both the distance and orientation. have to be specified for
each pair of elements. They will, therefore, weigh differ-
ently in the evaluation of the interaction energy between
two pieces of string of 6nite length.

To proceed further we have to assume that the local
cylindrical symmetry of the 6elds composing each string
is still, on some small enough length scale, preserved.
Such a scale must naturally be de6ned relative to the
length scales that characterize structure on the string and
typically must be of the order of the smallest of these.
Under this working assumption, to 6nd the interaction
energy for one string element we need only look for an
element of a second string intersecting the plane it de-
6nes. The natural kame for the element of the second
string will appear in the general case to have its origin at
a distance d but also to have been rotated so that it no
longer lies in the plane of the former. However, because

I

e„e„=cos(a) cos(p). (34)

This allows us to integrate the two terms in (23) to obtain

of its own local cylindrical symmetry, rotations around
its axis of symmetry leave it unchanged. This rotation
relative to the plane of the 6rst vortex is then generated
by two angles only. This can be seen in Fig. 1, where we
chose the x axis along the direction connecting the ori-
gins of the two vortices. The angles n and p parametrize
rotations around the x and y axes, respectively.

In order to be able to generalize the results of Sec. III
we must be able to understand how the change in orien-
tation of the two relative elements a6'ects the interaction
energy. This will result essentially in a change in the in-
ner products between the unit vectors for the directions
associated with the natural &arne of each string.

This change can be computed by rotating one of the
&ames around the x and y axes of Fig. l. We now see,
in particular, that e, - e„will simply have the form

t (d a 7) 2~9 [nln2KO(mAd) cos(a) cos(p) ln& I ln2 IKo(msd)]

dSnyn2 [V t Kp(m~r2) V' &Kp(m&rz) cos(a) cos(p) —Kz(m&rz) Kz(m&r2)es, .es, ]

—lni l ln2l [V,Ko(msr2) V„,Kp(msrq) —V, Ko(msrz) V„,Ko(msrz)e, e.,] (»)

The two residual terms inside the integral behave somewhat differently. In the case of that arising &om the scalar
field the change in variable of di6erentiation on the first exactly generates the inner product e, - e„,. Because both
these terms have opposite signs their sum vanishes.

Such is not the case for the corresponding terra in the gauge sector. There we have

(&2
ezra ez~ =

GP1
cos(a) cos(p) [x~(2:g —d) cos (p) + y~ cos (a) + xgzg cos(a) cos(p) sin(p)

~1~2
—

%gyes slI1(a) slI1(p) cos(p) + yyzy slIl(a) cos (a)],
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FIG. 1. A schematic

example of a two-string
con6gur ation and of the
relevant quantities neces-
sary to compute the cor-
responding interaction en-
ergy.
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which must be compared to

es, . es, = (cos(n) cos(p) [x&(zi —d) + y, ] + zizi cos (cr) sin(p)
1 2 2

rlr2
—xiyi sin(n) cos(cr) sin(p) + yizi sin(a) cos(p)). (37)

In both the above expressions we took a rotation by p after a rotation by o..
These two terms do not cancel in general. Rewriting (35) we finally obtain

E& s(d cs p) = 2rrrP(nonsICo(mcd) cos(cs)cos(p) —
~

)n~ o~nICs( omd)s] — f dSncnsV, ICo(mnrs)sr, ICo(mnrc)

(38)

We see that the interaction energy is essentially given
by the two first terms. In the limit of vanishing o. and p
the residual contribution in the integral effectively goes
to zero with the sine squared of the angles, in agreement
with the results of Sec. III.

Expression (38) stresses the quite different nature of
the two contributions to the interaction energy. The
vector-like character of the gauge Geld introduces a de-
pendence on the relative orientation between the two
strings. In particular we see that if one of the strings is
rotated by m the corresponding interaction energy term
changes sign. This is equivalent to changing the nature
of a vortex into an antivortex or vice versa and results
&om the geometric nature of the winding number. The
term arising &om the scalar field is, in contrast, insen-
sitive to any particular configuration for the two-string
system, as could naturally be anticipated.

It also becomes clear that critical coupling (b = 1),
for an arbitrary geometric configuration, ceases to be the
special case when the interactions between strings vanish
since the angular dependence on o. and p destroys the
balance between the gauge and scalar terms in the energy.

All expressions derived above concern elements of
string with infinitesimal length, resulting &om the inte-
gration of the interaction energy functional on the plane.
To obtain the interaction energy for two segments of
string of Gnite length one then has to integrate over a
series of planes perpendicular to one of the strings. In
particular, every time the string bends so that any of
its elements will lie at an angle larger than 2 it is ex-
pected to experience self-interactions. This is always the
case for closed loops of string which contain part of the
energy arising &om self-interactions, in addition to their
tension.

The expressions derived above allow us to compute an-
alytically the interactions for a variety of configurations.
Let us consider two simple examples.

For a circular loop of large enough diameter D (D )
2rs as always) it is straightforward to compute its self-
energy. It is simply

E„)g(D) = E(D),

E;„,~ [Ko(mr) —Ko(mr, )], (4o)

where

r2 ——QD2 + r2 + 2Dr cos(8).

Now, in the limit of small diameter compared to distance(( 1 and for the strong type II small loops of string,
when Dmdt cos(8) ( 1, we can series expand the Bessei
function to obtain

where E(D) is given by expression (26), taken in the
appropriate limit, for a parallel string-antistring pair

Ag — A2
Another interesting case is to compute the interaction

energy due to a circular loop of string, in the limit when
the distance to a test string segment is much larger than
the loop's diameter. Then, see Fig. 2, the interactions
are essentially due to a dipole of string segments. The
corresponding interaction energy is proportional to the
sum of the Bessel functions coming &om the gauge and
scalar field contributions. In particular for the contribu-
tion &om the former we will have

D2 D
Kp mr 1 + + 2—cos(8) Kp(mr) [I + m D cos(8)] —mD cos(8) ——sin (8)Ki(mr)r2 r r (42)

The energy can then approximately be written as

If the string's tension is defined to be the energy/unit length for an infinite straight string.
Here we have neglected the contribution from the scalar field and took the winding number of the test string segment to be

one. It is also assumed to lie in a plane parallel to that of the loop.
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I FIG. 2. The field as measured by an ob-
server away from a circular string loop.

E;„q 2xq n
~

mD cos(8) ——sin (8) Ei(mr) —m D cos (8)Ko(mr)
~

.D 2 2 2 (43)

This expression has two diferent limits depending on the relative value of m& and r. If m~r is large then we can
take the asymptotic forms for the Bessel functions at large arguments (9) to obtain

Z. , = 2xg e ""
~

m~D cos(8) —sin (8)——m&D cos (8) ~

.
2m~r

)r

(44)

If, on the other hand, r ( m& ( extreme type II case), we can use the form of the Bessel functions for small arguments
to obtain

D. ,E„q 2vrrP m~D
~

cos(8) ——sin (8)
~r 7%~P

+ m„D'cos (8) ln(m~r)

We see in particular that in this latter case the leading
order term in (45) coincides with the usual —potential
for a pointlike Geld source in three dimensions. A small
loop of (quasi)global string thus behaves efFectively as a
monopole when seen at sufficiently large distances.

V. STRING FORMATION AND STRING FORCES

In simulations of string production (e.g. , see [14]) P
Geld phases are laid down at random in a space divided
into correlation volumes within which the P field phase
is held approximately constant. In these circumstances
strings with winding number ~n~ = 1 are produced at
high density. The laboratory production [15] of string
defects in super6uid He has suggested that this model
is plausible [16], at least for the nonrelativistic vortices
of the global U(l) Ginzberg-Landau theory.

In addition to the role string interactions have in de-
termining the outcome of string collisions they may af-
fect the early string evolution if, as expected, strings are
produced at sufficiently high density. In the remainder of
this paper we shall examine the e6'ect of interstring forces
in a newly created, and approximately static, ensemble
of strings. In this section we shall investigate whether,
with only attractive forces, type I strings can exist at

high d.ensity. This is not a question of how two strings
of lower winding number combine to form a string with
higher winding number, since we expect strings, of what-
ever type, to appear as a tangled mess. However, we shall
return to this point later. To see how type I strings could
exist we adopt a classical toy model possessing some of
the characteristics of real strings, in which the eEect of
attractive forces is more transparent.

Cosmic strings are produced at phase transitions in
the grand unified theory (GUT) era but, nominally in-
dependent of this, it is known that thermodynamic en-
sembles of classical string naturally display transitions.
Most naively, if cosmic strings are treated as noninteract-
ing Nambu-Goto strings with modes of arbitrarily high
frequency they undergo what particle physicists term a
Hagedorn transition [17]. In this section we take this clas-
sical transition seriously, but we shaQ be more realistic by
treating classical strings more as polymers. These again
show transitions but, unlike the fundamental Nambu-
Goto strings, permit the inclusion of string forces at low
densities.

The comments that follow are a straightforward exten-
sion of earlier work of ours on global strings [18]. Since
they are somewhat speculative a detailed recreation of
these earlier results is inappropriate, and the reader is
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referred to the literature, particularly the extensive work
of Kleinert [19].

Strings produced in the way indicated above behave
like random walks of high density [20]. It is well known
that an ensemble of noninteracting randoxn walks at tem-
perature T = P i, step length a, can be described by a
dual field theory of a &ee complex field y(x) [21]. The
"loop field" g(x) has the action (Hamiltonian) [19,21]

S = d2; V'y + M (46)

where

(e —Ts)
GT

(47)

dx —(V ~ A) + —m~A +
~
(V+ ifA) y~2

+I"7&l'+ M'IXI' (48)

where m~ 0, and f = O(P2e) is the dimensionless
coupling strength. M is as before.

We have seen that, in this case, there is no nonori-
entable force at short distance that would be the conse-
quence of an explicit g~y~ term in (48). However, such

And at which all energy goes into the production of a single
string.

The coupling f should not be confused with the field f(z)
of Sec. II.

in which e is the string energy/unit length and s
O(a i) is the entropy/unit length. The vanishing of M2
at e = T8 defines a Hagedorn transition at T = T~,
at which string is produced copiously. For T & TH the
theory is unstable.

This is already enough to indicate why, even if the
string formation mechanism naturally generated strings
with higher winding number ~n~ ) 1, the thermal energy
would be sufficient to unpeel them to ]n~ = 1 strings. The
problem is akin to that of adhesion in macromolecules.
As a Grst step we adopt the simplifying assumption that,
once separated from a string of higher winding number,
]n~ = 1 strings experience no forces. A straightforward
extension [22] of the work of Wiegel [23] shows that, pro-
vided the energy required to split an n = 2 string into
two n = 1 strings is less than the cost of creating the
string, the Hagedorn transition survives at the saxne tem-
perature T~. Moreover, there is a temperature range
To ( T & TH in which the separation into n = 1 strings
is total. We shall not consider the problem of higher
winding number further.

The forces between the strings modify (46). Orientable
forces are characterized by a dual vector field A. It is not
possible to mimic our cosmic strings exactly. However,
for a strong type II theory of static strings at low density,
a plausible dual Geld theory that correctly describes the
long-range forces between strings is given by an action
[18,19]

a term is induced by the A field. At its simplest, a one-
loop approximation to the effective density potential in
which the A field is integrated over in (48) gives

V(p) =I p+ ST / gk lnLk ~ m& ~ 2f pi (49)

In (49) we have identified the dimensionful string density
p = L/V, the length/volume, with ]y~2 [21]. Expanding
the logarithm generates all powers of p.

Now consider b )) 1. Then m&, which characterizes
the range of the orientable force, becomes small. The
string forces are largely the consequence of the nonori-
entable second term in (38), with larger (but still finite)
range m& . In this regime the dual gauge field can al-
most be neglected, whereas the attractive nature of the
nonorientable force can be described by the inclusion in
(48) of a g~g~ term (or gp term) with g negative. The
stability of the system will be expected to be preserved
by the existence of a h]y]s (or hp ) term that, for a three-
dixnensional theory, is possible but usually irrelevant near
the phase transition. As b decreases the magnitude of the
negative p~ term decreases until a value of b is reached
at which it cancels the p2 effects. The dual theory is at
a tricritical point above which (for negative p2 terin) it
displays a first-order transition in p, as temperature T
(and hence M2 and its corrections) is varied. There is no
a priori reason why this should occur at b = 1 exactly, al-
though that is the value at which there are no attractive
forces. (However, in a lattice model for superconductors
it has been argued that the p term vanishes for b 1
[19].) Whatever the details, type I strings can coexist at
nonzero density.

VI. STRING FORMATION FROM QUANTUM
FLUCTUATIONS

The main reason for halting our analysis of the dual
theory is not so much its incompleteness as the fact that,
initially, cosmic string production arises from quantum
fIuctuations at the phase transition possessed by the un-
derlying local U(1) field theory. Without reference to
string, in approximate thermal equilibrium, the theory
displays a second-order transition at the temperature
T, = O(g) if b « l. On the other hand, for b )) 1
it is reliably expected to display a first-order transition.
This accords with our terminology of type II and type
I strings, respectively. Yet again, there is no reason to
believe that the transition changes from second to first
order exactly at b = 1.

Whatever the case, in quantuxn Geld theory there can-
not be a Hagedorn transition, with its characteristic max-
imum temperature. Rather, there is a critical tempera-
ture T, above which the U(1) symmetry is restored and
strings cannot occur. In thermal equilibrium at temper-
ature T, this is best seen by working in Euclidean time,
in which the fields are periodic with period P = T
Provided T is larger than the mass scales the "heavy"
(n g 0) modes in the Fourier series can be integrated
out, to give an effective three-dimensional theory derived
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from (1), with the action [24,25]

PSe = f de —(V A A) + —
~

(%+eel) 4(
1 . 2

4 2

—-m'(T) I+I' + —I+I'
2 8

+terms containing Ao(x) + counterterms, (50)

where Ao(x) is the temporal component of the "light"
(n = 0) mode component of the gauge-A field, and

Ag2 C T2
(51)

is the effective scalar mass of the theory.
There are two points to note about the action (51).

Firstly, when Ao —— 0, it is extremized by the same
(static) vortex solutions as was the action based upon
(1), but for the fact that the Higgs boson xnass is tem-
perature dependent. The second is that the Higgs po-
tential in (51) shows a second-order transition, prior to
integrating over the gauge Geld A. , whatever the value of
b. A first-order transition can only occur for b )) 1 as a
consequence of gauge-Geld radiative corrections.

Returning to the Grst point, for a type II theory we
could use the "classical" solutions to (51) as the basis of
a dual Geld theory, as in the previous section. This would
now be a dual theory in the more usual sense of the word
[19],a rewriting of the original quantum theory in terms
of its excitations. The instability of this t,heory is, in the
Grst instance, characterized again by the vanishing of

entable forces is strong enough. Calculations have been
performed [22] that extend the work of [18] to include the
temperature dependence of the xnass m(T) and the cou-
pling strength f for strings with short-range orientable
forces. They show that, should a first-order transition
occur, it too will be buried in the Ginzburg temperature
range. The effect of this is that the string density can be
very much lower (e.g. , a factor 10 s) than we would have
had otherwise. Such a low density is unlikely to have any
problems for stability.

As a final comment, it might be argued that the use
of static networks, even initially, is inappropriate. How-

ever, the difference between an ensemble of static strings
and an ensemble of relativistic strings, while present, is
not as much as might be thought. For example, rel-
ativistic Nambu-Goto loops are described in terms of
right;-moving and left-xnoving modes. This doubling of
modes changes the power behavior of the prefactor to
the Hagedorn exponential in the counting of states, in
comparison to a static ensemble. ~ However, this change
is exactly cancelled by integrating over the loop center-
of-mass xnomenta, which effectively makes their centers
of mass static. In the same sense, the time-independent
action (51), if used as a basis for string saddle points,
would give rise to zero-frequency modes that could be
interpreted as center-of-mass loop dynamics.

Of course, we have been very simplistic in our neglect
of quantum fIuctuations about the strings. This has been
considered elsewhere (last reference, [18]) and does not
derail our conclusions to date. However, it does com-
pound our inability to be quantitative with the dual the-
ory.

M=e —Ts, (52)
VII. CONCLUSIONS

except that e and a, the step length, are now expressed

in terms of m(T). With e = 0( &~ l) and s = O(m(T))
the condition 0 = 0 becomes "&&&

——const [24], or

T2

C

This is the Ginzburg criterion for the onset of large Huc-
tuations in the vicinity of T„at which (51) becomes an
unreliable basis for calculation. Thus, the Hagedorn tran-
sition of the previous section becoxnes subsumed in the
conventional phase transition for the quantuxn field and
there is no dichotomy. The high string density in the
naive Kibble xnechanism [20] is coxnmensurate with the
high density at the Hagedorn transition.

For type I strings the situation is more complicated. A
priori the Kibble mechanism does not discriminate be-
tween type I and type II strings, producing a high ini-
tial density that may not be compatible with the density
after the tricritical point. A pointer comes from a naive
model for dislocation melting in solids, based upon action
Sxx [26]. Surprisingly, the "quantum" Quctuations of the
A-field in (48) can indeed induce a first-order transition
in the order parameter p if the coupling f of the ori-

We have shown how the interaction energy for U(1)
cosmic strings depends on the parameter space of the
model as well as on the relative orientations of two inter-
acting strings.

One of the crucial assumptions in all simulations of the
evolution of networks of cosmic strings is that they in-
tercommute in all cases. This property, however, should
depend both on the topology of the problem which en-
sures the exchange of ends of the two strings and is model
independent, but also on the dynamics of the system un-
der the effect of its interactions.

Our analysis reveals that type I strings experience at-
tractive and, in the limit where the contribution from
the gauge sector is negligible, nonorientable interactions.
This is corroborated by several numerical studies and im-
plies that in the absence of a strong effect at the super-
position of their scalar cores two such strings will form a

There is no contradiction in type-II strings having a first
order transition once the strength of the string forces can be
chosen arbitrarily, and are not fixed by the underlying Beld
theory.

It is this power which determines critical indices.
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bound state of higher winding number, at a sufficiently
low energy collision and for small relative angles. Such
higher winding number states are well known to be sta-
ble. A more detailed study concerning this problem is
presented elsewhere [27], where we attempt to quantify
the circumstances in which such configurations may oc-
cur.

Type I strings are especially interesting for scenarios
of thermal string production after a period of in8ation,
since the critical temperature associated with the phase
transition is lowered by taking b )) 1 [29]. If the inter-
commuting of type I strings could be shown to be very in-
eKcient such scenarios would have to be ruled out on the
grounds of being cosmologically unacceptable. The most
likely effect of the interactions, however, would probably
be that of modifying the evolution parameters of a net-
work of strings to some extent without jeopardizing the
approach to a scaling regime [27].

Type II, global, and critically coupled strings in our
picture would intercommute. This is absolutely consis-
tent with several numerical studies [6,28].

Finally, the knowledge of explicit forms for the inter-
action energy of strings is a crucial element for the con-
struction of a realistic statistical description of strings,

as well as of vortices away from critical coupling. In
the last sections we have indicated, through the methods
of a dual field theory, how strings with attractive forces
do not destabilize the initial string network. Further,
we see why b = 1 ceases to be critical once arbitrary
string orientations are taken into account. Of course,
strings produced by Quctuations have to be &ozen in by
subsequent out-of-equilibrium development, and this has
been omitted &om our discussion. The whole mechanism
of string production &om a quantum theory, both with
and without initial approximate thermal equilibrium, is
considered elsewhere [30]. Nonetheless, the mechanisms
proposed by Kibble [I] for string production from ffuctu-
ations, &om which we have been quoting, seem substan-
tially correct.
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