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Recently it was proposed to explain the dynamical origin of the entropy of a black hole by identify-
ing its dynamical degrees of freedom with the physical modes propagating in the black hole interior.
The present paper contains the further development of this approach. The no-boundary proposal
(analogous to the cosmological no-boundary wave function) is put forward for the pure quantum
state of a black hole. This is a functional on the configuration space of physical fields (including
the gravitational one) inhabiting the three-dimensional space of the Einstein-Rosen bridge topol-
ogy. For linearized Beld perturbations on the Schwarzschild-Kruskal background this no-boundary
wave function coincides with the Hartle-Hawking vacuum state. The invariant definition of interior
and exterior modes is proposed and the duality existing between them is discussed. The density
matrix p~ describing the internal state of a black hole is obtained by averaging over the exterior
modes. The "dynamical" entropy, determined by —Trp~ ln pH, is calculated. It is shown that the
one-loop contribution to the "dynamical" entropy calculated for a given black hole background is
divergent. The notion of an in8tant horizon is proposed, which separates the interior from the ex-
terior of the black hole. It is argued that quantum Quctuations of the instant horizon inherent in
the proposed formalism may give the necessary cutoff and provide a black hole with finite dynami-
cal entropy. The relation between the "dynamical" entropy and the standard Bekenstein-Hawking
("thermodynamical") entropy is briefiy discussed.

PACS number(s): 04.70.Dy, 04.60.Kz, 04.62.+v, 98.80.Hw

I. INTRODUCTION

According to the thermodynamical analogy in black
hole physics, the entropy of a black hole is proportional
to the surface area of a black hole [1,2]. The Hawking dis-
covery [3,4] of black hole thermal radiation confirmed the
status of thermal properties of a black hole and allowed
one to 6x the coefBcient of proportionality in the de6ni-
tion of the entropy The Bekenstein-Hawking entropy of
a black hole is S = A i(4/&2), where A is the area of
a black hole surface and. l~ ——m& ——G f' is the Planck
length. Four laws of black hole physics [5] show that a
black hole can be considered as a thermodynamical sys-
tem and its entropy plays essentially the same role as
the entropy in the "usual" physics, e.g. , it shows to what
extent the energy contained in a black hole can be used
to produce work. More exactly, for thermal equilibrium
of a black hole with the surrounding radiation the "ther-
modynamical" (Bekenstein-Hawking) entropy defines the
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response of the &ee energy of a black hole to the change
of the temperature.

The black hole entropy is shown in the general case
to be connected with the Noether charge associated with
the Killing horizon [6]. The generalized second law (i.e.,
the statement that the sum S = S + S of a black
hole entropy and the entropy S of the external matter
cannot decrease) implies that, in the case when a black
hole is part of a thermodynamical system, the thermody-
namical laws will be self-consistent only if the black hole
entropy is considered on an equal footing with the en-
tropy of the "usual" matter [1,2,7] (see also Refs. [8—11]
and references therein). The gedanken experiment pro-
posed by York [12] in which a black hole is located inside
a heated cavity gives a good example, showing that such
parameters of a black hole as a heat capacity and entropy
have a well-de6ned physical meaning.

The formal derivation of the thermal properties of a
black hole is usually performed in the &amework of the
Euclidean approach initiated by Gibbons and Hawking
[13,14]. It implies the existence of the thermodynamical
ensemble of black holes characterized by the canonical
partition function at finite temperature T = 1jP

Z(p) = T"-l'", (1.1)
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where H is the Hamiltonian of the full gravitational sys-
tem. The known functional representation of finite tem-
perature field theory in terms of the Euclidean quantum
theory, directly extrapolated to quantum gravity, allows
one to rewrite (1.1) as the Euclidean path integral over
four-geometries and matter fields. The evaluation of this
integral by the steepest descent method determines Z(P)
and, in particular, gives T = 1/(8z M). A refined version
of this approach which emphasizes the role of bound-
ary conditions was developed in Refs. [12,15—17]. In the
&amework of this approach the construction of the micro-
canonical partition function within the Lorentzian con-
text was analyzed and a revised issue of stability for the
gravitational ensemble at a given temperature and given
boundary quasilocal characteristics was given.

Although the Euclidean approach allows us to obtain
the same value for the black hole entropy as required by
the thermodynamical analogy, namely, the Bekenstein-
Hawking entropy, it does not elucidate a number of ques-
tions. Mainly this is a question of the origin of the
thermodynamical partition (1.1), which is assumed to be
given. In other words, it does not specify the physical
degrees of freedom inaccessible for observation for an ex-
ternal observer, their tracing out in the pure quantum
state of the whole gravitational system leading to the
loss of information, emergence of entropy, and the den-
sity matrix corresponding to (1.1). In particular, the
conventional Euclidean approach to gravitational ther-
modynamics simply does not leave room for a black hole
interior. The Hawking instanton, which gives the lead-
ing contribution in this approach, is described by the real
Euclidean section of the complex Schwarzschild geome-
try with the radial coordinate r taking values only greater
than the gravitational radius.

Despite some promising attempts [2,8,18,19,26], the
dynamical (statistical mechanical) origin of a black hole
entropy has not been well understood. According to the
"standard" interpretation, the entropy of a black hole is
considered as a logarithm of the number of distinct ways
that the hole might have been made [8,19]. This inter-
pretation is not satisfactory. Soon after the black hole
formation neither an external nor internal observer can
see or acct these states and hence it does not make sense
to interpret them as usual dynamical degrees of &eedom
which specify the state of the system at the chosen mo-
ment of time [27]. This conclusion was supported by the
gedanken experiment proposed in Ref. [23], in which a
traversible wormhole was used to get information about
the black hole interior.

The paper [19] by Thorne and Zurek also contains a
refined version of their statistical mechanical definition
of the entropy, according to which the entropy of a black
hole is defined as "the logarithm of the amount of infor-
mation that one loses when one 'stretches the horizon'
in the black-hole 'membrane formalism, ' to cover up its
thin thermal atmosphere. " According to this viewpoint,
the black hole entropy is only skin deep. Such a defi-
nition requires an additional procedure of the renormal-
ization of the entropy. But what is more important, the
states which contribute to the entropy do not exist at
a given moment of time, and in order to define the en-

tropy we need, according to this definition, to count all
the possibilities, during the lifetime of a black hole (or,
equivalently, the states along the stretched horizon).

In order to solve the problem of the dynamical origin
of the black hole entropy, York [26] proposed to identify
the dynamical degrees of &eedom of a black hole with its
quasinormal modes. But the entropy of the quasinormal
modes excited at a given moment of time is much smaller
than S = A~/(4lJ, ). In order to obtain the required
large value for the entropy, York proposed to sum over
all difFerent possibilities to excite quasinormal modes in
the process of a black hole evaporation.

't Hooft [20] proposed a "brick wall model" in which
the entropy of a black hole is identified with the entropy
of a thermal gas located outside a black hole and sup-
ported in equilibrium by a heated wall located at small
distance outside the horizon. The value of the gap pa-
rameter in this model is chosen by equating the entropy
of the gas outside the wall to the entropy of a black hole.
The relation of the "brick wall" model to the results ob-
tained &om the first principles remains unclear. Among
other approaches we mention an attempt to relate the
dynamical degrees of &eedom of a black hole with oscil-
lations of quantum membrane representing the horizon
[28], and an interesting relation of the black-hole entropy
with the probability of quantum production of pairs of
black holes by an external field [29].

Recently [30] a new approach to the problem of black
hole entropy was proposed. According to this approach
the dynamical degrees of &eedom of a black hole are iden-
tified with those modes of physical fields that are located
inside the horizon and cannot be seen by a distant ob-
server. It was shown that the main contribution to the
entropy is given by thermally excited "invisible" modes
propagating inside a black hole in the close vicinity of
the horizon. The so-defined one-loop entropy of a black
hole is formally divergent and requires a cutoff [32]. This
divergence is caused by a sharp boundary of the invisible
region and it arises already in the similar flat spacetime
calculations [35,36]. The natural cutoff may arise because
of the quantum fluctuations of the horizon. A calculation
based on a simple estimate of the horizon fluctuations [30]
yields a value of the entropy which is close to the usually
adopted value A+/(4l&~).

The calculations made in this (as well as in other dy-
namical approaches) assume the following steps: (1) def-
inition of the initial state of a black hole and specifying
the modes which are considered as degrees of &eedom of
a black hole; (2) calculation of the density matrix p de-
scribing a black hole by averaging over external degrees of
freedom; (3) calculation of the statistical mechanical (or
"dynamical" ) entropy —Trpln p. There are three impor-
tant problems which naturally arise in connection with
these calculations.

(1) How can one generalize the calculation of the en-
tropy in order to include the quantum fluctuations of the
horizon in a self-consistent way? (2) How can one com-
bine the developed approach with the calculations of the
black hole entropy based on the Euclidean space &ame-
work? (3) What is the relation of the obtained dynamical
entropy to the standard "thermodynamical" entropy by
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Bekenstein-Hawking?
In this paper we present an approach which might be

regarded as an attempt to 611 the gaps in the statistical-
mechanical foundation of black hole thermodynamics. It
consists of (i) the proposal for the pure quantum state of
the black hole, (ii) the invariant criterion for the separa-
tion of the dynamical degrees of freedom into observable
ones and those inaccessible for an exterior observer, and
(iii) the averaging over the latter variables, which leads to
the density matrix of a black hole and the dynamical ori-
gin of its entropy. We also brie8y discuss the relation of
the calculated dynamical entropy to the "thermodynam-
ical" entropy and make some comments on the recently
proposed idea [34] that the problem of entropy is related
to the renormalization of the gravitational constant.

II. DYNAMICAL DEGREES OF FREEDOM OF A
BLACK HOLE

The object we are interested in is a black hole which
arises as a result of the gravitational collapse. For sim-
plicity we assume that a black hole is nonrotating and
spherically symmetric. A Penrose diagram for such a
black hole is given in Fig. 1. Denote by Zo a spacelike
Cauchy surface which intersects the event horizon H+
and denote by BB the intersection BB = H+ 0 Zo. The
state of our system (a black hole and fields in its vicinity)
can be characterized by giving the values of gravitational
and other fields on the chosen surface Zo. It is evident
that the states of the gravitational and other 6elds lo-
cated inside BB have no in8uence on the future evolution
of the black hole exterior.

We assume that a black hole is stationary at late time

and denote by (t the Killing vector which is tiinelike at
infinity in the corresponding region. For states of parti-
cles and fields which fall at late time into the black hole
&om the exterior region, the energy E defined by means
of the Killing vector (t is always positive. (For a particleE—:—$&p„,where p" is its momentum. ) In addition to
these modes there exist also states with negative total
energy E & 0. Such states are located inside the black
hole at Zo and, in accordance with the definition pro-
posed in Ref. [30], they will be considered as the internal
degrees of freedom of a black hole [37].

It was shown in [30] that the main contribution to the
black hole entropy is given by the states located inside
the black hole in a close vicinity of the horizon. For
this reason only the part of the surface Zo close to the
horizon is really important for the entropy calculation.
But from a more general point of view the complete de-
scription of internal degrees of freedom of a black hole
is complicated in such an approach because, for exam-
ple, a surface Zo may cross the singularity. That is why
we develop another approach which greatly simpli6es the
consideration.

We begin with the remark that a lone black hole at late
time (i.e. , long after a black hole formation) is almost
stationary; i.e., its state can be described as a static ge-
ometry and small perturbations (fields excitation) prop-
agating on this background. One can formally put into
correspondence with such a "real" black hole a new "un-
physical" spacetime, which is obtained &om the original
geometry in late time region by its analytical continua-
tion. Such an analytical continuation of a static black
hole solution de6nes maximally extended solution which
is known as an eternal black hole. The parameters of the
eternal black hole (in our case mass, in more general cases
also angular momentum and charge) are the same as for
the initial "physical" black hole. We shall refer to such an
eternal black hole which corresponds in the above sense
to the "physical" black hole as to its "eternal version. "

The Penrose diagram for an eternal black hole is shown
in Fig. 2. If Zo is chosen at late time, one can also trace
back in time all the 6eld excitations present in the vicin-
ity of Zo so that the problem of specifying the states of
a black hole can be reformulated as an analogous prob-

FIG. I. This is a Penrose diagram of the forming black
hole. A spacelike Cauchy surface Zo goes from spatial in6nity
to the singularity at r = 0 and intersects the event horizon
H+ of the black hole at the two-dimensional surface BB.

FIG. 2. This is a Penrose diagram of the eternal black hole.
In Kruskal coordinates the global Cauchy surface Z is de6ned
by the equation U + V = 0. It has a wormhole topology
R x S . Both (future H+ and past H ) horizons consist of
two parts H++ and H+, the boundaries of B~.
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an approach can be generalized for the case when the
perturbations are not small.

Among all perturbations describing the propagation
of physical fields special role is played. by gravitational
perturbations. The corresponding initial data on the
Einstein-Rosen bridge can be considered either as tensor
field, or, equivalently, as small deformations of the ini-
tially spherical geometry of the Einstein-Rosen bridge.
In this sense one can relate difFerent configurations of
the gravitational fields in the system with deformations
of the Einstein-Rosen bridge, obeying the necessary con-
straints, existing in the theory. For physical excitations
with Gnite energy the condition of asymptotic flatness
at both in6nities of the Einstein-Rosen bridge should be
preserved. To summarize, in classical physics the space
of initial physical configurations of a system including a
black hole can be related to the space of "deformations"
of the Einstein-Rosen bridge of the eternal black hole and
possible configurations of other fields on it (in addition
to the gravitational one), which obey the constraints and
preserve asymptotic flatness. We use now this configura-
tion space to de6ne a wave function of a black hole.

Our main idea can be described as follows. Fix a three-
dimensional manifold with a wormhole topology R x S
and consider any three-dimensional metrics on it which
possess two asymptotically flat regions. Consider also the
con6guration of matter fields on this manifold. The space
of three-geometries and matter fields will be considered
as a configuration space for our problem. We introduce
a wave function of a black hole as a functional on this
configuration space. It should be stressed that the met-
ric and 6elds at the "internal" part Z of space are to
be considered as defining the internal state of a black
hole and hence they will be identi6ed with its dynamical
degrees of &eedom.

Our proposal for the quantum state of a black hole
is a "no-boundary" wave function of three-geometry and
matter fields on such a surface Z = R x S given by
the Euclidean path integral of Hartle and Hawking over
four-geometries and spacetime matter Gelds bounded by
Z and. four-dimensional asymptotically flat and empty
in6nity.

Obviously, the above picture is only an illustration of
the general method we shaH propose here. In the full
theory of quantum gravity incorporating the coupling
of matter with the gravitational field (what is usually
called a self-consistent back reaction of quantized mat-
ter on semiclassical background), many features of the
Schwarzschild solution do not persist. Generically there
are no symmetries and the very notion of the bifurcation
surface of the Killing horizon separating physical vari-
ables into observable and unobservable ones does not ex-
ist and should be dynamically determined on the ground
of some invariant criterion. In this paper we propose
such a criterion. It is based on the notion of instant
horizon of a black hole defined for instantaneous realiza-
tion of the Einstein-Rosen bridge. The instant horizon
is subject to quantuin fiuctuations (the horizon zitterbe-
i))egung) and is characterized by its quantum dispersion.
The latter quantity is very important in gravitational
thermodynamics [26], for it, apparently, provides a self-

consistent high energy cutofF for the one-loop entropy
[30].

We have to stress that the proposed no-boundary wave
function describes only one special state of a black hole
which in some sense is the simplest one. In many as-
pects the no-boundary wave function is similar to the
ground state of the system. The full quantum theory of
black holes must allow many diferent states. We are not
constructing here the full quantum theory. That is why
many fundamental questions remain unanswered. For
example, how the local observables calculated with the
help of our wave function are connected with the local ob-
servables in a spacetime of a real "physical" black hole.
For the particular calculations of the entropy of a black
hole, we explain later why the calculations based on the
no-boundary. wave function give the same answer as the
calculations done directly with physical black hole [30].

It should also be emphasized that the quantum state of
the black hole we advocate here is merely a proposal, and
we must verify its validity by comparing its consequences
with the known properties of the conventional gravita-
tional thermodynamics. For this purpose we Grst show
that, semiclassically, this state generates the black-hole
Hartle-Hawking vacuum [38] for the particle excitations
of all spins (including graviton) and produces by the pro-
cedure of the above type the thermal density matrix. with
the temperature T = 1/87rM.

III. NO-BOUNDARY %'AVE FUNCTION OF A
BLACK HOLE

The no-boundary wave function was first proposed
by Hartle and Hawking [39,40] in the context of quantum
cosmology as a path integral

@(g(~),~(~)) = f&'g &4 ~ "'" (3.1)

(3.2)

of the exponentiated gravitational action I[ g, P] over
Euclidean four-geometries and mat ter-Geld con6gura-
tions on a compact spacetime M with a boundary
OM. The integration variables are subject to the con-
ditions ( g(x), y(m)), m E BM, the collection of three-
geometry and boundary matter Gelds on BM, which are
just the argument of the wave function (3.1).

This construction was also applied. in the asymptot-
ically fiat case [41] when M represents a noncompact
four-dimensional half-space whose boundary consists of
two components, (9M = Rs U BM: infinite three-
dimensional hyperplane H carrying the Beld argument
of the wave function and the asymptotically flat and
empty in6nity BM . The latter is a singular compo-
nent of the spacetime boundary and its boundary condi-
tions are, in a certain sense, trivial and do not enter the
argument of the wave function.

We propose the quantum state of a black hole which is
a modification of this asymptotically flat, no-boundary
wave function of Hartle [41]. It is given by Eq. (3.1),
where the total boundary
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has instead of the hyperplane above the hypersurface
with the topology of the Einstein-Rosen bridge

Z=Rx S (3.3)

/
I

I
I

connecting two asymptotically flat three-dimensional
spaces [see Fig. 3(a)].

Quantum gravity and its path integral formulation
should, as is widely recognized, include the topology
change transitions. In the language of quantum states of
gravitating systems, this means that these states should
be determined not only on the space of three-geometries,
but also on the space of different topologies of the three-
dimensional spatial hypersurface. So the definition of
the quantum state of a black hole might also include
the non-simply-connected hypersurfaces with the topolo-
gies more complicated than that of the Einstein-Rosen
bridge, sharing in common only the asymptotically flat
behavior at infinities. One of the examples is shown in
Fig. 4, depicting the three-dimensional handle modify-
ing the Einstein-Rosen wormhole. Such topological mod-
ifications can play an important role in the problem of
gravitational entropy, loss of information, etc. , but at
present they are too far &om technical and conceptual
implementation, and we shall restrict ourselves to the
Einstein-Rosen case of the above type.

The construction (3.1)—(3.3) forms a topological part
of the definition for the no-boundary wave function.
Apart from that, the expression (3.1) signifies nothing
unless we specify the meaning of the integration mea-
sure 17 g17@. We also need to determine the physical
inner product with respect to which one can calculate
the expectation values and matrix elements for a given
wave function. In the context of the Lorentzian space-
time these problems have a solution which is based on the
quantization of true physical variables [42—44] and can
be constructively realized at least within the semiclassi-
cal loop expansion [45]. This quantization leads to the

5'i
l
@2) = f&v @((y) &'~(w), (3 5)

that provides the unitary dynamics of @(p) = 4(y, t)
with the physical Hamiltonian whose functional form
arises from the Arnowitt-Deser-Misner (ADM) reduction
(3.4) [48). For this reason, we shall formulate our pro-
posal (3.1)—(3.3) for the black hole wave function in the
representation of physical variables [49—51]. In this rep-
resentation the wave function of a black hole is given by
the path integral of the form (3.1), but with the physical
configuration coordinates (3.4) fixed at BM instead of
the three-metric components of the dynamically redun-
dant set ( g(m), p(a))

@(v) = f Dd ' "~'

(4lz =w)

(3.6)

standard Faddeev-Popov integration measure [46] in the
functional integral (3.1) and to its analogue in the phys-
ical inner product for the wave function 4( g(m), p(m))
in the representation of local spatial three-metric tensor
and matter fields. The measure in this physical inner
product is nontrivial. It is roughly the Faddeev-Popov
measure in the configuration space of fields taken on a
single spatial surface of the spacetime. The measure in-
corporates the gauge-fixing procedure and effectively re-
stricts the integration to the subset of true configuration-
sgace coordinates among the dynamically redundant set
( ~(*), ~(*)) l44, 45]:

'u(~) V (~) ~ ~ = (~ (~) ~() ). (3.4)

The geometrical content of the local gravitational vari-
ables can be very different, depending on the choice of
gauge, and it generally represents certain two dynami-
cally independent degrees of freedom g+(m) per spatial
point. They originate &om solving the gravitational con-
straints and imposed gauge conditions for the original
gravitational phase-space variables g(m), p(a) in terms
of g (m) and physical conjugated momenta pT(m) [47].

The wave function can be constructed directly in the
representation of physical variables (3.4), iII(p). In this
representation the physical inner product has a trivial
form

FIG. 4. Possible modification of the three-dimensional
topology in the definition of the no-boundary wave function of
a black hole accounting for topological transitions in quantum
gravity. t"p(~) = ~'(~) p-s(~) = o (3.7)

Here the integration goes over those spacetime histories
of physical ADM fields P = P(z) that generate the Eu-
clidean four-geometries asymptotically flat at the infin-
ity OM of spacetime and match p on its "dynamically
active" boundary (3.3). I[/] is the Lagrangian gravi-
tational action in terms of these fields. The integration
measure 'DP involves the local functional measure [51],
the structure of which is not very important for our pur-
poses.

As mentioned above, the nature of physical degrees of
&eedom depends on the choice of gauge in the ADM re-
duction procedure. To effectively operate with the phys-
ical wave function, we have to fix this gauge and perform
the reduction (3.4). Here we use a York gauge [53] which
consists of the condition
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selecting a spacetime foliation by minimal surfaces [of
vanishing mean extrinsic curvature trK(x) = 0], and
three other conditions fixing the coordinates on these
surfaces. A distinguished nature of this gauge consists
in the fact that, in contrast with a majority of other
gauges, it does not suffer &om the problem of Gribov
copies invalidating the physical reduction when the lat-
ter is considered globally in phase space of the theory
[52]. This property of the York gauge follows from a
strong theorein of [54] on the uniqueness of a solution of
the Lichnerowicz equation for the conformal factor in the
conformal decomposition of a three-metric [53] provided
positive-energy condition hol~s for matter fields.

As known [53,56], the physical degrees of freedom in
the York gauge can be represented by the two vari-
ables characterizing the conformally invariant part g i, (m)
of the three-metric (in some gauge fixing of the three-
dimensional spatial diffeomorphisms) and the conjugated
transverse traceless momenta p ~(e), while the conformal
mode 4(a) of the full three-metric,

(s.8)

follows &om the solution of the Lichnerowicz equation,
which is just the Hamiltonian gravitational constraint
rewritten in the conformal decomposition of the above
type,

(3.9)

(3.10)

(3.11)

In a semiclassical approximation the wave function of a
black hole

@(&)—P —1[4 (v )] (3.12)

is dominated by the classical action at the extremal of
equations of motion P(p) subject to boundary conditions
p on Z. It also includes the preexponential factor P ac-
cumulating the result of integration over quantum Geld
deviations &om the extremal. The physical variables y
given by Eqs. (3.4) and (3.11) are treated by pertur-
bations and the Euclidean action I[/(p) ] is to be ex-
panded in powers of p. To obtain the lowest order term
I[&((0)], notice that the boundary three-geometry on Z
(3.8) has, by virtue of (3.9), a conformal factor satisfy-
ing the linear homogeneous conformally inva -'-ant equa-
tion in three dimensions. As shown in Appendix A, for

Here T,* = 4 T,* is a conformally rescaled energy,
Hamiltonian density, of matter fields and tilde denotes
the quantities calculated in the conformal metric g i, (in
the geometrically invariant language, the physical con-
tent of g b can be described by the conformally invari-
ant transverse-traceless tensor of York [53] P ). In
the linearized approximation the physical gravitational
variables in the York gauge are the transverse-traceless
part of the linear excitations h b and their conjugated
transverse-traceless momenta [55]:

asymptotically Bat boundary conditions it gives exactly
the spherically symmetric metric of the Einstein-Rosen
bridge, characterized by a single constant —the mass M
of the black hole. The extremal of the Euclidean vac-
uum Einstein equations P(0) satisfies asymptotically fiat
boundary conditions at BM . The corresponding so-
lution is just one-half of the Schwarzschild gravitational
instanton of mass M with the four-dimensional metric
(2.8) for —2vrM & 7. ( 2vrM [see Fig. 3(b)]. The classical
action on this half of instanton reduces to the contribu-
tion of the surface term at BM of the classical Einstein
gravitational action

I[/(0)] = — K&hd 2: = 2vrM .
OM

(s.13)

The expansion of I[/(p) ] in powers of p on the back-
ground of P(0) shows that the linear order term vanishes
due to the equations of motion for the background and
the vanishing of the extrinsic curvature of Z (the lat-
ter property guarantees the absence of the corresponding
surface terms). Therefore the leading contribution to the
semiclassical wave function (3.12) takes the form

g ( M) P —z~M' —i, [y(~)] (3.14)

where I2[g(p) ] is a quadratic term of the action in the
linearized physical fields (3.4) and (3.11).

Thus, our no-boundary wave function of a black hole
turns out to be a functional of the local gravitational
and niatter degrees of freedom p(m), parametrized by a
global variable —the gravitational mass of the Einstein-
Rosen bridge M. Obviously, if we include M in the
configuration space of the black hole, the dependence
of the wave function on it will describe the probability
distribution of black holes with different Inasses in this
quantum state. A naive inclusion of M into the ADM
phase space of the theory in the York gauge does not
seem to be fully consistent. However, it was recently per-
formed in a more general context by Kuchar [57], who,
in the framework of a spherically symmetric minisuper-
space model, persuasively advocated that M has a con-
jugated momentum PM, so that (M, PM) can be sub-
ject to standard canonical quantization and can incorpo-
rate as their quantum state an arbitrary function of the
black-hole mass M. Thus, the proposed M-dependent
no-boundary wave function can be regarded as a first
example of such a quantum state of a black hole (or,
more precisely, of the quantum Einstein-Rosen bridge)
[58]. In what follows, however, we shall consider M as
an external parameter not entering the argument of the
wave function and, correspondingly, excluded from the
phase space and the Hilbert space of the theory. There-
fore, up to M-dependent normalization, the semiclassical
wave function of the black hole will be dominated by its
exp (—I2[P(rp) ]) part, describing the dynamics of local
degrees of &eedom. In the next section we show that
it represents their Hartle-Hawking vacuum on the back-
ground of the Schwarzschild-Kruskal geometry.

It should be emphasized, however, that even with the
global mass parameter M excluded from the Hilbert
space of the theory, the above construction describes
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the wave function of an eternal black hole, but not just
the quantum state of matter fields on the nondynami-
cal Schwarzschild-Kruskal background considered in Ref.
[59]. In particular, the semiclassical Gaussian approxi-
mation (3.14) includes the contribution of quantum grav-
itational perturbations in I2[$(&p) ] describing possible
distortions of a black hole. Technically, in this approxi-
mation, this wave function reduces to the case of Ref. [59]
(provided the latter includes the graviton contribution),
but the topological contents of our proposal as well as the
analysis of this section (and Appendix A) show that its
scope extends far beyond the quantum dynamics of mat-
ter fields on a fixed Schwarzschild-Kruskal background.
In particular, the I ichnerowicz equation (3.8) can be used
for the study of the back reaction phenomena and quan-
tum fiuctuations of the horizon (see discussion below).
We illustrated here the calculations of the no-boundary
wave function in the semiclassical approximation. But
certainly the proposed definition (3.6) is much more gen-
eral. For example, the functional-integral representation
for the no-boundary wave function in principle allows one
to develop perturbative calculations of higher order cor-
rections or to study nonperturbative eR'ects.

IV. NO-BOUNDARY WAVE FUNCTION OF
LINEARIZED FIELDS

1 ~4 1j2 pvg g + ~ 2 (4.1)

We show now that the no-boundary wave function
for linearized fields on the Schwarzschild-Kruskal back-
ground coincides with Hartle-Hawking vacuum state. For
this purpose we assume that the mass parameter M of
a black hole is fixed and consider only the y-dependent
part of the black hole wave function (3.14), which we de-
note by @(p). To siinplify the formulas we work out a
simple example of a scalar field P (2:) = P (7, e) with the
quadratic action

With this notation the solution to (4.2) can be written
as a decomposition,

in the basis functions of this equation

sinh [(Pp/4 p ~) (u]

sinh (Pp/2)
A = ((u, l, m, A).

ug g(~, m) =

(4.5)

This decomposition contains the set of spatial harmonics
R i ~(m) —eigenfunctions of the eigenvalue problem

g g t, +l A = —g g ~R~ ~u 4.6

originating &om the separation of variables in (4.2). The
eigenfunctions are enumerated by a set of continuous
~ ) 0 and discrete (t, m, A) labels, among which l and
m are the usual quantum numbers of spherical harmon-
ics and the label A = 1, 2 is responsible for two possi-
ble directions of propagation along the radial coordinate.
As shown in Appendix B, these spatial harmonics can
be chosen real. They are required to be regular at the
horizon r = 2M and at spatial infinity, have a positive
definite spectrum u ) 0 and satisfy the orthonormality
and completeness conditions

dsx g g'~zR), (a) Rp (m) = bye, (4.7)

) Rp(a) Rg(a') = h(~ —m')

g g
(4.8)

Here, as in (4.5), we use a condensed notation A for the
full collection of quantum numbers, the summation over
which implies the measure

4(~ ~) = ) (v'~, +~~.—(~, ~)+ v». -~~.+(~, ~) ], (4 4)

The generalization to fields of higher spins in the
quadratic approximation is obvious. The action (4.1)
generates on the Euclidean section (2.7) with the metric
(2.8) the linear equations of motion

) (. . )—:f d~) (. ),
A l, rn, A

~gg~ = ~(~ ~ ) ~tl'~nona'~AA. ' . (4.9)

E

1 2 w7—g'~'g-, —O.g'~'g'a~ T, ~ —0,
d7

=X a=1 2 3 (4.2)

In view of these relations the coefficients pp ~ in (4.4)
are just the decomposition coefficients of the fields (4.3)
in the basis of spatial harmonics

which must be solved subject to boundary conditions y =
rp (a:) on its boundary Z to give the extremal P(rp) of Eq.
(3.14). On the Schwarzschild-Kruskal background with
B = 0 the nonminimal interaction does not contribute to
the equations. In what follows we denote the boundary
fields on the two asymptotically flat components of the
Einstein-Rosen bridge Z~ by y~.

P (&):—P (+Pp/4, p') = p~(a), Pp = 87rM. (4.3)Z~

v+(~) = ).v i,+Ri(~). (4.10)

Substituting (4.4) into (4.1), integrating by parts with
respect to the Euclidean time and spatial coordinates and
taking into account the equations of motion (4.2), one
finds that the Euclidean action reduces to the following
quadratic form in yp ~ (cf. a similar derivation in Ref.
[59]):

1 ~ wp cosh(pp up/2) 2 2 2 cup
+*(v+,~-) =-, ) . „(p ),)

(v», ++a., ) — . „(p )2)
v. .+xi,-] (4.11)
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We show now that the functional

@(P+ &-) = &e»(—I2(&+ F )]— (4.12)

describes the Hartle-Hawking vacuum state [60] of the
ffeld P in the spacetime of the Schwarschild-Kruskal black
hole. The scheme of the proof is simple. First of all we
note that this functional is Gaussian. It is easy to con-
struct the linear combinations of p~ and partial deriva-
tives with respect to y~ which annihilate this functional
and hence play the role of the annihilation operators in
this representation. In order to obtain the physical inter-
pretation of this state it is convenient to find out its rela-
tion to the so-called Boulware vacuum states. The latter
are defined in each of the regions R~ independently and,
as we show, have the form

1 po(u
—'/2—tanh

1 1 Po~ 1/2 8
~2 (~™nh4 ) 4)j

1 P ~ —1/2—tanh

subject to standard commutation relations

XaA + y ap ~ —&AA'

(4.19)

(4.20)

1 Q 2Qg~ ——P~y exp
A

(4.13)

f+ +fP+= ~ ) (4.14)

takes the diagonal form

I2(P+, y ) = I2(f+, f )

= —) ~„I)ash()),~,/4) f4+

1
+

tanh(Po cup /4)
f~, (4.15)

The wave function (4.12) rewritten in the new represen-
tation (4.14) is a Gaussian state which is obviously a
vacuum,

(4.16)
(4.17)

of the following creation-annihilation operators (we omit
for brevity the label A in the definition of a~ below as
well as in ~ = uq):

By comparing the operators of annihilation and creation
for no-boundary vacuum state with the annihilation and
creation operators for the Boulware vacuum states we

finally show that the no-boundary vacuum state coincides
with the Hartle-Hawking vacuum state.

We begin the proof by noting that the action
I2(&p+, &p ) in terms of new variables f1, ~,

(all the other commutators are vanishing). For our pur-
poses another choice of creation-annihilation operators is
more useful, diff'ering &om (4.18) and (4.19) by the lin-
ear transformation not mixing the positive and negative
frequencies

aA, + + aA, —ay~= ' ', ag~@(f+ f )=O. (4.21)

L~ = d x 2 ($, )9)t )
Zp

=
2 ).('Pi, + ~i%'i, +) (4.22)

which take such a form provided the corresponding space-
time fields evolving correspondingly in R+ and R are
decomposed in spatial harmonics with time-dependent
coefficients pp ~(t)) &))')g+ = dye ~(t)/dt. At the quan-
tum level, in the coordinate representation of pp ~ the
creation-annihilation operators bp ~ of these two theories
associated with positive-negative frequency decomposi-
tion in the Killing time t look like

To give a particle interpretation for the obtained vac-
uum state we must construct the propagating physical
modes corresponding to ap ~. For this purpose con-
sider the Z~ parts of Z as the initial Cauchy surfaces
in the right (R+) and left (R ) wedges of the Lorentzian
Schwarzschild-Kruskal spacetime. In two causally discon-
nected regions lying in R~ to the future of Z~ one can
construct two scalar field theories with the I agrangians-
the Lorentzian versions of (4.1),

P ~ 1/2
+ co tanh (4.18)

1 0
~2 4,+ = + V ~ )/)A, + )

(d )9pg ~

))/2~g ~ = — + v~&pA, + )
4) Opp ~

(4.23)

(4.24)

+ (d tanh

and correspond to the following choice of positive-
frequency basis functions

P ~ 1/2
+ ~tanh

1))p +(x) R
=0

1))p +(x) = e "'Rp(x),
R+

(4.25)
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ivy (x) = e* "'Rp(a),
R

(x) = 0
R+

(4.26)

and generates, in terms of iv~, the basis functions vg ~(x)
associated with the creation annihilation operators ap ~
of our vacuum quantum state (4.21)

po ~ —1/2
v~ = 2sinh e~' ~ to+ + e ~' ~ n+ . 4.28

2

P ~ —1/2
b~ —— 2sinh e~' ~ a~+ e ~' / a+

2
(4.27)

(one should remember that the Killing time coordinate
t is past pointing in R and m~ by construction have
zero initial data on Z+). The corresponding (Boulware)
vacuum states 4'~~ are defined by Eq. (4.13).

This is a matter of a simple algebra, using the
reparametrization (4.14), to show that the operators
(4.23) are related to (4.21) by a nontrivial Bogolyubov
transformation which mixes the positive and negative fre-
quencies

This is a well-known transformation relating the Boul-
ware vacua, (bp y, ivy ~(x)), in the right (R+) and
left (R ) wedges of the Kruskal diagram to the Hartle-
Hawking vacuum, (ay ~, vi, ~(2:)), of quantum fields
on the inaximally extended black hole spacetime [60,62].
The latter is defined by the condition that its basis func-
tions vg ~(x) contain only positive &equencies with re-
spect to affine parameter on both horizons of the black
hole metric. This property follows from Eqs. (4.25),
(4.26), (4.28) and the asymptotic behaviors of ivy, ~(x)
at the horizon (see Appendix B):

i~v~iA, +(&)
R+

~~inn A, (&)—
R

(16mwM ) g+ (g) —4M~iy (y y)
~+ (p)

—4M~iy (y y)
(16m(uM ) g+ ( g)4M~iy (y y)

(4.29)

(4.30)

where A+&& and A+&& are complex coefficients deGned in the Appendix B.We use the notations H+ and H+ for parts
of past H and future H+ horizons located in the R~ wedges of the Kruskal diagram (superscripts 6 correspond to
t m +oo), so that we have H+ = H+ U H++ and H = H LI H+ (see Fig. 2). Substituting the asymptotics into
(4.28) one finds

v i ~+(x) = (16m.(AM ) A && 2sinh

x g( U) e2mM~( g)4M~ + g(U) e 2nM~+4M~" y (g p) (4.31)

It means that the basis functions v are of positive fre-
quency with respect to the affine parameter U on the
horizon H+ and hence are analytic in the lower half
of the complex U plane. The analogous property holds
for another horizon H of the Kruskal diagram. Those
are exactly the properties which single out the positive
frequency basic functions used for the deGnition of the
Hartle-Hawking vacuum state [60]. As was mentioned
above, similar considerations apply to fields of higher
spins (massless as well as massive). Thus, the proposed
no-boundary wave function of a black hole represents the
Hartle-Hawking vacuum state of linearized Geld excita-
tions of all physical fields.

At the end of this section we would like to discuss the
remarkable duality relations between interior and exte-
rior of a black hole. We remarked already in Section II
that the Kruskal metric (2.1) possesses a discrete sym-
metry U m —U, V + —V, which on the Einstein-Rosen
bridge is reduced to the isometry between its external Z+
and internal Z parts. As the result of this isometry, one
can use in the decomposition (4.10) the same spatial har-
monics for exterior Z+ and interior Z . Moreover, the
Euclidean action is symmetric with respect to the change

y+ ~ rp, and the no-boundary wave function (4.14) of
a black hole is symmetric with respect to the transpo-
sition of the interior and exterior parts of the Einstein-
Rosen bridge. We call this property duality. The dual-
ity of the no-boundary wave function of a black hole is
evident for perturbations, because we have the explicit
expression for it. But this property is of more general
nature. The functional integral representation (3.5) for
the no-boundary wave function of a black hole does not
distinguish between the exterior and interior of a black
hole; that is why it possesses the duality property even
if we consider the contribution of fluctuations which are
not small. We should stress that the duality property is
the consequence of the symmetry between interior and
exteror of an eternal black hole. For a "real" black hole
formed as a result of the gravitational collapse, this ex-
act symmetry is broken. Nevertheless, since there exists a
close relation between physics of a real black hole and its
eternal version, the duality of the above type plays an im-
portant role and allows one, for example, to explain why
the approach based on identifying the dynamical degrees
of freedom of a black hole with its external modes gives
formally the same answer for the dynamical entropy of a
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black holeole as our approach. We shall ret
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the division of the Euclidean manifold into two discon-
nected parts was used for introducing the wave function
of matter fields on a gravitational background and es-
tablishing the formalism of thermofields. Thus, in con-
trast with Ref. [59], in our approach we start with the
definition of the black hole wave function and arrive at
the notion of the full gravitational instanton (without
dynamically active boundaries) as an ingredient of calcu-
lating various expectation values and dynamical entropy,
in particular.

sp(v', v-) =(v' Isp le —)

= exp (I'p) (p'
~

exp (—PII)
~ y ), (s.7)

so that the density matrix of a black hole p (5.1) coincides
with pp, . In the one-loop approximation we have

In addition to the density matrix p it is convenient
also to define a more general object pp which depends on
the arbitrary parameter P independent of the black hole
mass

-r~(v', v )], (5.8)

where the Euclidean Hamilton- Jacobi function
Ip(p', rp ) is given by the expression (4.11) with the
only replacement Po ~ 2P. In the coordinate represen-
tation one has the following expression for the kernel of
the Van Vleck-Morette functional matrix:

~ I~(& & )--
Oy' (a)Op (y) sinhP(u

=g g . „8m—y (5.9)

with the operator of frequency u defined on a spatial
three-dimensional hypersur face as

ld = — Bo,g ~ g Bs+ (Ra b

a, 6 = 1, 2, 3,

g = detg~ = g detg b, p, , v = 0, 1, 2, 3.
(s.io)
(s.ii)

The normalization factor of Eq. (5.7) is, therefore, given
by the following functional determinant on the space of
functions of three spatial coordinates:

Fp ———ln Dy y exp — H (5.12)

1 1= ——ln det b (~ —y)2 2 cosh (u —1
(s.i3)

It is worth emphasizing that all the quantities and op-
erators entering the WKB approximation of the wave
function and density matrix depend on a three-geometry
of space and values of fields on it. The whole informa-
tion about four-dimensional manifold is contained in the
interval P of Euclidean time between the points with the
same spatial coordinates m of spacelike slices Z+ and Z
We stress once again that according to our definition we
need to consider P as an arbitrary parameter and only at

I

the end to put it equal to Po = 87l M.
The density matrix pp satisfies the equation

(s.i4)

Using this relation one can easily show that the entropy of
the system in question can be obtained &om the effective
action Fp.

(s.is)

(5.16)

Note that it would be incorrect to differentiate F directly
over M in order to obtain the entropy S, since the total
effective action is an integral over the whole space and
depends also on its geometry. The Hawking tempera-
ture TBH = 1/8aM depends both on the space-geometry
and on g of the four-dimensional metric, and hence op-
erations of difFerentiation over M and integration over
volume do not commute in general case. In order to
avoid these complications we introduced the generalized
density matrix pp.

In order to calculate Tr ln operation entering the ex-
pression for the effective action, it is convenient once
again to use the expansion the functions rp(m) in terms
of eigenfunctions Rp (a) of the operator w,

v (~) = ).v»»(~)

Rg(m) = cu~R), (a). (5.17)

Here P& denotes the sum over all quantum numbers A.
Substitution of the expansion of 8 function in terms of
eigenfunctions of the operator u gives

8 ) f . p~)
d~

~ P —1
~

ln
~

2sinh ~b(~ —y)0» ) & 2i v= P=PO

dm "coth " —ln
~

2sinh "
~ ) g (m)g'(m)Rp(m)Rp(y)

Po&y Po~q ~ Po~y ~

2 2 ( 2
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Thus we have

S = dK PP K S 0')P (5.18)

s(P(d) = —ln(1 —e ~ ),e~ —1
(5.19)

pg(x) = g g'i'[Rp(x)]' (5.2O)

is a phase space density of quantum modes. It should
be emphasized that according to our definition the in-
tegration in (5.16) is over the interior part Z of the
Einstein-Rosen bridge.

In order to estimate the contribution of spatial regions
in the vicinity of the horizon we should find an asymp-
totic solution for the mode functions R~(x) near the hori-
zon. Eigenfunctions Rg(x) for a massless scalar field in
the Schwarzschild spacetime are of the form [see Eq. (B2)
of Appendix B]

R i ~(r, ~, 4) = R i~(r)&i (~, 4) (5.21)

where s(P(d) is a well-known expression for the entropy
of a single oscillator with the &equency ~ at temperature
T = 1/P and

to our R"~i as Ri((d~r) = i/27rR"i. ] The relation (5.24)
can be used to find out the contribution of the internal
modes located near the horizon to the entropy of a black
hole.

We discuss now the contribution to S of large dis-
tances. Formally this contribution is divergent. The
divergency is directly related to the divergency of the
entropy of thermal radiation if a black hole is located in-
side infinite thermal bath. It is well known that the lat-
ter problem is unphysical because the system is unstable.
Stability can be provided if a black hole is located inside
a cavity of size rp & 3M (see, e.g. , Ref. [12]). For such a
case the above calculations are to be modified. Instead of
the modes B ~~ one must use the modes B ~0, obeying
given boundary conditions at the boundary r = rp. (See
Appendix B for their definition. ) The expression for the
entropy of a black hole will remain the same (5.23) with
the replacement of g& ~R~i~(r)

~
by ~R~ip~ and restric-

tion of integration with respect to r by the upper limit
r0. In order to estimate this integral we remark that the
entropy of an oscillator with frequency u exponentially
decreases for frequencies much larger than the black hole
temperature T = 1/8vrM. In the vicinity of the hori-
zon

~
r/2M —1 ~&& 1 a regular solution for radial modes

R ip(r) takes a simple form

Here radial functions R i~(r) are real and obey the equa-
tion R~ip(r) Q(M& (d l)K'4~ +2l(l + 1)(r/M —2)

d 2(r —2M—r) ——l (l + 1) + (d 2

dr
R„i~(r)= O.

(5.22)

Additional index A = 1, 2 is used to numerate two lin-
early independent solutions. The expression for entropy
of such a system takes the form

S = drr (1 —2M/r)
2M

x du 2l+ 1 B ]~ r 8 8~M(u . 5.23
0 A I,=O

By using Eq. (B23) we can write near the horizon the
relation

) ) (2l+1)~R i~~' = ) (2l+1)~R"",~'

I,=O A=1 L=O

) (2l+1)~t i~

1

1=0

4u2 M
r —2M (5.24)

with complex basis functions B"& and absorption coef-
ficients t ~ defined in Appendix B. To obtain the lat-
ter equality we used the result of Ref. [31] for the
sum gi p(2l + 1)((R"i

~

and the fact that t i aW ex-
ponentially decreasing functions of l, so that the sum

p(2l + 1)~t~i~ remains finite at the horizon. [The
functions Ri((d~r) in the notations of Ref. [31] are related

2(d sinh(4vrM(d)
7 Mvr2

(5.26)

where the relation

1 vr 1
dy —K; (y)K; (y) = — . h(x —x')

y
' '

2 x sinh(mx)

(5.27)

was used. We also use the fact that the modified Bessel
functions decrease very fast with an increase of their ar-
gument and, hence, with a good accuracy the integration
along the radius can be extended to infinity. One can
see that the main contribution to the integral of entropy
near the horizon comes from large l. Replacement in Eq.
(5.23) of summation over l by integration leads to the
expression

) (~(+ )I+ fG(")Ij' = 2 J ai&I~-m(~)I*
1=0 0

4(u2 M
r —2M

(5.28)

(5.25)

The normalization factor Q(M, (d, l) depends on the coef-
ficient of penetration of modes through the potential bar-
rier. All the modes in the range of &equencies in question
and with angular quantum numbers l & 3 are trapped.
For such modes the penetration coeKcient is exponen-
tially small and normalization factor does not depend on
l. The larger l, the closer to the horizon a return point
lies and the better the approximation becomes. The eval-
uation of normalization factor gives
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This asyinptotic formula coincides with (5.24). This
means that in both cases (a black hole in infinite space
and a black hole inside a cavity) the contribution to en-
tropy of the region near the horizon is the same. In what
follows we assume that the black hole is located inside
a reflecting boundary sphere and restrict the integration
over r by the value ro.

Thus we have

4M 3 cx)

dr d(rl(d S(8AM(d)
vr 2~ r —2M o

512M
dz — d~~ s(8~M(u)

7T o Z 0
4M'

AZ —
)45 0

z3' (5.29)

where

zo = rogl —2M/ro + Mln (ro/M) —1

+(ro/M) Q1 —2M/ro (5.30)

is a proper distance from the horizon to the point ro.
This result shows that one-loop entropy of a black hole
S diverges near the horizon (at z = 0). The expression
(5.29) gives the leading divergent term

~HS=
36O~l" (5.31)

where A~ is the surface area of a black hole and l is the
proper-distance cutoff parameter. It reproduces the re-
sult by Frolov and Novikov [30]. This divergence is phys-
ical and its origin does not depend on particular prop-
erties of quantum fields surrounding a black hole. The
analogous divergence evidently occurs for higher spins
and for rotating and charged black holes. Hence quan-
tum corrections can never be neglected in a description
of thermodynamical properties of black holes.

The dynamical entropy S of a black hole is obtained
by summing over the contributions of fields of difFerent
spins. In this respect all the matter fields inside a black
hole contribute to its dynamical entropy. But even if
we consider a hypothetical case when there is no other
physical field but the gravitational one, we have a nonzero
answer due to the inevitable presence of gravitational
perturbations.

It is worth emphasizing that shifting a position of the
horizon as a whole due to the back reaction effect of quan-
tum fields on the black hole geometry does not remove
the divergence. Spatially inhomogeneous fluctuations of
the horizon are to be taken into account to provide the
necessary cutoff.

To conclude this section we make some general remarks
concerning the relation of our result to the results ob-
tained in other dynamical approaches to the black hole
entropy. First of all, we explain why our result based on
the calculations for the eternal version of a black hole re-
produces the results of [30] for a real physical black hole.
The reason is the following. The main contribution to the
black hole entropy in that approach originates &om the
modes of field perturbations propagating inside a black

hole in a close vicinity of its event horizon. These modes
are thermally excited and their density matrix with very
high accuracy is thermal and does not depend on the
particular choice of the initial state, provided this state is
regular at the horizon. That is why the leading divergent
term in the dynamical entropy calculated for the Unruh
vacuum, or its modification, which differs by additional
incoming particles with finite energy (less than the mass
of a black hole) is the same as for the Hartle-Hawking
state. But the Hartle-Hawking state, as we have shown,
coincides with our no-boundary wave function. That is
why the calculations of the dynamical entropy for the real
black hole and its eternal version give the same answer.

In our calculations we begin with a pure quantum
state the no-boundary wave function of a black hole.
The dynamical entropy S of a black hole arises as the
result of splitting the system into two parts (in our case
internal and external states) and averaging over one part
of the system (in our case external states). One can de-
fine another entropy S' by averaging over another part of
the system. It can be shown that these two entropies S
and S' in fact coincide [22]. The easiest way to prove it is
to use a biorthogonal or Schmidt canonical basis [24] in
which the spectra of the reduced density matrices of the
two subsystems explicitly coincide [25]. In application to
our problem this means that the entropy of the internal
excitations of an eternal black hole is formally equal to
the entropy of its external excitations. Because of the
presence of the divergence one cannot use this property
directly. But because of the duality of the interior and
exterior of a black hole, not only are the total values of
the entropies S and S' the same, but also the explicit
expressions for them. Namely the dynamical entropy as
given by Eq. (5.16) is identical to one which is obtained
by reversing the proposed procedure and averaging at
first over internal modes and after making summation in
the expression for the entropy over the external modes.
In the latter case the expression will contain the spatial
integration over the exterior. That is why for a symmet-
ric choice of the cutoff, the finite values of both entropies
(external and internal one) are the same. This explains
why the calculations based on identifying the dynamical
degrees of freedom of a black hole with its external exci-
tations (as it was done by 't Hooft [20] and others) give
formally the same result as our approach. The difference
in the interpretations arises when we relate the calcula-
tions for the eternal version of a black hole to the entropy
of a real physical black hole.

VI. ENTROPY AND EFFECTIVE ACTION

In the preceding section we used the proposal for a
wave function of a black hole in the calculation of the con-
tribution to the entropy of a scalar field. Only the prop-
erties of a three-dimensional space and fields on it were
used in these calculations. It is instructive to compare
this result with that of the four-dimensional Euclidean
action approach. This also allows one to generalize the
result of the preceding section to arbitrary static black
holes.
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Consider the Euclidean e8'ective action j.p of a confor-
mal scalar field P(r, m) with the Hamiltonian Eq. (5.4)
on a manifold periodic in Euclidean time with the period.
P. Up to a contribution of a local functional measure it
can be represented in the form

Fp = +—Tr ln P + h (0) ( )
1 4
2

F= — +—R .
1

6

(6 1)

(6 2)

This effective action and the corresponding &ee energy
Ep = Fp/P have ultraviolet divergences. Note that, al-
though the last term in Eq. (6.1) diverges, it is propor-
tional to P and hence the free energy does not depend on

I

P and its contribution into entropy vanishes. The same
argument remains valid for all ultraviolet divergences in
the effective action. Thus we have

RenS=P Ep=P Ep ".

The scalar Geld efFective action and thermodynamic po-
tential at finite temperature in a static curved space-
time were calculated by Dowker and Schofield [65]. They
proved that in the case of the conformal scalar Geld the
two renormalized effective actions in two conformally re-
lated spaces with metrics g~„and g~„=e +g„„are
related by

ZFp[g, n] =F, "[g] -Fp."[g],
P

AFp[g, 0] = — dr
2880m2 0

x g2d x +3 0 —40 0 0+20 0 —2R„O"0+0 R p~qR ~~ —R pR ~+ R

{6.4)

where 0„=V'„0and Fp'"[g] is the renormalized value
of the effective action in the space with the metric g~,

I

It can be obtained by the method of images

1 — — 1-
F[g] = —Trinal, E = —Cl+ —R.

2
' 6

(6.5)
Kp(s~r, ~;r', ~') = ) K(s~r, ~;r'+Pn, ~') (6.iO)

The difference b, Fp[g, 0] for two conformally related the-
ories is proportional to P and hence does not contribute
to the entropy. In order to obtain the leading (divergent
near the horizon) contribution to the black hole entropy,
we apply these relations to the particular case of an ultra-
static metric g corresponding to the choice 0:—2 lng
We show that the three-dimensional part K(s~r, x; r', m') = (4~s) ~ exp

- 3
(r —r')'

4s

from the nonperiodic heat kernel K = K deGned on
a complete interval —oo & 7, v' ( oo. Because of the
separation of variables in the operator E = 0 /Br-
A + 1/6R, the heat kernel K takes the form

dl = q b(a)dx dx

of the ultrastatic metric

(6.6) x K(sin; ~') (6.11)

(6.7)

1 ds
Fp[g) = —— —TrKp(s),

0 S
(6.8)

where the heat kernel Kp is a periodic in w with a period
P solution of the problem

conformal to the metric of an arbitrary (distorted) static
black hole metric, can be approximated by the three-
metric of constant negative curvature. We use this prop-
erty to analyze the leading contri. bution to the entropy
divergent near the horizon.

For the calculation of the effective action in the ultra-
static metric g we apply the heat-kernel technique. In the
proper time representation, the thermal effective action
of a scalar Geld takes the form

. (r —r')P P' l
Kp(s~r, a; r', x') = es

~

i,exp-
4vrs

' 4s )
x K(sir, m; r', m'), (6.i2)

where 6j3 is a Riemann theta function. The "zero-
temperature" heat kernel K(s~r, m; r', m') can be ex-
panded in the nonlocal series in powers of spacetime
curvatures [63,66]. To calculate the effective action we
need the trace of the heat kernel with coincident points
(7 = 7', a = x'). In the notation of Ref. [63] it reads

P'
T Kp(sir ~ r ~) = gs

~

0 exp ——,4

where K(s~x; x') is a three-dimensional analogue of the
heat kernel corresponding to the operator —b. + 1/6R .
From Eqs. (6.10) and (6.11) we have

Kp (s~r, x; r', a') =—FKp (s~r, x; r', x'),
OS

Kp(s]r, ~; r', a') = Kp(sir + P, m; r', x'),
Kp(0~r, x;r', e') = h(r —r')b(x —x') .

(6 9)
Here

x TrK(s~r, x; r, a) . (6.i3)
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gs(0, exp[ —6]) = ) exp[ —bn ], (6.14)

TrK(s]~, ~;7,~) =
(4~s)'

dv d z~g 1+sP+ s R„„f&(»—)&" + &f2( s—)&

+Pfs( —s Q)Q+ Pf4( s—)P + O(curvatures ), (6.15)

f;( s)—are nonlocal form factors [63] and P = 0 for
conformal scalar field. The first two terms in this expres-
sion are local. Nonlocalities appear only in quadratic and
higher orders in curvature terms.

Consider a static black hole. In the general case its
Euclidean metric can be written in the form [67]

d8~ = c/7 + Al0

dip ——dz + exp( —2Kpz) (dz ) + (dx )

(6.21)
(6.22)

The difFerence between the metric g and g~ is character-
ized by

h". = e [g- —»-]. (6.23)

d8 = Xd7 + dX + T~~4Z CLX
4K2X

(6.16)

K = r.p —(1/2)kp(z )X+ O(X ), (6.17)

r~gy = rp~~[1+ (1/2+o)kp(x )X] + O(X ), (6.18)

and K0 ——const is the surface gravity of a black hole. The
corresponding conformal ultrastatic metric reads

d82 —d~2 + dl 2

dz + exp( 2Kpz)r~~dz —dz

(6.19)

(6.20)

where z = (2Kp) ~lnX. In these coordinates the hori-
zon corresponds to z = —oo. Near the horizon ~ m
r p ——const, and two-dimensional surfaces z=const (which
have infinitely growing radius) can be locally approxi-
mated by planes. In any finite region of space the metric
(6.19) with high accuracy can be approximated by the
four-dimensional metric with three-dimensional section
H of constant negative curvature RH ———6K0.

where A, B = 2, &, & = K(X, 2: ), &ma = &wa(Xi& )~

and X = 0 is the equation of the horizon. The vacuum
Einstein equations imply that near the horizon one has
[68]

The difFerence between the invariants of the metric
(6.20) and (6.21) can be always expanded in the se-
ries of invariants constructed &om the tensor 6" and
its covariant derivatives of arbitrary order with respect
to the homogeneous metric dl0. One can show that

Vh„"= 0 (X ), X + 0, whence it follows that the
integrand of (6.15),

because the nonlocal form factors can be expanded in
powers of derivatives and thus reduce the right-hand side
of (6.15) to the series of local invariants of the above type.

By using (6.24) and the known exact expression

~oa(~, y)K~ s ~, z;~', y
(4vrs)2 sinh [Kpo.(a, y) ]

~2 + cr2(~, y)x exp AH4s
(6.25)

for the heat kernel on the space of constant negative cur-
vature H [with o'(a, y)—the world function on the space
section w=const], we have

K(s~~, x; ~', x) = KIr(s~~, x; 7', x) + 0 (X ), X ~ 0,

(6.24)

TrKp(s~7, ~;7, ~) = Os
~

0, exp ——
~

d~ d ~~g[1+ O(X )]
p' l

4vrs
' 4s ) o

(6.26)

Composition of this expression, Eqs. (6.4) and (6.8) gives
for the &ee energy of a conformal scalar field the expres-
sion

f dxx Os(0, e ) —1j = 21'(a)((2a)
0 G:2

2
Ren Ren 1

z~ —J = —— d~g- (g..)- —+ ".
90 1 Tp4'

(6.27)

where we used the integral relation

(6.28)

and restored the physical metric g~„. The ellipsis des-
ignates terms which are less divergent or finite at the
horizon. The entropy of an arbitrary static black hole
reads
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S = p E '" = p E '" —FR'"
gp P gp P oo

2'1 1
d~(g ) g ~ +. (6.29)

For the particular case of Schwarzschild black hole this
formula reproduces the result Eq. (5.29).

It is worth emphasizing that, as a result of the restora-
tion of the physical metric,

—2A
gp~ = 6 g~~ = gp~ )

g7-7-

1—4B~
(g-)'

B„=e'" B„"+20„'"+ 08„"+20„0—20 0 b„"

(6.30)

in the general expansion Eq. (6.13) we get a nonlocal ex-
pansion of the eBective action in terms of curvature, "ac-
celeration" O„and their derivatives. One can use this
efFective action in order to get (T„„)R'".The action can
be written in a completely invariant form if we substitute
g = g„("("and consider (" as external field, which is
fixed during the variations over g„and is taken to coin-
cide with the Killing vector field after the variations were
performed [70]. An additional (external) vector field ( in
the effective action for thermal state is required because
such a state is possible only in a stationary spacetime,
i.e. , the spacetime with additional geometric structure.

VII. FROM WAVE FUNCTION OF A BLACK
HOLE TO ITS DENSITY MATRIX: INSTANT

HORIZON

In all our one-loop statistical mechanical considera-
tions above we heavily relied upon the Killing properties
of the underlying Schwarzschild-Kruskal spacetime. The
crucial moment was a separation of the physical degrees
of &eedom into interior and exterior ones —the proce-
dure closely related to the existence of the black hole
horizon and its bifurcation unseparable from the Killing
symmetry. The question arises: is it possible to gener-
alize the above transition from the wave function to a
density matrix for a general case of a black hole setting
of the problem?

This problem is very complicated if one works in the
physical spacetime of a black hole which arises as a result
of the gravitational collapse. The main reason is that the
event horizon is a nonlocal notion and it depends on the
boundary conditions at future infinity. From the view-
point of quantization, on the other hand, it is desirable
to have a definition local in time that is determined en-
tirely in terms of objects specified at a given spacelike
hypersurface, like other phase-space observables in any
local quantum field theory or quantum mechanics. We
discuss now an interesting possibility which arises in the
&amework of the approach based on the consideration of
an eternal version of a black hole. This setting, according
to Sec. III, implies only the statement of the Einstein-
Rosen (or wormhole) topology of the spatial section (3.3)
and its asymptotic flatness at both ends of the wormhole.

For an eternal version of a black hole, a natural criterion
for separating the dynamical modes into external and in-
ternal ones consists in finding the generalization of the
bifurcation two-sphere of the Killing horizon, which is ap-
plicable to the case of a deformation of the geometry of
the Einstein-Rosen bridge. For this purpose we propose
here the notion of instant horizon formulated entirely on
a spatial section of spacetime and coinciding with the bi-
furcation sphere in case of a spherically symmetric eternal
black hole.

Because of the locality in time, this definition can be
efIiciently used in calculating the quantum averages with
a given wave function of a black hole and in the transi-
tion to its quantum statistics and gravitational thermo-
dynamics.

Take a two-dimensional submanifold S of spheri-
cal topology &om the first nontrivial homotopic class
vr2(R x S ) = Z of the three-dimensional space (3.3)
and define A[S] as the surface area of S. Because S is
noncontractable, the functional A[S] has a nonvanishing
minimum at some So. In the case where there exist sev-
eral minima, we chose So to be the surface of absolute
minimum of area. This quasispherical surface So which
we call an instant horizon can serve as a needed time-local
notion of the horizon. It is obvious that this notion does
not involve Killing symmetries and defines a horizon at
a given instant of "time, " that is not in four-dimensional
spacetime, but entirely on the current spatial section.
Remarkably, this definition of the instant horizon again
brings us back into the scope of York gauge formalism
and I ichnerowich equation. Indeed, the minimality of
A[S] at So implies the minimality of this surface, which
is just the York gauge in the two-dimensional (one dimen-
sion less) context. This observation might lead to even
deeper parallels with the York-gauge framework, while
calculating the quantum and quantum-statistical aver-
ages on the basis of this definition of the instant horizon.

The quantum state of a black hole is characterized
by an amplitude of diferent realizations of dynamical
variables on the spatial section. Thus for any particu-
lar realization one acquires its own instant horizon So
(Fig. 6). Since the position and shape of the instant
horizon change &om one realization to another, such a
dependence of So on the realization can be interpreted
as quantum fluctuations of the instant horizon. The ef-
fect of quantum fluctuation (zitterbewegung) of the hori-
zon is important for the problem of entropy discussed
in the paper and, apparently, can serve as a cutoK for
the (otherwise) divergent entropy of the black hole cal-
culated above in the approximation of a frozen (classical)
horizon. The entropy divergence has a universal law near
the black hole horizon for all fields (massless and massive,
with and without spin). It arises because in our one-loop
approximation the background geometry (and hence the
position of the horizon) is fixed. Quantum fluctuations
result in its spreading. Because of spreading we no longer
can once and for all split the states of quantum fields into
the "visible" and "invisible" ones. The splitting of states
into internal and external states of a black hole begins
depending on the realization. Averaging over difI'erent
realizations (which efl'ectively takes into account the zit-
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Instant
Horizon

FIG. 6. Here a virtual realization of deformed Ein-
stein-Rosen bridge is schematically depicted, corresponding to
a particular realization of dynamical quantum fields on a black
hole background. The instant horizon So is a two-dimensional
surface of minimal area with a topology of sphere S, which
cannot be contracted to a point. It separates the interior of
a black hole Z from the external space Z+.

terbewegung of the horizon) may produce the required
cutoff for the entropy.

It should be stressed that the notion of the instant
horizon is naturally defined only for the eternal black
hole. One can expect that this notion may be especially
useful for the discussion of those characteristics, which
are identical for a real black hole and its eternal version
(such as entropy). From a more general point of view,
the relation of the fluctuations of the instant horizon to
quantum properties of the event horizon requires a special
consideration.

VIII. CONCLUSIONS

In conclusion, we summarize the main results and list
the open problems. We argue that dynamical degrees
of &eedom of a black hole must be connected with its
internal states, i.e., the states of matter and gravita-
tional Geld located inside a black hole. The proposed
no-boundary construction of a black hole wave function
is shown to describe both internal degrees of &eedom of
a black hole and matter surrounding it. For small per-
turbations the no-boundary wave function represents the
Hartle-Hawking vacuum state. The density matrix of the
black hole is defined by averaging over the states of the
external matter and gravitational Gelds. The resulting
density matrix is used to define the dynamical (or statis-
tical mechanical) entropy of a black hole. The so-defined
entropy is divergent. The divergence occurs due to the
contribution of the states located in a close vicinity of the
horizon. It is argued that the effect of the horizon zitter-
bewegung may provide the necessary cut-off. It should
be stressed that the dynamical entropy of a black hole
in such an approach is mainly defined by the one-loop
contribution. It means that all the fields (including the
gravitational one) must contribute additively. The natu-
ral question is how this observation can be in agreement
with the fact that in the &amework of the thermodynam-
ical analogy the entropy of a black hole is universal and.

does not depend on the number of Gelds N. One of the
possible explanations proposed in [30] is that the fiuctu-
ations of the horizon which provide the cut-off for the
entropy is also dependent on the number of Gelds. Even
in the case when the resulting one-loop entropy does not
grow with N, there remains the problem of calculating
its exact value. In other words, what is the mechanism
which gives for the entropy of a black hole the standard
universal value A/4? We should emphasize that in the
&amework of our approach the dynamical degrees of &ee-
dom of a black hole contribute to the entropy only on the
one-loop level, while there is no tree-level contributions.
A remarkable fact is that, in the standard Euclidean ap-
proach, the "correct" answer for the entropy (A/4l&) is
obtained by calculating the tree-level contribution into
the Euclidean gravitational action. On the other hand
there is no direct connection of this contribution with
some internal dynamical degrees of &eedom. This prob-
lem is not specific for our approach. It is more general
and common for different dynamical approaches to the
black hole entropy.

The relationship between "dynamical" and "topolog-
ical" contributions to the entropy, as well as the origin
of the universality of the expression for the entropy of a
black hole, is an important question. We are not going to
provide here the complete answer but we just indicate a
possible solution. Recently one of the authors [71] drew
attention to the fact that the dynamical entropy [defined
as —Tr(pin p)] difFers from the Bekenstein-Hawking (or
thermodynamical) entropy. The difFerence arises because
the internal states of a black hole depend on its mass,
the parameter which in thermal equilibrium is directly
connected with the external temperature. For this rea-
son, when one considers the variation of the &ee energy
with temperature (which defines the thermodynamical
entropy), besides the standard term proportional to the
dynamical entropy there arise additional terms, originat-
ing &om the change of the internal parameters of the
system induced by the change of the temperature. It is
shown in [71] that this efFect is sufficient to explain the
required universality of the Bekenstein-Hawking entropy
and clarify its relation with the dynamical entropy, con-
sidered in this paper.

Recently, another proposal [34] has been given for a
mechanism maintaining the exact relation between the
black hole entropy and its horizon area. This mecha-
nism holds on the nonperturbative level in the limit of
heavy black holes. Briefly it looks as follows. Suppose
we have the gravitational effective action I'[g], possibly
generated by the fundamental theory of (super)strings
and, therefore, finite. It may have a very general struc-
ture about which only one assumption is made: it is sup-
posed to be analytic in the curvature and &ee &om the
effective cosmological term (thus admitting the existence
of the asymptotically flat solutions of effective Einstein
equations)

(8.1)
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Here R(x) is a collective notation for the curvature and
Ricci tensors and F (xi, . . . , x ) is a set of (generally
nonlocal) form factors accumulating all the information
about the quantum and statistical effects in the theory.
Since these form factors represent the coordinate kernels
of some nonlocal operators constructed of derivatives, the
only covariant expression available for Fi(x) is just the
local density

(8.2)

this is definitely not the case for the dominant divergent
contribution (6.29) obtained in the one-loop approxima-
tion. Indeed, as it follows from Eq. (6.27), this contri-
bution involves the invariant of the Killing vector field("(„=g . This invariant can be regarded as a restric-
tion of some nonlocal functional of metric to the manifold
with Killing symmetries. Killing field (" as a functional
of the metric does not have a unique continuation off the
syinmetric (Killing) points in the configuration space of
metric, but it is undoubtedly nonlocal and most likely
has a structure of the solution of the Killing equation

with a purely numerical coefficient which can be identi-
fied with the effective (renormalized) gravitational con-
stant or Planck length L,rr (all the covariant derivatives in
Fq contract to form a total derivative which disappears
when integrated over asymptotically fiat spacetime).

According to Eq. (5.16) the calculation of entropy in-
volves the efFective action I'p ——F[g~ ] calculated on the
conical spacetime with metric g~ having a conical singu-
larity with P g 8z M. On such a manifold the curvature
has a form

RP (x) = (P —8vrM) f (x) + R„s(x), (8.3)

where R„s(x)is a regular part of the curvature bounded
by 1/M2 and, therefore, negligible for heavy black holes
M —+ oo. The singular part caused by conical struc-
ture for P g 8vrM involves the generalized function f(x)
which, when regulated, can be even nonsingular one, but
having the compact support in the vicinity of the tip of
the cone (black hole horizon) and satisfying the relation

dxg'~2(x) f(x) = —8vrM . (8.4)

Substituting the structure (8.3) into (8.1) and using
(5.16), we immediately find that the entropy is entirely
generated by the effective Einstein term of the action, be-
cause the expansion in powers of the curvature becomes
the expansion in powers of the angle deficit (P —8vrM)
of the conical manifold:

(8.5)

The above arguments could have been even generalized
to the case of the finite-mass black hole by noting that in
asymptotically Bat spacetime the actual expansion of the
effective action can be performed in powers of the Ricci
curvature R„„only[63,64], for which R„„()s—:x0 in
Eq. (8.3). However, there is a serious objection to this
mechanism which apparently invalidates this proposal. If
it were correct, then the perturbative calculations of en-
tropy would maintain the universal relation between the
entropy and one-quarter of the horizon area, the quantum
corrections to the classical entropy being compensated for
by the simultaneous renormalization of this length. But

0("+R."$"= 0 (8.6)
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as a functional of the metric and boundary conditions:
(" = ("[g,boundary data]. This data is nontrivial; it
nontrivially depends on P, and induces extraneous struc-
tures in the functional argument of the effective action,
which do not reduce to the local metric or curvature. By
iteratively solving the equation (8.6) we can obtain ("as
a nonlocal expansion in curvatures, but there will be a
zero-order term (0~ independent of the metric and point-
ing out the direction in spacetime in which it is periodi-
cally compactified with a circumference given by P at spa-
tial infinity. This vector field generates new "noncovari-
ant" curvature structures in the effective action, such as
g~„gg,R~„(z(0,etc. , that do not reduce to the renor-
malization of the cosmological or gravitational constant
even in the lowest orders of curvature expansion. There-
fore, the dependence of I'p on P will be induced not only
by the metric argument of F[g]: Fp = I'[gi, $0~(P), P]
and the above mechanism will break down, since the first-
order term in (P —8z M) will no longer be generated by
the Einstein term of the effective action. On the con-
trary, if the mechanism proposed in [71] does work, it
is simply not necessary to relate the difference between
the Bekenstein-Hawking ("thermodynamical") and the
dynamical entropies of a black hole with the renormal-
ization of the gravitational constant.

We would like to conclude the paper by reminding
readers that its main purpose was to develop an approach
which gives an adequate description of the internal de-
grees of &eedom of a black hole. This approach makes
a black hole very close to the usual body with real dy-
namical degrees of &eedom. Certainly, there are spe-
cial properties of a black hole which single it out as a
thermodynamical system. The detailed study of these
properties, especially in the general context of black hole
thermodynamics, requires further investigation.
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APPENDIX A: LICHNEROWICZ EQUATION
AND THE GEOMETRY OF THE

EINSTEIN-ROSEN BRIDGE

Here we show that the three-geometry of a spatial sec-
tion on which we define the no-boundary wave function of
true physical variables (3.11), (g, pz) = (h &, pT, mat-
ter variables) coincides with the geometry of the Einstein-
Rosen bridge in the lowest order of the perturbation the-
ory in (g, pT). This approximation corresponds to a
ground state of physical excitations (of both matter and
gravitational fields) on the spatial section with the topol-
ogy (3.3).

Consider three-geometry g b and define

that the corresponding three-metric is spherically sym-
metric.

The metric (A3) with (AS) can be identically rewritten
in the form in which both spatial infinities are represented
in the completely symmetric way. To do this we call that
the flat metric is conformally related with a metric on a
three-sphere S, so that we have

dr2
dl = 4p(dx + sin xdA ) = + r dO, (A7)

1 —2M/r

where 4'p is a solution of the conformal invariant equation
on the three-sphere,

(-
/4 ——R/ C)p ——0, (A8)

P =e' 7' ~('R ——h R)f 4 f (A1)

where 7', is a spatial covariant derivative. York [53]
showed that P gives a pure spin-two representation of
intrinsic geometry. Conditions P = 0 together with
p b ——0 specify the state where no dynamical gravita-
tional perturbations are present. For this case in the ab-
sence of matter the Lichnerowicz equation (3.9) reduces
to the equation

which is of the form @p —— Pp/ sin x, with
M / [sin(x/2) + cos (x/2)] .

In the presence of gravitational perturbations and mat-
ter, the Lichnerowicz equation (3.9) reads

ib, ——Ri 4=J, (A9)

where the source J in terms of conformally transformed
variables looks like

R = 0. (A2) J = ——( g ~p p sC —2vrT*C
1

(A10)

Condition P = 0 implies that the three-metric is con-
formally flat,

Denote by G(m, m') the Green function defined as a so-
lution of the equation

dl = 4 dip =@ (dx +dy +dz ).
~

A ——R
~

G(a, ~') = —8 (a, m') .
8

(A11)

The Lichnerowicz equation (A2) in this case is equivalent
to the equation The solution of the equation (A9) can be presented in

the form

(A4) 4'=4p+ G %~K J m g2dm. (A12)

M4=1+—,
2p

(As)

where p = x + y2 + z . For this conformal factor the
metric dl can be written as

dr2dl2= +r dO
1 —2M r (A6)

for the conformal factor 4. Here L is the Laplace op-
erator in the flat three-dimensional flat metric dip. A
solution which is regular everywhere is constant and the
corresponding geometry is a flat three-dimensional space
R . Nontrivial solutions have singularities. A solution
with one simple pole generates a three-dimensional space
S x R with the Einstein-Rosen bridge geometry. We
choose coordinates so that the pole is located at the ori-
gin of coordinates

and has a general solution in terms of the Green function
&(x, x'):

4(x) = 4p(x) + &(x, x') j(x')dx',
0

(A14)

The first term 40 is invariant with respect to the reflec-
tion y ~ vr —y. In the general case, J does not obey
this property and the solution 4' is not invariant under
reflection and asymptotic values of M~ of masses at in-
finities of Z~ are diEerent. In order to illustrate this
general property we consider here a simple case when J
is spherically symmetric.

We write 4 in. the form 4 = P/ sin X . The function P
obeys the equation

d2$ 1+ —P= j= JsinX, (A13)dy2 4

where r = p 1 + 2 . A point p = oo corresponds toM
2p

a spatial infinity of Z+, while a point p = 0 labels the
spatial infinity of Z, the constant M being the mass
(M+ ——M = M). The important property of the ob-
tained solution describing the state without excitation is

G(X, X') = —2(8(X —X') sin(X/2) cos(X'/2)

+8(g' —y) sin(g'/2) cos(g/2) l. (A1s)
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dP
M+ ——P dX g —0

M dP
dX x=

(A16)

From this expression it follows that

y(0) = M'~', y(~) = M'~',

P'(0) = M f /2 —n, P'(tr) = —M ~ /2+. P,

cos(X'/2)j(X')dX',
0

P = sin(y'/2) j(y')dy', (A17)
0

The asymptotic masses at two spatial infinities are fi(df2/dr*) —f2(dft/dr') =const.
Functions R i have the asymptotics exp(kicdr) at r -+

oo and exp(+icdr') at r* -+ —oo. We begin by defining
so-called up modes which are specified (for cd ) 0) by the
asymptotics

~up/ x & + ~col'P
(all t ~l4PT phoo. (86)

+lt il (87)

By comparing the Wronskians at r* = Boo for B"& and
its complex conjugated, one gets the standard relations
between reBection and absorption coefBcients

whence

M+ —M = 2M i (P —n). (A18)

The coefEcients of the radial equation are real. That
p. Up

is why R~i "(r) = R i(r) is again a solution. One has

This relation shows that in the general case the asymmet-
ric distribution of matter on the Einstein-Rosen bridge
results in di8'erent masses M+ and M at two asymp-
totic infinities. For a known distribution and fixed M+,
the value of M can be obtained by solving the Lich-
nerowicz equation.

R, (r) = R"~,(r),

so that r ~
——~ ~ and t ~

——t ~. The real and imag-
inary parts of R"i (r) (for cd ) 0) can be used as real
basic solutions. The problem is that the corresponding
solutions mp do not possess the proper normalization con-
ditions. In particular, the functions m"p and md " are
not orthogonal. Namely, one has

APPENDIX B: R-MODES

In this appendix we construct the basis of positive fre-
quency solutions

(tU i, tU, i, , ) = b(Cd —Cd )bii b

(tU i, tU i ) = b(Cd —Cd )bii b

(tU', "",tU"', , , ) = r ib(~ —Cd')bii. b

(89)

(Blo)

(811)

exp( —icdt)R i ~(r, 6, P) (81) Here

R i (r, 6, P) = R i(r)Yi (6, P), (82)

for the scalar field in the exterior region R+ of the eternal
black hole, for which spatial functions R i ~ are real (R
modes) .

By using the separation of variables for the equation
P = 0 we write

(fi, f*) = —~ f (fif~, —f2f1l)~~", ,(812)

is a scalar product in the space of solutions. The
proper normalization conditions (including the orthogo-
nality conditions) can be satisfied by the following linear
transformation of the basic functions:

where

Y~~(g, P) = PiP(g) ~ ~ cosmic,
sin mP,

m=O,
0&m&i,
—l &m&0.

(83) where

I

R) —a )R )+b )R

Rdown b Rup + Rdown
4/i

gl + lt~il

(813)

(814)

We choose the spherical harmonics Yj to be real so that
the R basis will be constructed if solutions R i(r) of
the radial equation (5.22) are chosen to be real. Denote
R i(r) = v 2trrR i(r), then the radial equation reads

T(st

alt-il gl+ lt-il
(815)

d R + (cd —Vi) R~i = 0, (84)
The following solutions R i~ (A = 1, 2) are real and

for u & 0 form a proper normalized basis

where r' = r —2M + 2Mln [(r —2M)/2M], and

( 2M) (l (l + 1) 2M'
~ )& " ") (85)

R~it —— (R, +R i "),
2

R~i2 —— (R~i —R~, " ).
i+2

(»6)

(817)

For any two solutions of (84) the Wronskian W[ft, f2]—: These solutions have the asymptotics



1762 A. O. BARVINSKY, V. P. FROLOV, AND A. I. ZELNIKOV 51

A+ e '" +A+ e'", r'm —oo,
(&)

— ~LA ~/A
B+ e' "+B+ e ' " r —+oo~LA ~l A

exp( —i~t) R, „(r,e, y), (B24)

Here

A+„=— QI+ lt, l+
I(
2

E v'I+ lt-tl)

B+„=— 1+ lt i v'I+ lt-tl

QI+

lt-tlat

(B18)

(B19)

(B20)

(B21)

where R t A(r, 8,P):—(/2nr) R~iA(r)Yi~(8, P) are
real functions, obeying the normalization conditions

= h((u —(u') S(i 8 8~~ . (B25)

In addition to the above constructed basis we also in-
troduce modes which are propagating inside a spherical
cavity surrounding a black hole. We assume that the
boundary conditions at the surface of the cavity located
at r = ro are of the form

(B22) dR~l
cr +PR i

7' —7' 0

=0, (B26)

).IR-~AI' —IR".l I' =
A=1

(B23)

By using the asymptotics (B6) and (B18), one can
show that near the horizon with real coefBcients n and P. We denote the cor-

responding real solutions as R lo and radial functions
R io ——(+2vrr) R io. The real solutions inside the cav-
ity have the following asymptotics near the horizon

To summarize, we constructed the basis (tvg) (w ) 0,
A=1, 2)

Rwlo(r) r&uloe + rwloe

where lr gaol
= 1.

(B27)
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