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Starting with the Euclidean generating functional of QCD we construct a generalization of the
Nambu —Jona-Lasinio model, taking into account the homogeneous background gluon field, which
ensures an analytical quark confinement. Colorless modes are determined by the confined gluons and
are described by the nonlocal quark currents with appropriate radial and angular quantum numbers.
The effective Lagrangian for the local meson fields corresponds to ultraviolet finite theory. The
spectrum of the radial and orbital excitations is asymptotically equidistant; i.e., it has a qualitatively
correct Regge behavior. It is found that in the heavy quark limit the mass of quarkonium tends to
be equal to the sum of the masses of the constituent quarks.

PACS number(s): 12.39.—x, 11.10.Lm, 12.38.Aw, 14.40.Gx

I. INTRODUCTION

It is now widely accepted that at low energies the com-
plicated structure of the QCD vacuum plays an impor-
tant role. Vacuum self-dual gluon Gelds such as instanton
solutions [1—4], stochastic fields [5], or the fields with a
constant strength [6—8] are widely used to explain vari-
ous features of low-energy hadron physics. On the other
hand, the Numbu —Jona-Lasinio (NJL) model [9—ll] gives
a mechanism of bosonization. Nonlocal extensions of the
NJL model provide qualitatively new possibilities to in-
vestigate the eKects associated with the quark structure
of hadrons [12].

In this paper we construct a kind of generalization of
the NJL model and show that both nonlocal quark inter-
action and color singlet currents arise naturally in QCD
with the homogeneous (anti-)self-dual background gluon
field.

As Leutwyler has shown, the (anti-)self-dual hoinoge-
neous gluon field provides an analytical quark confine-
ment [6]. It means that the quark propagator in the mo-
mentum representation is an entire analytical function.
There are no poles corresponding to free quarks. The sit-
uation with gluons is more complicated. There are modes
corresponding to &ee massless gluons, in addition to the
confined degrees of freedom of the gluon field. However,
one can determine the contribution of the confined gluon
modes to the propagator and investigate the sector of
QCD dynamics caused only by the confined gluons. This
sector of QCD manifests interesting properties which are
discussed below. In contrast with pure chromomagnetic
or chromoelectric configurations, self- and anti-self-dual
Gelds are stable in a sense that the effective potential
for these fields is a real function. Unfortunately, numer-
ous attempts to estimate the Geld strength, minimizing
the efFective potential, have not given definite results. A
general reason for this is quite clear: Phase transitions in
quantum Geld systems accompanied by the appearance
of nonzero vacuum fields occur out of the perturbation
region and their successful investigation is damped by a
lack of nonperturbative methods. At the present time,
the task of proving the existence of the vacuum Geld and

to estimate its strength, starting with first principles,
seems to be quite complicated.

We will follow another, in some sense phenomenolog-
ical, point of view. Namely, we suppose that a self- or.

anti-self-dual homogeneous gluon field realizes the QCD
vacuum at low energies and Gnd out the points in hadron
physics where this vacuum Geld can play an important
role. Our consideration is based on the bosonization pro-
cedure of the standard NJL model [9, 10]. At the same
time, taking into account the background Geld in both
the quark and gluon propagators requires an essential
modification of this procedure.

Starting with the Euclidean generating functional of
QCD with a background gluon field [2, 13] we construct
the color-singlet bilocal quark currents. Confined gluon
fields ensure a natural expansion of the bilocal quark cur-
rents over the nonlocal ones with appropriate radial and
orbital quantum numbers. An idea of such an expansion
was discussed in general form in [12]. The realization of
this idea implies the existence of a set of orthonormalized
functions. The particular form of these functions reflects
the specific physical peculiarities of the system. We show
that the homogeneous (anti-)self-dual vacuum field deter-
mines a quite definite set—generalized Laguerre polyno-
mials. As a result of the expansion, an interaction of
quarks is realized by the current-current terms in the ef-
fective Lagrangian; the currents are nonlocal and carry
radial and orbital quantum numbers. In contrast with
the nonrenormalizable local NJL model, our generaliza-
tion leads to effective four-fermion theory, which is su-
perrenormalizable due to the nonlocality of the currents.

By means of the standard N JL bosonization we get
a representation of a generating functional in terms of
local meson fields, interacting with nonlocal quark cur-
rents. These meson Gelds have a complete set of quantum
numbers including radial n and orbital 8 ones. Effective
meson theory is ultraviolet finite due to nonlocal meson
interactions. It should be noted that we use a represen-
tation for generating functional of QCD which implies an
averaging over some parameters of the background field
(for details see [2, 13]). In the case of an homogeneous
field we have to average over self- and anti-self-dual con-
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Ggurations and over directions of the field. Because of
this averaging the color, space rotation, and parity sym-
metries are restored at the hadron level.

Parametrization of the generalized model is quite nat-
ural. The quark masses, the four-fermion coupling con-
stant and the background Geld strength are the free pa-
rameters of the model.

We calculated the asymptotic behavior of the spectrum
of excited meson states in the cases E » n and n » E. It
turns out to be equidistant both over the radial n and or-
bital S quantum numbers; i.e., it has a qualitatively right
Regge character. Moreover, e8'ective meson-quark cou-
pling constants decrease very fast for large n, E. This sug-
gests that the higher-order corrections should not change
the above-stated. asymptotics, obtained at the lowest or-
der. Regge behavior is a consequence of the nonlocality
of the quark propagator and meson-quark vertices that

is conditioned by the presence of the background Geld.
Another asymptotic regime that is considered in the

paper is the limit of heavy quarks. It is found that the
mass of quarkonium in this limit tends to be equal to the
sum of the masses of constituent quarks: M ~ 2m~.

The paper is organized as follows. In Secs. II and
III we introduce all preliminary deGnitions and discuss
quark and gluon dynamics in the homogeneous back-
ground Geld. Collective modes induced by this back-
ground are considered in Sec. IV. Asymptotic behavior
of the spectrum of excited meson states is evaluated in
Sec. V. Heavy quarkonium is considered in Sec. VI.

II. EUCLIDEAN CENEH. ATING FUNCTIC)NAL

The generating functional for @CD with a background
gluon field B„in the Euclidean metrics is [14]

Z = II D&DdDZ d)A, Be]exp(f d x IQGD)x)+ Ice(x) ),

where

Nf

1iQCD — G G + ) qf Zp~ 7)d 7Df + gA P)dt qf
f

G„=B„A„+B —0 A„+B„+g A„+B„A +B

V ahab

A[A, B] is the Faddeev-Popov determinant. The gauge fixing term Is~ corresponds to the background gauge condi-
tion [14]. Dirac matrices are taken to be anti-Hermitian. The following notation is used:

V'„= 8„—igB„, B„=B„t, , V'„= 0„—igB'„, B„=B„C
where the matrices t and C are the generators of the color group SU, (3) in the fundamental and adjoint represen-
tations, so that

[ta tb] Jabctc . [~a gb] fabc~c (ga) fabc

The fields B obey the classical Yang-Mills equations. The functional (1) is invariant under the transformations

q(x) m e ' q(x), q(x) -+ q(x)e'

+ B ~ e-i-(-) ~ +B,'-(*) + e-i-(*)~ ei-(-)
P P P P p,

We will consider the last transformation as a background
gauge one [14]:

—2M (x)B i4P(x) + —icd (K) g ihcP (K)„—+e ~e P )
g

—i~(x) ~ i~(x)
P (3)

To make representation (1) correct a gauge-invariant reg-
ularization should be introduced and the Gelds, masses,
and coupling constant should be considered as the bare
ones.

Not only is the total action manifestly invariant under

background gauge transformations (2),(3), but its part
quadratic over the quantum Gelds q, q and A is invari-
ant also. Meanwhile, the vacuum conGguration with the
background field B (x) is not invariant under both color
and rotational groups. Prom the viewpoint of the op-
erator formalism of quantum Geld theory it means that
the initial and the transformed vacuum states belong to
unitary nonequivalent Hilbert spaces (see, e.g. , [15, 16]).
Such a situation corresponds to spontaneous breaking of
the color and rotational symmetries. A detailed discus-
sian of these problems for the case of the constant back-
ground field can be found in Ref. [8].
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The effective action, arising &om the generating func-
tion. al (1), is invariant under the rotational and gauge
group. Such a conclusion is proved rigorously within the
background field method, which can be applied directly
to representation (1) [14, 17]. Particularly, this suggests
that the vacuum energy (or the free energy of a system)
does not depend on the direction of the background 6eld
in color and x space. It means that the vacuum state
with a background 6eld, if it exists, would degenerate
with respect to space rotations and color gauge transfor-

mations. In order to take into account this fact one has
to average all physical amplitudes over the directions of
the background field. In the general case, one can say
that the vacuum field depends on a set of parameters
(0.„,). If the vacuum states corresponding to different
values of these parameters are degenerate, then all ob-
servable amplitudes must be averaged over (0„,). This
idea was first realized in Ref. [2] (see also [13]),where the
following representation for the generating functional (1)
was evaluated:

Ny OO

Z = % do. ,oqaqexp d x qy x ip„V'„—mf qf z + J
n=2

(4)

n
d gi ' d 9 j , Qi

~„(~) =A (~)&~t e (&).

The function |„""„"is the exact (up to the quark loops) n-point gluon Green function in the external field B„.
Below we shall specify the form of the measure der„, for an (anti-)self-dual field with a constant strength.

Representation (4) is a convenient starting point for the investigation of hadronization in QCD. We will be interested
in (qq) collective modes and consider the form of Eq. (4) truncated up to the term L2..

My 2
Z=N do, oqaqexp d x qy 2; ip„V'„—my qy 2; + — d xd y j 2:G „x,y B j„y

f
(5)

Representations (4) and (5) are manifestly invariant
under the gauge transformations (2) and (3).

The exact two-point Green function is unknown and a
suitable approximation should be introduced. The stan-
dard NJL model corresponds to the case

B„=0, G„' (x, y i 0) = 8„„b sb'(x —y) .

The inHuence of the background field was investigated
within the NJI, model in Ref. [11], where the homage-
neous background field was taken into account only in
the quark propagator, but the interaction was kept local.

We will approximate the two-point Green function in
Eq. (5) by a gluon propagator in an external field without
taking into account higher-order corrections. In other
words, our generalization of the NJL model consists in
taking into account the inHuence of the background field
on both the gluon and quark propagators. As soon as
the quark currents corresponding to such a generalization
are constructed, further steps in obtaining the effective
meson Lagrangian will be explicitly the same as in the
NJL model.

III. QIJAKKS AND CLU'DNS
IN THE SELF-jDUAL CLUON FIELD
~ITH A CONSTANT STB.ENCTH

A. Background Beld

The properties of the abave-stated background field
were discussed by many authors (e.g. , see [6, 7, 18, 19]).

We con6ne ourselves to the brief formulation of main
results. An homogeneous (anti-)self-dual gluon field has
the form

p, v = vga & pp pv = B ~p, v

1
B„v = —c„v~pB~p ——+B„v .

2

This field is a solution of the classical Yang-Mills equa-
tions [7]. The gauge-invariant quantity B,

B2 BcL Bcx
pv pv&

is the tension of the background field.
Any matrix n C SU, (3) can be reduced to the general

form

n = t cos(+ t sin(, 0 & ( ( 2vr, (7)

by an appropriate global gauge transformation. As soon
as the chromomagnetic H and chromoelectric E fields
relate to each other like H = +K for the (anti-)self-dual
configuration, one has only two spherical angles (0, p)
defining a direction of the fields in x space. Now we can
write down the explicit form of the measure do.

B„(x)= B„„x„=n B„„x,
where the vector n defines a direction in color space. The
constant tensor B„„satis6es the conditions
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f 1
do.„,= d8sing

47r 2 dg) (8)

where g+ denotes averaging over the self- and anti-self-
dual configurations, which are assumed to be equiproba-
ble.

The averaging over ( can be easily included into the
formalism described below. However, in this paper we
would like to investigate asymptotic regimes such as the
limits I. )) 1, n )) 1 (exited meson masses) or m~& )) B

(heavy quarkonium). These regimes are determined just
by the behavior of quark loops at large external momenta
that is conditioned by a character of nonlocality of the
quark and gluon propagators. Qualitatively the propa-
gators are the same functions for any ( in Eq. (7). An
averaging over directions of n [integration over ( in Eq.
(8)] does not change qualitatively the momentum behav-
ior of the quark loops. In order to simplify further cal-
culations and clarify the contribution of the background
field under consideration into forming the bound quark
systems we will omit the integral over ( in Eq. (8) and
fix the particular vector n = b, so that

==i'=d'-g ' ' -' B B =-t''B'b3' 3' 3

In the adjoint representation one has

Ks4 —— K4s ——K—7s — Ks7 —i, K = diag(0, 0, 0, 1, 1, 1, 1, 0) .

The rest of the elements of the matrix K are equal to
zero. It is convenient to define the mass scale A:

where we denote gB„—:B~-
The quark and gluon propagators satisfy the equations

A =v3B,
where the factor ~3 is introduced for calculation conve-
nience, so that

v v 1 2 4
BgpBpv — K ~ ~gv )4

(ip„w„—m, )S,(x, y l
B) = —b(~ —y)

(V' b„+4iB„)G„p(x,y l
B) = —b„~b(x —y) . (12)

fl 1 2lB„B = —v A b„, v =diag
I

—
l (10)i3 3 3)

It will be clear below that quantity A defines the scale of
confinement.

B. Quark and gluon propagators

The Lagrangian looks like (in Feunman gauge ( = 1)

I q~D + Lsf = B+—A„(V—' b—„„+4i B~„) A
g 2

+&f ('&v +i ™f ) &f + I'

Solutions of Eqs. (11) and (12) were considered in many
papers (e.g. , see [6, 18, 19]). The self-dual or anti-self-dual
configuration, obeying condition (6), is remarkable in the
sense that there are negative modes (negative eigenvalues
of the differential operators) neither in Eq. (11) nor in
Eq. (12). Zero modes are in Eq. (12) for the gluon
propagator, but they are absent in Eq. (11) unless the
quark masses are nonzero.

Equations (11) and (12) can be solved using the
Schwinger's proper time technique. We present the re-
sults, omitting the well-known details. The quark prop-
agator takes the form [13]

Bt(p I B) =
2

dte
vA (1+t) (14)

where [see also Eq. (6)]
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P~ = —(1 + ps), nt =, (xBy) = x„B„„y„,1 fDf
2 A

g8

(pfV) = ppf, -V-, fp- =
A, Bp- fppfp- = —4- .

The function Hf is the Fourier-transformed Ht., the diagonal matrix v is defined in Eq. (10). The upper (lower) sign
in the matrix P corresponds to the self-dual (anti-self-dual) field.

Let us introduce the variable p, = p„p„. The function Hy(p ] B) is an entire analytical function in the complex
p plane. This means that there are no poles corresponding to the &ee quarks. In other words, so-called analytical
quark confinement is manifest . The following asymptotical behavior takes place:

lf p M +oo i.e. p M oo

0{exp(2 "~, ) ) = 0( exp(2 PA, ) ) if p ~ +ioo, i.e. , p ~ —oo.

It should be remembered that the momentum p is considered in these formulas in Euclidean metrics. The behavior of
the function Hy(p

~
B) is defined by the scale A (tension B of the gluon vacuum field). In other words, the parameter

A defines a characteristic region of the variation of this function; i.e., it deBnes the scale of conBnement .
The solution of Eq. (12) for the gluon propagator can be represented in the form

G„ (tsxy
~
B) = eg ~ "'D ~(x —y ~

B)e ~ ~

D„„(z
~
B) =h„„((1—K )D(z

~
0)+K [D(z

~

A )+Dp(z
~

A )]j] +2i [f„„K] Di(z
~

A ),
(16)

(17)

A2 ds A2 z2 1 A2 z2

A2 A z
De(z

~

h ) = reg dsezp — cath(s)).4(4~)' 4

(18)

(19)

The term with the function Di is not important for our
further consideration.

The Fourier transform of the function D(z
~

A2) is
an entire analytical function in momentum space. This
function describes a propagation of the confined modes
of the gluon Belds.

One can see that not all degrees of &eedom of the gluon
field are confined. The term D(z~ 0), arising due to zero
eigenvalues of the matrix K [see Eq. (9)], corresponds to
&ee massless gluons. This is not an artifact of our choice
of the vector n but it is a general feature of the back-
ground Beld under consideration. The divergent integral
Do in Eq. (19) corresponds to the contribution of zero
modes. An appropriate regularization of Dq should be
introduced.

To Bnish this section we will note that an homogeneous
vacuum field modiBes the quark and gluon propagators

in the in&ared region. At the same time, the UV b ehav-
ior of the propagators has the same character as in the
case of a zero background field [see Eqs. (15), (18)]. This
modification has important consequences. The first one
is the analytical confinement of quarks and the existence
of confined modes of the gluon fields. Another remark-
able consequence is concerned with colorless collective
modes.

IV. COLLECTIVE MODES INDUCED BY THE
HOMOGENEOUS BACKGROUND FIELD

A. Color-singlet bilocal quark currents

Let us return to representation (5) and consider the
second term in the exponential. According to Eq. (16)
it can be rewritten in the form

2

d xd y( qg(x)Vpt [e& "
] qf (x))D (x —y ] B)(qf (y)p„[e "

] t qf (y)) . (20)

Using the identity

tg, [e '
] =[e ' t e' ]g, (~=(u C, ~=~ t ),

one can get

2

Lr2 d'x~'y( Qf (x, y)gpt Qf (x, y))D'„(x —y ( B)(Qf (y, x)y.t'Qf (y, x)&,
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where Qy(x, y) = e y~ "lqy(x), Qt(x, y) = qt(x)e2i
Then we make the Fierz transformation of the color, flavor (we consider Nf = 3) and Dirac matrices. Keeping only

the scalar J, pseudoscalar J, vector J, and axial-vector J colorless currents, we obtain the expression

g2 1Iz = —) f d'*d'yD". (*—y l
B)(b'be (I'.(zy)d'(yz) + I (zy)d (y, *))

a=0

—b (eb bze+b„eb —b„be ) I (z, y)d (y, z)+I "(z,y)de"(y, z) ). (21)

Before we deal with the currents, let us use the relations following &om the structure of the gluon propagator (17),

b h„„D'„„(z)= 16 D(z
i 0) + Do(z

i
A ) + D(z

i
A )

P b„b„+b„8„—8„„h D„' (z) = —8 D(z~0)+D()(z ~A )+D(z ~A )

to rewrite Eq. (21) in the form

2

z ) J ff d'«'yd'(z y)d'(y *) D(* —y l
o) + e(* —y l

A') + D(* —y l

A')
aJ

(22)

where

J (x, y) = qy(x)Mff, I' e'* "qy (y),
r'=i, r =i~, , I =~„, r" =~,~„,

1
&s = &~ = —,&v = &~ = —,9' 18' (23)

Path ordering is not necessary. One has, under the back-
ground transformation (3),

exp(i(xBy)) —+ e ' exp(i(xBy))e'

This ensures the invariance of currents (23) under color
transformations (2), (3).

M -flavor mixing matrices (a = 0, ..., 8) being equal to
the matrices A or their linear combinations.

The currents (23) are the scalars under color group
transformations (2) and (3). This becomes obvious if
one notices that

y
exp(z(zBy)) = exp( —i dz„B„(z)),

B. Nonlocal quark currents with
radial and orbital quantum numbers

Let us change variables in the integrals in Eq. (21):

xMx+ 2g ) gMx —~g.

where the path z„ is parametrized, for example, as

z„(t) = (1 —t)x„+ty„, 0 & t & 1 .
After this substitution the currents (23) can be repre-
sented in the form

1 1J (x, y) m J
~

x + -y, x ——y ~

= q(x)M I' e " * q(x),
2

'
2 )

~ ( 1 1J (y, x) -+ J
~

x —-y, x + -y
~

= q(x)M I' e y" ~ lq(x),2' 2)
where

The operators (7„and '(7„are the right and left covariant derivatives. The representation (22) takes the form

Iz =y ) C ff d zd yz(D(y ~0)+D (y ~A')+De(y~A )]
aJ

x qxM I' e'" ~ ~qx qxM I' e '"
~ ~qx (24)

The next step consists in integrating out the variable y in Eq. (24). It can be done by decomposition of the bilocal
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currents over some appropriate orthogonal set of polynomials. Prom a quantum mechanical viewpoint, this orthogonal
set provides a description of the radial and orbital excitations. The decomposition of the bilocal currents has the form

ne

f„" „,(y) = L„e(y )T„, „,(n, „) (n„= y/~yz) .

The irreducible tensors of the four-dimensional rotational group T„,...„, are orthogonal,

f led (&) 1 ek

Q 2' , Tpi gg (ny)Tv. va (ny) =, ~ 4xv, "4cvc2 8+1
and they are subjected to the conditions

(26)

Tpi. ..p" v" pc any) ——Tp, "v" p, "pc (~y) ~ +p".p - I c (ny) ——0,
(&) (&) (~)Tvi" pc(ny)+pi" pi(ny') = e+e ( yny') . (27)

The measure du in Eq. (26) relates to integration over

angles of the unit vector n„and Ce in Eq. (27) are(1) ~

Gegenbauer's (ultraspherical) polynomials. The polyno-
mials L„e(u) obey the condition

f «pe(u)L~e(u)L~~e(u) = ~nn' .
0

The weight function pe(u) has to be determined by the
terms in Eq. (24), arising from the gluon propagator.
The function D(y~A~) leads to the weight function

pe(u) = u'e —",
corresponding to the generalized Laguerre's polynomials
L~e(u). Other terms do not provide any possibility for
decomposition such as (25). In other words, such a situ-
ation suggests that only confined gluons [contributing to
D(y~A~)j provide the generation of bound states. At the
same time, it is the function D(y~Az) that accuinulates
the non-Abelian nature of gluons —their self-interaction.
This is the point where @CD difFers from quantum elec-
trodynamics essentially. As a result we have a mecha-
nism of the generation of bound states diferent from the
potential picture.

This is the reason why we will consider the part of Eq.
(24) concerning the confined gluon modes; i.e. , we will
deal with the function D(y~)A ), given in Eq. (18), and
omit the terms with D(z~0) and Do. In other words, only
the function D(y~A~) is responsible for (qq) bound state
formation.

The details of calculation of the currents J e, (x) in
Eq. (25) can be found in Appendix A. As a result we
obtain the following representation for L 2.

v Jl ( ) —v JI. + (+))vi" uc ~ ~
— vi "pc

Map J ~ T(&)

(31)

p„e(s) = (
—
) f dtt'+ exp ( st)"— (32)

The double brackets in Eq. (31) mean that the covariant
derivatives commute inside these brackets. The functions
I" e(s) are entire analytical functions in the complex s
plane; they obey the confinement condition. The rep-
resentation (28)—(31) is one of the main results of this
paper.

The vertex functions (31) have the following asymp-
totic behavior for large Euclidean momentum:

2 T(&)p pa pc"
Therefore, there is a single divergent diagram given
in Fig. 1. This divergency can be removed by the
counter-term —2J(x)TrVS inserted into the interaction
Lagrangian (28). After this renormalization we arrive at
a truncated approxiinate /CD functional:

- 2
~ = ),G~,„f d'x J„~'",(T)

aJEn
(28)

where

(c+ 1)
2ent(C+n)t ' (29) I'IG. 1. The divergent bubble diagram.
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Z = dovacDqDq exp d xd Qq x $ x p Jp q y + G d4x JaJtn x TrVa Jfn.J~.

The measure do„, is given by Eq. (8).
It should be remembered that the approximation con-

sists in the use of the gluon propagator in the form (16)
instead of the exact one. The truncation means that Eq.
(34) corresponds to the sector of QCD determined by the
two circumstances. First, we consider only a term I 2 in
Eq. (4). Second, we take into account only confined de-
grees of &eedom of the gluon GeMs associated with the
function D(y~A ) in the gluon propagator.

Representation (34),(29)—(31) manifests the following
main properties. The quarks are conGned due to the
background field. The nonlocal quark currents (30) are
invariant under transformations (2),(3); i.e. , they are
color singlets. These currents have a suitable set of quan-
tum numbers including the radial n and orbital 8 ones.
The efFective theory determined by Eqs. (34) and (29)—
(31) is UV finite due to the nonlocality of the vertex
(31). This suggests that all counterterms contained in
the initial representation (1) should be related to the
part of the QCD dynamics which was omitted within the
above-mentioned truncation. To simplify our notation we
will not introduce a special notation for the renormalized
quantities. Below the quark fields, their masses my and

the gauge coupling constant g [see Eq. (29)J are con-
sidered as renormalized ones. These renormalized quark
masses my, constant g, and the scale A are the parame-
ters of the efFective theory, defined in Eqs. (32)—(34).

The tensors T„,...„, contained in the currents J„
realize the irreducible representations of the group O(4)
of rotations in four-dimensional Euclidean space. This
point leads to the question, is there any possibility to
interpret the number E as the Minkowski space O(3) an-
gular momentum'? An answer can be formulated in terms
of collective mesonlike variables.

C. Local mesonlike Belds

Now we show how the Lagrangian describing bosonic
fields arises. Starting with representation (34), one can
introduce the local mesonlike fields by means of the stan-
dard bosonization procedure. The exponential with the
term I2 is represented in the form of the functional in-
tegral over Bose fields like

Z = N do. ,DqDq D(p exp — d xd gqy x S~ x g 8 qy g

4
- A2

+ dx — y "xp "x +0 p "x 'J "x —TrV "8 (35)

where we introduced the condensed index

r. —:(JEn), p =—(pi. pr) .

After integration over the quark fields Eq. (35) takes the form

z=xj
der, Erin 1 —G„y„"x V„" x S x, y B

4
A2

Dp„"exp — do. , d x p„" x y„" x —G„p„"x TrV„"S

(36)

Below we restrict ourselves to the one-loop approximation. The integral over do'„, in Eq. (36) has been transferred
to the exponential that is accurate at the one-loop level and suitable for our nearest purposes.

The fields y " in Eq. (36) look like the auxiliary ones. We have to find conditions providing an interpretation of
y " as the physical Gelds. These conditions can be obtained by considering the part of the action quadratic in Gelds
y„". Expanding the logarithm in Eq. (36) we get the quadratic part in the form

I2 ———— d xd yp„"(x) A'b„,„h(x —y) + |"'„ll„"„',"(z —y) p„", (y),
2

where
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(*—p) = f4~:.T (V;"(*)P(*,p l

II)V„"(p)P(p, *)II)) .

Because of the asymptotics (33), the polarization operator (38) is UV finite and can be computed. In the momentum
representation it has the structure

11 """(p)= 4.~; "~~ ~;II-(p) + P;", (p)

where the nondiagonal part P„"„,can be represented as

P, , ()= ', ~ ~ ', ~,'P ( )+ +, , ', P ( ). (40)

I et us write the Euler-I agrange equations for the fields P "(p), which minimize the quadratic (free) part of the action
(37) (in the momentum representation):

A 8„,„+G„II„"„',"(p) (p„", (p) = 0 . (41)

The Euclidean momentum p in Eq. (41) is arbitrary. Since we have neglected the interaction between the fields,
Eqs. (41) should be considered as the equations of motion for the &ee fields. This interpretation is self-consistent if
there exist the values p = —m „ in the physical Minkowski region for which Eqs. (41) are reduced to the standard
Klein-Gordon form. Therefore, we have to demand that the following relation must be realized for p ~ —m „:

A'b„,„+G'„II„"„',"(p) (p„", (p) = 0 p'+ m'„g„"(p) = 0, (42)

where m „are some unknow'n masses of the fields (p ". Taking into account Eqs. (39) and (40) one can represent
Eqs. (41) in the limit p -+ —m „as

4-G4II'„(—m „)(p +m „)4„„4-G„II (p*))tp„", (p) = 0, (44)

II~„(p2) = II „(p2) —II „(—m2„) —II'„(—m2„)(p2+ m2„) = O((p2+ m2„)2),

II'.„(-m..'„)= ",II.„(p') l„, (44)

One can see that the requirement (42) leads to the conditions

A +G„II„(—m„)=0,
p~, P;", „, , (p)l~ =--:.=o.

(45)
(46)

Equations (45) define the masses m „of the fields. The on-shell conditions (46) exclude nonphysical degrees of
freedom of the fields and treat the quantuin number E as the Minkowski space O(3) angular momentum.

Changing the field variables like

(p„" -+ O'„" = G„ IF „(—m2„)p„"

and taking into account condition (45) we get the following representation for the generating functional (36):
1Z=N D4 ex.p — d xd y4 x —m „bx —y —h „II x —y 4 y +I1nt 4

are

d4

1 4 4—) — d xi . d x h „„„C„"„""(xg)I'„',""„'-"-(xi, . . . , x ), (48)
m=3

~ & ~

A:=1

I'„'""„-' -(2:,, . . . , x ) = do .Tr(V„,'"'(x, )S(T&,x2
~

II) . V -" (x )P(z, xz
~ H)) . (49)
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One can see that terms linear in fields 4„"have not ap-
peared in the action (48) due to counterterms in Eq. (34)
related to the diagram in Fig. 1. The constants

h „=1/ II'„(—rn2„) (50)

play the role of the effective coupling constants of the
meson-quark interaction. The relation (50) between
meson-quark coupling constants and polarization opera-
tor of the meson fields agrees with the compositeness con-
dition in quantum field theory [20]. There is no explicit
dependence on the coupling constant G„ in the represen-
tation (47)—(49). This constant enters into the formalism
only through Eq. (45) for the spectrum.

According to representation (47)—(49) the meson-
meson interaction is described. by the vertex functions
I' given in Eq. (49). They are UV Bnite and can be com-
puted. The averaging over do. , has to restore the parity
and space rotation symmetries in the vertices I', i.e., at
the hadron level.

Pree parameters, defining effective meson theory (45)—
(49), have a clear physical meaning. They are the quark
masses my, the confinement scale A (strength of the back-
ground Beld), and the gauge coupling constant g. The
last one appears only in Eq. (45) defining the meson
masses.

The generating functional (47) satisfies all require-
ments of nonlocal quantum field theory [21]. Particularly,
this functional leads to the unitary S matrix.

It should be noted that obtaining effective meson the-
ory (47) from the @CD functional integral (4) proceeds

V. ASYMPTOTIC SPECTRUM

A. Approximation of the polarization operator

Here we consider the solutions of Eq. (45),

+Gse II e ( mse )=0
subject to the condition

m2se »A2, if n»l(or/»n) .

(51)

(52)

For the sake of simplicity we take J = S. The function
II sg is defined as

diagII„, ".„,„,...„,(k) = 8„,„, b~, „,II~se„(1" ) . (53)

Equation (53) is the diagonal part (in the momentum
space) of the tensor:

through a series of drastic approximations: elimination
of the terms I in Eq. (4) for n & 2, taking into account
the confined part of the gluon propagator (16) instead
of the exact one (unknown), one-loop approximation in
Eq. (45) for the spectrum, and some others. We are
compelled "to force a way through jungle. " At the same
time, the approximations reHect the usual problems ac-
companying attempts to find a link between @CD and
low-energy effective quark models. We hope that further
investigations will clarify the status of these approxima-
tions.

„;.'.".„„.... ., ]x —e) = J ~...T {&;,'. .'."„,]x)~(x, w
l
&)&:,'. .'..",]u)~]e, x

l &)) (54)

Therefore we have to determine this diagonal part.
It is convenient to do some approximations. The

asymptotics like (52) is defined by the behavior of the
quark propagator S and vertex V„,. „ in the region of
large Minkowski momenta. Hence we may omit the phase
factors [such as exp(i(xRy))] and use the approximation
[see Eqs. (13),(31)]

S(x, y i B) - H(x —y),

E g
—— dtt + — dop exp t —p

d4p
dop = exp —p (56)

1
H(p) =

1 2

ds he's —see Ip)] exp —
e s)2VA2

After some calculations (see Appendix B) we get the fol-

lowing asymptotic expression for II sg„.

yaSEn + yaSEn

2 (2n+ E)!2 3
fI {—es ss ) —A

'

exp —Is ss„)

(57)

x (g) 1 g x
(55)

where v = diag (1/3, 1/3, 2/3). It is convenient to use the
representations

where youse~ = m~se~/A. Only the factorial and expo-
nential over n and / factors are written in Eq. (57), since
only they determine the asymptotic behavior of the spec-
trum. I et us show this.
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B. Spectrum

Taking into account Eqs. (57), (29), and (51), we ob-
tain the equation

(2n + t')! 3,
(( + g)i52~+e p 4I asen (58)

Let us consider two limits.
n )) E. Equation (58) takes the form

3, (n!)',„65 i '"
exp p se4 - - (2.)!

coupling constant decreases like

52n+E
2

(2 + E)!2e 4 " 2e !( + l)!
This decrease of the coupling constant suggests that
higher-order corrections should hardly change the asymp-
totic relations (59), (60).

VI. MASS OF HEAVY QUARKONIUM

or

p se„———ln
~

—
~

n + O(inn) .8 (51
k2)

(59)

Another asymptotic regime that can be easily investi-
gated is the limit of heavy quarks. In this case one has
to solve Eq. (45):

E )& n. In this case we obtain, from Eq. (58), A + GzooII~zoo( M ):0 (61)

2exp —
passen

p se„———ln5E + O(ln/) .
3 (60)

One can see that Eqs. (59) and (60) manifest the equidis-
tant character of the meson spectrum both for large n
and I.. Comparing expression (60) with experimental
data [22] for Regge trajectories one obtains the estima-
tion A —700 MeV.

For a conclusion let us estimate the asymptotic behav-
ior of the meson-quark coupling constants de6ned by Eq.
(50). Using this formula and Eq. (57) we see that for
n )) 1 or E » 1 (hence p se )& 1) the meson-quark

supposing that both the quarkonium mass M and the
quark mass m~ are much greater than the confinement
scale A:

M)) A, m, )) A.

We can use the same approximation (54) for the vertex
functions, but it is necessary to take into account the fac-
tor [(1—s) /(1 1s)] ~ ~ " [see (13)] in the approximation
of the quark propagator, which is enough to keep lead-
ing terms throughout the calculation of the polarization
operator II goo( —M ).

Evaluating the integral over the loop momentum and
calculating the trace of the Dirac matrices we arrive at

1 1 M2 m2
IlaJOO( M ) ~ dtldt2 dsydS2 A(sl) s2~ tip t2) 2 + B(sly 82& tl) t2)

0 0 A2 ' ' ' A2

2sgs2 + v(tg + t2) (sg + s2) M
X exp

2v(tg + t2) + sg + s2 4vA
(1+ sg 1+ sg&

ln
/4vA (1 —sq 1 —s2) (62)

The particular form of the functions A ) 0 and B ) 0 is unimportant for the leading behavior of the integral at
M )) A and m~ )) A. These functions contribute to the next-to-leading terms only. The asymptotic behavior can be
found by the Laplace method. The exponential in Eq. (62) is maximal for

4m2
S1 ——S2 ——Sm~x = 1 —

)M2

so that

m2 (1+s
2vA2 (1 —s „jln

i

M2
II goo( —M ) —exp s

4vA2

1 1 M2
x dtqdt2 dsqds2 A(sq, s2, tq, t2) 2 + B(sq, s2, tq, t2)

0 0

X eXP — Fig Si Smax S& —Sm~x
2

(63)
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where E;~ is a positive deBnite matrix. One can notice
that sm~~ —+ 0 in the limit M + 4m . Therefore, in the

heavy quark limit Eq. (61) with II J00(—M ) given by
Eq. (63) has the asymptotic solution

m', l
M =4m 1+0 ln

i
for m~)) A.

mq

(64)

The number p in Eq. (64) depends on the particular form
of the functions A and B and defines the next-to-leading
term, while the leading behavior 4m is determined by
the exponential before the integral in Eq. (63).

Thus, we conclude that nonlocality of the quark and
gluon propagators arising from the background Beld un-
der consideration leads to a relation between the mass M
of quarkonium and constituent quark mass m~:

M —+ 2m' for mq )) A,

which agrees with accepted notions about heavy quarko-
nia.

(34)] with the nonlocal colorless quark currents having a
complete set of quantum numbers (including the orbital
and radial ones).

UV-Bnite efFective meson theory given by the generat-
ing functional (47).

The natural parametrization by the quark "masses"
my, tension of the background field B (A), and gauge
coupling constant g.

Asymptotically equidistant spectrum of the radial and
orbital excitations.

In the heavy quark limit the mass of quarkonium tends
to be equal to sum of the masses of constituent quarks
[see Eq. (64)].

Further investigation should be undertaken. to try to
describe the basic points of the low-energy meson phe-
nomenology. Our preliminary calculations of the pseu-
doscalar and vector meson masses as weH as the masses
of the excited states of vr, p, and K* mesons for real values
of E and n show satisfactory agreement with experimental
data (will be published elsewhere).
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APPENDIX A

Here we calculate the currents J„Je„(x) in Eq. (25).
To be accurate with the noncommutative covariant derivatives & in the currents, it is convenient to use the

completeness condition

~'(y —y') = ) 2'(&+ ~) +pe(y') pe(y")L e(y')L e(y")T~,' ~, (ny)T~, '
p, (ny )

7l g
(Al)

where the tensors T„, ~, (n„) are subject to conditions (27). The polynomials L e(u) obey the condition

"&pe(~)L e(u)L e(u) = 4, pe(u) = u'p(u) = u'e "
0

After the rescaling y—:y/2A and insertion of the h function in Eq. (24) one gets

d4x d yd y de(y —y') t)(e)M y e*"~( )y(e) t)(e)M I' e '" y(e))
4 4 p(y') p(y") 4

gy2yi2

(A2)

where &~=&„ /iA. Using the completeness condition (Al) we represent Eq. (A2) as

- 2
L2 ——g ) (—1) 2 (/+1)

a JEn

where

J„.'e"„,(~) = g(*)~ r'V„',".. .„,(~)g(~), (A4)
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&.',"..~, (*)= d~' .p(~')I- (~')T~, ' -( )"" '*'
0 Q 7T

(A5)

the measure dw corresponds to integration over the angles. Representation (A3)—(A5) can be reduced to a more
convenient and clear form. To make this, let us consider how the vertex operator (A5) acts. Using Eq. (A5) we can
easily get the result

4 4

fi(*)&„',".. .„,(*)f2(*)=,'e fl(pl) f2(p2)1„'",. . .„,(pi, p2)

I,'", ...„,(p~, p2) = d~', p(~')L-t(~')T ~ ~.(~)e'"'
p Q 2K

p„= 2B„„x + (pg —p2)„ /A,

where fq and f2 are the Fourier transforms of the functions fq and f2 Now. the quantity p is a c number and we can
use the relations

"""=) "2'(~+ l) ""'""" 'T'", ''. ( .)T'",''.(,)2 2
A:=0 v u

. .. , =).& a(p)L 1(u),

„, ,
' „,, (-;) f.

'"".-- (-'-;)
dc' (k) ~ eA:

Q 2' vi" vc (ny) ~i" ~a (~y) =
g

~ 4»i ' ' 4c~i2 1+1
to get the expression

At last, taking into account the equality

(A6)

exp(ip»j ". p( p.*)= p, exp(i*(pi+ p2))
-~. (*)-

iA

we conclude that Eq. (A3) can be represented in the form of Eq. (28).

APPENDIX B

Here we calculate the asymptotics of the polarization operator, keeping only the factorial and exponential over n
and E terms. Using formulas (54), (55), we obtain the expression

1 1

II„, "„. . . (T —y) Tr f dt's f da~da~ ( )
T() ~ „+„+,,„+

xH y —~ —((+~+~t,p+~i, q)/A ~, „=. .

dt, (t, t, )'+"

The sign Tr means the trace of the Dirac matrices and summation over all elements of the diagonal matrix ~ [see Eq.
(io)j.

Taking into account Eqs. (54), we integrate over the variables p and q, then perform the Fourier transformation,
and thus we get in the momentum representation

ir„,.'.".„,.. ., (k) - x'vr f dt, f dt, (t,t, )'+ f, x T„' "„,( )T.' ., ( )
k& — ( k&xII

I
q+

I

II
I

q I
exp( —(tq + t2)q + 2iq(&+ g)) lg=n=o2J & 2)

All variables in the integrand were made dimensionless by rescaling. Differentiation with respect to (, q, tq, and t2
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leads to the expression

1 1 4
fI„', ,'.".„,„,...„,(k) - A'T «i «2(tit. ) +",T,",' ~, (2q)T-'," - (2q)(q')'"

0 0-( k'l-(
xH

I
q+ —

I
II

I q ——
I
exp (—{ti+ t2)q')2) & 2)

Using the expression for II [Eqs. (55)] we obtain

1 1 1 1 4
fl (k) —A Tr dti dtz(titz) dsi dsz(1 —sisz) (q —k )T„,. .. , (2q)T„, ...„,(2q)

0 0 0 0
Pz ' Pi"

s, ( kl s2 ( kix (q')'" exp
I
q+ —

I

——
I q ——

I

—(ti + t2)q'
2v ( 2) 2v ( 2)

One can notice that the factor before k in the exponential is maximal for 81 ——82 ——l. Using this fact, one gets the
leading term for k —+ —oo in the form

4'v —' k~

4v

4" q (q')'" T„",'. . .„(q)T„",!., (q) exp{—q') .

Using Eq. {26),we integrate over the angles and then evaluate the integral over q . The result has the form

(2n+ E+ 1)!2 kz

Here Tr means summation over the elements of the matrix v. One can see that the leading terms arise from the values
vi ——v2 ——1/3. Thus we arrive at

-usen z z (2n+ I. + 1)!2 3II "(—m~,„)-—A, ,
'

exp —p se ),
where we substituted kz = —lzz&& ———mz&t /A2.
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