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OPE's and the dilaton P function for the two-dimensional N = 1
supersymmetric nonlinear cr model
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Using the superspace formalism, we compute, for the two-dimensional N = 1 supersymmetric
nonlinear o model, the order (n') (R „„~) (three-loop) correction to the central charge via the
operator product expansion of the supercurrent with itself. The contribution vanishes, in agreement
with previous results obtained from the usual cr model P-function appraoch.

PACS number(s): 11.25.Hf, 11.10.Kh, 11.30.Pb

I. INTRODUCTION

Two-dimeiisional superconformal field theory (SCFT)
has proven to be a useful means for investigating the rela-
tionship between supersymmetric nonlinear o. models and
superstrings in background fields. Conformal invariance
is necessary for consistent string propagation in a curved
background, and this effectively forces the P functions
of the corresponding cr model to be zero. The equations
P = 0 so obtained can then be identified as the equations
of motion of the background fields —the metric G;s (A ),
the antisymmetric tensor B;s(X), and the dilaton 4(A).
The results of string computations have been found to be
in agreement with those &om o-model calculations [1—3].

Prom SCFT we get expressions for the operator prod-
uct expansion (OPE) of two operators. It is possible to
use these OPE's as an alternative means of obtaining
the 0-model P functions, instead of using the standard
renormalization-group procedures. Specifically, the ex-
pectation value (J(z)J(z')), where the operator J is the
supercurrent, can be computed perturbatively for the o
model. Once computed, (J(z)J(z')) can be compared
with the result of J(z)J(z') &om the operator product
expansion. Calculations of this type have been done for

the bosonic o model [4], and for the N = 1 supersymmet-
ric case (to one-loop order for P;. and PP~, and to two-loop

order for P@) [5]. In these calculations, additional terms

appear in the perturbation expansion of (J(z)J(z')) that
do not exist in the OPE for J(z)J(z'). These extra terms
can be observed to be essentially the P functions of the
~ model and when set to zero for consistency with the
OPE's, yield the background equations of motion for the

superstring Belds.
In this paper we apply this alternate method of com-

puting the P functions to the N = 1 supersymmetric cr

model (for the case B;~ =0), by examin. g (J(z)J(z')) at
three loops for extra contributions to the central charge
of the form (R;est), where R;z st is the backgrou. nd Rie-

mann tensor. Terms of this form appear at two loops
for the bosonic o model when the metric P function is

computed using the usual approach, but they do not ap-

II. ACTION, OPE, AND THE BACKGROUND
FIELD EXPANSION

The use of OPE's for obtaining the supersymmetric
o-model P functions was first presented in [5]. From su-

perconformal Beld theory, the supercurrent J+ = must
satisfy the OPE

J+ =(z)J+ =(z') -
~s + —

~2 J+ =(Z)

1 D+ J+ = (Z)
2 S~

+finite terms, (2.1)

pear in the supersymmetric case [6—10]. This makes the
OPE calculation of particular interest. We would like
to use the OPE method to obtain PP~ directly, and thus
determine whether or not there are any new two-loop cor-
rections. However, corrections to the central charge are
given by P@, and &om the usual o-model P-function re-

sults, P, bP ( + )/hG, i, where L is the number of
loops. Because the OPE generates quite a large number
of two-loop diagrams that contribute to PP~, we coinpute

instead contributions to P at three loops (&om a con-
siderably smaller set of diagrams), of the form (R z~)2.
These terms are the ones which could lead to new con-
tributions to P,. of the form R;" Rist . From previ-
ous calculations [6—10], the contribution from the extra
(R,.~i,~)2 terms is expected to be zero and the result of
our calculation indicates that this is indeed the case.

The paper is organized as follows In Sec. II, we give
the action of the N = 1 supersymmetric nonlinear o.

model, the OPE for the supercurrent with itself, and the
background field expansions for both of them. Section
III discusses the calculation of the three-loop correction
to the central charge. Our notation and conventions are
those of [11]and are listed in the Appendix, along with a
discussion of the techniques used and a sample diagram
computation. Details of the calculation can be found in

[121
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where S~ = x~ —x'~ —i0+0'+ is the supersymmetric
coordinate difference, A+ = 2(0 —0')+, the midpoint is

Z = ( 2 (x+x') +,
z (8+0')+), and c is the central charge.

0556-2821/95/51{4)/1831(5)/$06. 00 51 1831 1995 The American Physical Society



1832 MARCIA E. WEHLAU 51
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4mn'

I

+—R('4(X) I,2
(2.2)

where Bg are the supergravity covariant derivatives, the
superfield B( ) is the scalar curvature of the 2D world
sheet, and E is the superdeterminant of the inverse
superzweibein. The supercurrent J+ = is defined to be

The procedure we follow now is just as in the previous
bosonic [4] and supersymmetric cases [5]—calculate the
expectation value (J+ =(z)J+ =(z')), and demand that
(2.1) hold true.

We start with the action for the nonlinear 0 model
coupled to two-dimensional (2D) supergravity

(2.3)

0+ = is the supergravity gauge field, and the supercur-
rent is the variation of the action with respect to this
field. We find

J+ = ———,[G,~(X).BgX'D+X'
n'—BgD+4 (X)] . (2.4)

We use the background field method [13] as it applies
to superfields to perform the perturbative expansion of
(J+ =(z)J+ =(z')). This involves expanding the action
and the supercurrent in terms of Riemann normal co-
ordinates (' on the background manifold. The relevant
expansions are

BgX = BgX~ + Vg(' + sR't~„(Xa)BgXQ('( + i2D~R't~„(X~)( ( ( BgXa

+ so D~ Dt, R't~„(Xgg) BgXQ( ("('( —
4s R'~t pR" trnra (XB)BQXQ('("('( +

D+X~ = D+X~ + V'+(' + sR't~„(Xp)D+Xz( ( + i2D~ R'lrnn (XB)D+XQ( ('(
+ so D, Dt,R't~„(Xz)D+Xz('( ( ( —,', R', t r R"—t~„(Xa)D+XI7('("('(

G;~(X) = G;~(Xp) — sR» (tX i)i("(' — DtR;~—~t, (Xa)('( ("

+ [ 6Dt —Dt—R'min(Xa) + ", Rt„t"Rm—'np(Xa)]("('( ("+ .
5'f

(2.5)

4'(X) = 4(Xgy) + D;4'(X~)('+ 2D;D, 4(Xg)('p .+.. .

where the background covariant derivatives are

and

&~( = Bg('+l',*,(X )(*B X'

V+(' = D+('+ r;.,(X~)('D,X",

and Xa is the background field. The expansions of the action and the supercurrent (where the subscript & has been
dropped) are

g G. . X D + Q +2+2G. .D

+G,,V (*7' (~+R;,t,tD X'D X~(".('
+-,'R', D-X'& ('("('+ —,'R'. t t& ('& ('('("+.") (2.6)

1J+= ———,fG;, BgX'D+X' + G;~D+X'V. 'g(' + G;~BOX'V+('
27t (X

+G;)V+('Vg(' + R;t,('( D+X'BgX' + .sR;~t,tV+('V'g('(~("
+2R;t „BgX"7'+('('( + sR;t „D+X"V g('('(

n'[D;D, CD+X'V g—(' + D,D, @BOX'V+(~.
+D,@V'gV'+('+ 2D;D~@V'gV+(('( ) + . .]) . (2.7)
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Following the standard procedure, we refer ( to the
tangent frames on the manifold, ( = E (', so that (
is the quantum field used in the calculation and V'

D ( + cu, &D. X'(, where u,.b is the spin connection.

III. THE THREE-LOOP CORRECTION
TO THE CENTRAL CHARCE

&'-~ = s Rug D+('D (( (' . -
The supercurrent term is

J = G,dBg('D+( + sR i„g('("c)g( D+(

(3 1)

(3.2)

We calculate the order (n') (R i, g) contributions to
the central charge, and these involve three-loop graphs.
A priori we expect the result to be zero because as men-
tioned previously, we know that the usual method of cal-
culating P, indicates that it receives no two-loop correc-
tions in the supersymmetric case.

It turns out that the expansions given previously in
Sec. II are sufFicient to generate the four different types of
graphs that yield (R i„q) contributions We. isolate be-
low the relevant interaction vertices from the Lagrangian
and the supercurrent that make up these graphs.

The Lagrangian term is

v together) by applying the equation

D"D+ 6 (u, v) = —2vro, 'b( ) (u —v), (3 4)

where A(u, v) is understood to be suitably defined by a
cutoff p, whenever this equation is used.

The four types of graphs that contribute to the
(R~s,g) term in the central charge are shown in Fig. 1.
All the graphs yield contributions of the general form

S~3~s R,(,i)(R". "'[G(z, z') + G(z, z') ], (3.5)

where G(z, z') = ln(S~S=) = ln S~ + ln S=, formally
The perturbation expansion of (J+=(z)J+=(z')) gen-

erates large numbers of specific contributions for the four
types of graphs shown in Fig. 1. Initially there are over
300 different permutations of the derivatives for the four
graphs, but many of these can be shown to be zero by D
algebra, or because %+A+ = 0, or are discarded because
they give contributions involving G(0). Tables of the rel-
evant diagrams and their associated contributions can be
found in [12]. A sample calculation of one of the graphs
of type (d) is given in the Appendix.

Combining all the separate contributions for the vari-
ous types of graphs gives diagrams of type (a),

I 2

R (&,)~R '"[4G(z, z') + 4G(z, z')'], (3 6)
The diagrams are evaluated entirely in coordinate space
using propagators G(z, z'). We recall that a conserved
quantity such as the supercurrent should not receive any
renormalization counterterms. In the one-loop case [4,5],
all the divergences that did not cancel out between di-
agrams could be isolated into a tadpole integral, G(0).
This G(0) divergence canceled out of both sides of (2.1)
for the supercurrent because, although it appeared in
(JJ) on the left-hand side of the OPE, it also appeared
in (J) on the right. Because we expect that ultimately
the supercurrent should be finite, we evaluate the graphs
in such a way that we keep only the finite pieces, while
noting that all the divergent terms we discard are of the
form G(0), or b(0)G(0). However, we do not explicitly
check this, and likewise we do not explicitly show that
contributions from the connection terms cancel among
themselves. The latter was verified in the bosonic and
one-loop supersymmetric cases, and is expected to be
generally true. We used standard superspace techniques
[11]in the actual calculation of the diagrams, paying par-
ticular attention when doing the D algebra to the fact
that one is not computing an effective action here, but
an OPE. Because of the structure of the OPE, the paints
z and z' are not integrated over, and this means that one
cannot push D's past those points on the diagrams.

The superspace propagator in coordinate space is

A(z, z') = (*(z)('(z')
= —2n'8" ln(S~S=)
= —-o.'b" G(z, z') (3.3)

diagrams of type (b),
I 2

9 256~2 S» R (~,)~R
'

[—8G(z, z') —8G(z, z') ],
(3.7)

diagrams of type (c),

I 2

9 256~2 8~3 R~(i„)gR '
[
—8G(z, z') + 8G(z, z') ],

(3.8)

and diagrams of type (d),

(a)

(c) (d)

FIG. 1. Diagrams contributing to the central charge.
Crosses denote supercurrent vertices while dots denote inter-
action vertices.

and in doing the D algebra we eliminate propagators from
the diagrams (thus bringing two superspace points u and
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I 2

9 256~2 S~3R (s,)gR '"[12G(z,z') —4G(z, z') ] . (3.9)

By summing the above four terms, we obtain the com-
plete result, which is zero as expected. Therefore we find
that there are no additional corrections to P; of the form
R;" R~i, i because there are no (R;~i,i) corrections to

4

D =c pD~ —+D+ ——e +D = —D

and

D =e +D+ =D+,

D =2D D =2(D+D++D D )=D D+ ——D D+

IV. CONCLUSION
(D, Dp) = 2iB p w (D+, D ) = 0, (D+, D+) = 2iOg,

We have used results &om superconformal field theory
involving operator product expansions to obtain infor-
mation about the P functions of the N = 1 supersym-
metric nonlinear 0 model. In particular, by computing
the operator product expansion of the supercurrent with
itself, we identified terms of the form (n') (R,~qi) that
might contribute to the central charge, and hence give a
new contribution to the dilaton P function at three loops.
However, when all the terms are summed, the complete
result is found to be zero, in agreement with results ob-
tained previously using standard methods.

(D, D ) = 2iB—

(D )2 = = 0 B~ = —p if iB ~ p

e'= —,'e-e. =e e = e-e+,

D D+ ———D+D = iBgD+

D2D = —D D2 =iB D
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In the actual computation of the diagrams, we only
need terms with the derivatives (Bg, D+) acting on prop-
agators, and so we can eH'ectively drop the ln S= term in
the propagator, G = ln S~S=. We need the identities

D+S~ = i(8 —8')+ = i%+ = D+ S~,

B~G(z, z') = = —8~ G(z, z'),

APPENDIX A

(1,1) superspace is four-dimensional space that is
parametrized by two commuting coordinates x (a
0, 1), and two anticommuting coordinates 0 (a = 1, 2).
We use a one-component spinor notation (+, —) in which
+(—) corresponds to the +2 (—2) helicity representa-
tion. The spinor coordinates are denoted by e+ and e
and the light-cone components of x are

(~0+*') and *= = — (*' —z') .
2 2

Our conventions are those of [11],but in (+, —) nota-
tion; the superspace derivatives become

iA+
D+G(z, z') = = D+ (z, z'),

B~ G(z, z')B~ —— , D+G(z, z')D+ =

Graphs of the kind shown in Fig. 1(d) are the most
complicated. They involve integration over two vertices,
u and v. We calculate the diagram in Fig. 2 as an exam-
ple.

Dg = (Bg, 8 , D+, D ), —

where

8
D+ —— + ie+t9g and D = + ie

Z'
+

We use the expressions listed below, which can be ob-
tained from those in [11] by carefully replacing a spinor
index a with + or —,and a vector index a (or a pair of
spinor indices nP) by g or =: FIG. 2. Sample diagram for D algebra.
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Figure 2 gives

2R;(.„),R' "' d d B~G, D D"G, D"G, D G, 0~ G, ' D"D G

Using (3.4) to integrate over u and then integrating the D" by parts gives

2R (,~),R""'Dx Dx G(z, z') J d v B~D" G(z, v)DxG(z', v)8~G(v, z')G(z', v)

= 2R, ( I,)xR*x"' d v( —i)D+h(z —v)D+ G(z', v)B~ G(v, z')G(z', v) .

Now ere integrate oK the D+ and. then do the v integration to get

2R, (~ x) x
R'x"' d vib(z —v) (—i)D+D+ G(z', v) B~ G(v, z') G(z', v)

= 2R;(xI )xR'x"' i b(z —v) ( i)D+D+—G(z', z) B~ G(z, z') G(z', z)

= 2R, (~I,)xR'~"' G(z, z')(xoverall factors) .
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