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Emergence of an effective two-dimensional quantum description from the study of
critical phenomena in black holes
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We study the occurrence of critical phenomena in four-dimensional, rotating, and charged black
holes, derive the critical exponents, and show that they satisfy the scaling laws. Correlation function
critical exponents and renormalization group considerations assign an effective (spatial) dimension,
d = 2, to the system. The two-dimensional Gaussian approximation of the order parameter is
shown to reproduce all the black hole's critical exponents. Higher order corrections (which are
always relevant) are discussed. Identifying the two-dimensional surface with the event horizon and
noting that a generalization of scaling leads to conformal invariance and then to string theory, we
arrive at 't Hooft's string interpretation of black holes. From this, an effective model for dealing
with a coarse-grained black hole quantization is proposed. We also give simple arguments that lead
to a (first) quantization of the black hole mass in units of the Planck mass, i.e., M ~Mp&+I with
l a positive integer, and then, from this result, to the proportionality between quantum entropy and
area.

PACS number(s): 04.70.Dy, 05.70.Jk

I. INTRODUCTION

The scaling of critical phenomena [1—4] applies to a
great variety of thermodynamical systems, those rang-
ing kom the internal structure of elementary particles to
ferroelectricity and turbulent fluid flow, passing through
superconductivity and superfluidity. The scaling is found
to hold (within experimental error) in almost every case.
The renormalization group approach [2,5] uses the scaling
hypothesis and provides a sound mathematical founda-
tion to the concept of universality. On the other hand
black hole dynamics is governed by analogues of the or-
dinary four laws of thermodynamics [6—8]. These two
facts lead us to conjecture that black holes also obey the
scaling laws or fourth law of thermodynamics [9,10].

Let us suppose that a rotating charged black hole is
held in equilibrium at some temperature T, with a sur-
rounding heat bath. If we consider a small, reversible
transfer of energy between the hole and its environment,
this absorption will be isotropic, and will occur in such a
way that the angular momentum J and charge Q remain
unchanged, on the average. The full thermal capacity
(not per unit mass) corresponding to this energy transfer
can be computed by eliminating M (the total mass of
the black hole) between the equations for the tempera-
ture and the area of the black hole, and differentiating
the entropy S keeping J and Q constant [11,12]:
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This heat capacity goes &om negative values for a
Schwarzschild black hole, Cs,h

—— M/T, to—positive
values for a nearly extreme Kerr-Newman black hole,
CEKN QM4 —J —M2Q -+ 0+. Thus, Cgg has
changed sign at some value of J and Q in between. In
fact, the heat capacity passes &om negative to positive
values through an in6nite discontinuity. This feature has
led Davies [11] to classify the phenomenon at the criti-
cal values of J and Q as a second-order phase transition.
The critical values J, and Q, at which the transition
occurs are obtained by making the denominator on the
right-hand side of Eq. (1) vanish. We can then define the
parametrization

J2
and g =

Eliminating S and T in Eq. (1) by use of the expressions
for the temperature and entropy of a black hole [9], the
infinite discontinuity in Cgg takes place at [ll]

+ 6$JQ + 4QJQ —3 (2)
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For an uncharged, i.e., Kerr, hole, qJg ——0. Thus,

j~q = 2v 3 —3. While for a nonrotating, i.e., Reissner-
Nordstrom, hole, jgg = 0. Thus, q~g = 3/4.

It can also be shown [13] that the four isothermal
compressibility-related derivatives K are divergent as
their corresponding heat capacities. For example,
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diverges as CJg on the singular segment given by Eq.
(2).

By use of the expressions for the temperature and en-
tropy of black holes [9], the heat capacity |gg can be
expressed as [13]

where the critical temperature is given by T
j27rM[3+ +3 —qzg]), and q~g is given by the criti-
cal curve Eq. (2).

In analogy to Quid and magnetic systems near critical
conditions [1], we can define the following critical expo-
nents for black holes.

For the specific heat at constant J and Q,

(T —T,) for J = J and Q = Q„
(J —J,)~ or (Q —Q, )~ for T = T,.

For the equation of state

n., +- for J= J, andQ=Q„
(J —J) / or(Q —Q) /s forT=T,

where 0 is the angular velocity and 4 is the electric potential of the event horizon.
For the isothermal susceptibility-related derivative,

K (T —T ) for J= J, andQ=Q„
TQ (J J )1—1/8 or (Q Q )1—1/8 for T T

and entropy

(T —T,)1 for J= J, andQ=Q„
(J —J,)+ or (Q —Q, )" for T = T, .

We can obtain the first two critical exponents (that
characterize the approach to the divergence in the heat
capacity at J, Q, and T fixed, respectively [9]) directly
by inspection of Eq. (4):

n+2P+p = 2, n+ P(b+1) = 2,

q(b+1) =(2 —~)(b —1), q= p(b —1), (12)

(9)

Analogously, from the expression for the compressibility,
Eq. (3) (that diverges as Cg g), we obtain the critical ex-
ponents corresponding to the approach to the divergence
at J, Q, and T fixed, respectively [9]:

1 —8-' =1 ~ b-' ~ O. (10)

P -+ 0 , b -+ 0,

1 —a=0, $~0.
One can easily check that the set of critical exponents
given by Eqs. (9)—(11) satisfy the scaling laws [1]:

To obtain the critical exponents corresponding to the
equation of state and entropy, we choose a path either
along a critical isotherm or at constant angular momen-
tuin J = J, or constant charge Q = Q . However, in
this case the black hole equations of state just reproduce
the critical values, and we can formally assign a zeroth
power corresponding to the critical exponents associated
with 0 and S, respectively [9]:

(2 —a)(b@ —1) + 1 = (1 —n)b, (p+ 2Q —b = 1 .

Five other heat capacities can be computed, of which
C~ g and Cg@ also exhibit a singular behavior. The
remaining C@ g ——CJ~, and C~@, being regular func-
tions in the allowed set of values of the parameters [13].
Heat capacities and isothermal compressibilities at fixed
(0, Q) and (J,4) give the same critical exponents as in
the previous case where we held (J, Q) constant. This
result can in fact be understood as a realization of the
universality hypothesis: For a continuous phase transition
the static critical exponents depend only on the following
three properties: (a) the dimensionality of the system, d;
(b) the internal symmetry dimensionality of the order pa-
rameters, D; (c) whether the forces are of short or long
range.

The critical curves for the three cases studied [9] are
all diH'erent, but the critical exponents, according to the
above-mentioned hypothesis, are the same within each
class as just specified. We also observe that the equality
between the primed (T ~ T, ) and unprimed (T ~ T+)
critical exponents is verified in each one of the three tran-
sitions studied.

The lack of qualitative change in the properties of the
black hole can be understood as in analogy to what hap-
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pens in the case of a liquid-vapor system, where near
criticality no qualitative distinction between phases can
be made. Note that in this case there is no such thing as
a latent heat [14] (since M remains continuous through
the transition), as it happens in magnetic critical transi-
tions. In addition, it can be seen that the critical tran-
sitions occur when we cool down the black hole with re-
spect to the corresponding Schwarzschild temperature,
Ts = 1/(8vrM), by increasing its charge or angular mo-
mentum at fixed total mass. Further, we have seen how
black holes satisfy the scaling laws and universality hy-
pothesis, both characteristics of critical phase transitions.

It is worth noting [14] that although this phase transi-
tion does not affect the internal state of the system it is
physically important as it indicates the transition from a
region (Cgg ( 0) where only a microcanonical ensemble
is appropriate (stable equilibrium if the system is isolated
from the outside world) to a region (Cgg ) 0) where a
canonical ensemble can be also used (stable equilibrium
with an infinite heat bath).

This paper is organized as follows. In Sec. II we ana-
lyze two further critical exponents defined for the static
correlation functions. We find that all critical exponents
correspond to those of a Gaussian model in two dimen-
sions. Renormalization group arguments are given to es-
tablish d = 2 as the effective dimension of the system. In
Sec. III we develop the idea of a two-dimensional effec-
tive representation for the black hole horizon as the fun-
damental object to quantize and make connection with
string theory in a description similar to that of 't Hooft.
We end the paper with a discussion and simple deriva-
tion, using the two-dimensional representation of black
holes, of a mass quantization, and a quantum originated
entropy-area relation.

further critical exponent, and ( is the correlation length.
As one approaches the critical curve ( diverges as

(15)

Here v is another critical exponent.
Kadanoff [15] studied the scaling properties of the cor-

relation functions and found a new scaling law relating
the critical exponents:

(2 —g)v = p. (16)

With an additional assumption about the scaling behav-
ior of the correlation function [16] one obtains the hyper-
scaling law

Ad=2 —0! (17)

2m exp &
—1

(18)

Note that only here the dependence with the dimension-
ality of the system appears. By use of the renormaliza-
tion group equations, one can show [17] that hyperscaling
holds for d & 4 but breaks down for d ) 4.

Now, let us consider the black hole in equilibrium with
a radiation bath. By use of the quantum Beld theory
technics in the curved spacetime of the black hole one
can obtain an approximate expression for the correlation
function of the fluctuations of Belds in this curved back-
ground. In equilibrium, the field will be in the Hartle-
Hawking vacuum state. The correlation function of a
scalar Beld in the Schwarzschild background, for large
distances r, is given by [18] (u being the frequency of the
mode in the Hartle-Hawking state considered)

II. CORRELATION FUNCTIONS, THE
GAUSSIAN MODEL) AND THE
RENORMALIZATION GROUP

Not only relations among critical exponents corre-
sponding to thermodynamic functions can be obtained,
but also relations concerning correlation function expo-
nents.

The static two-point (at distance lrl) connected corre-
lations can be defined as

and thus, independent of the distance r. Here, we shall
make the hypothesis that in equilibrium gravitational
correlations kom black hole fluctuations behave in a sim-
ilar qualitative way to the scalar Beld fluctuations, even
considering charged and rotating black holes. We will
propose below that the black hole itself can be repre-
sented effectively, near criticality, by an order parameter
P having the same critical exponents.

From Eq. (14) we thus conclude that

d —2+g =0.

(Irl) = (&(0) &(r)) —l(&)l
The correlation length can be forinally defined from [3]

L

G, (r) „ , r large .(,) exp { r/()— (14)

Here d is the (spatial) dimensionality of the system, g is a

where P is the order parameter of the system in question
and may have, in principle, D different internal compo-
nents (for example, in the Ising model, the order param-
eter has only one component; in a Heisenberg system,
three; and in the He superfluid transition as many as 18
I:3]).

Away, but not far &om the critical region, one can
write

1 (O'G((u) )
2Kz ( 0(u2 )

(2o)

1
2' (21)

where we have used the definition of v, Eq. (15), and that
in our case p = 1.

We see that our two new critical exponents [Eqs. (19)
and (21)] take values that fulfill the scaling relation (16)
only if the dimension of the system is d = 2. In this

By use of Eq. (18) and since K& lT —T,
l

~ we find
that
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case, the hyperscaling relation (17) is also satisfied, as
expected for d ( 4, and we have

(22)

of the sign of

1K=n —p ——d(n —2) .
2

(26)

This is, in fact, the first hint that our system behaves as
an efFective two-dimensional one. [Alternatively, from the
results below, where we obtain d = 2, and by asking the
system to satisfy the scaling and hyperscaling relations,
we would find the results (21) and (22) for the static
correlation function's critical exponents. ]

Additional insight can be gained by comparison to the
Gaussian model. This model can be described in its con-
tinuous version by the partition function [4]

zc (J) = A 17/ exp (—
1 2+-~0 —~0

I2

d"z —c iV+id 12
2

The Hamiltonian appearing in the exponential can be
seen as a truncation of orders P or higher in a Ginzburg-
Landau model. The Gaussian model was originally stud-
ied [19] for a discrete spin variable. It has the advantage
of being exactly soluble, and it presents a critical point
with critical exponents (for a one-component field P, i.e. ,
D = 1) given by [17]

a = 2 —d/2, P = (d —2)/4, p = 1

d+2 1@=0, v=-
d —2 2

(24)

II.~(4) = -c'I&+I'+ -p+'+ —+'+ t+'I&+I'+ ".
4t

(25)

The scaling properties of the additional operators, with
n powers of P and p derivatives, can be studied in terms

It is worth remarking here that all these critical expo-
nents can be made to take exactly the same values as for
the black hole case, i.e. , Eqs. (9)—(11), for d = 2. Thus,
d = 2 appears here as the effective spatial dimensionality
of black holes near critical conditions.

The Gaussian model is not fully satisfactory because it
has no "ordered" phase. The integral in Eq. (23) diverges
for T ( T, and thus one must include higher-order terms
(e.g. , P ) to stabilize this integral. It is interesting to
note here that black holes themselves pass through the
critical curve (at T = T, ) from a region of canonical
instability to a region of canonical stability as one lowers
their temperature (see Figs. 1 and 2 of Ref. [9]).

One might think that the resulting eBective dimension
of the system, d = 2, relies only on comparison to the
Gaussian model and that other possibilities are still open.
To explore this possibility we can recall some results &om
the renormalization group theory. Let us suppose that
our efI'ective Hamiltonian contains terms of order higher
than in the Gaussian model. We then can write

If 4 is positive (negative) the operator is relevant (irrel-
evant) [4].

Thus, if the dimensionality of the system were larger
than or equal to four, the renormalization group analysis
tells us [5,4] that the operators we have added to the
Gaussian Hamiltonian are "irrelevant" in the sense that
they do not contribute to modify the critical exponents,
which will be those of the Gaussian model or the mean
field (Landau) theory. Thus, no matching with the black
hole results can be made for d & 4 models, since those
values do not coincide with Eqs. (9)—(ll). There is still
the possibility of having d = 3, as is the case of the most
realistic system, e.g. , those studied in the laboratory. In
d = 3, P becomes a relevant operator. One can make
a perturbation theory based on the Gaussian part of the
Hamiltonian and obtain a set of critical exponents [4]
that fit very well with laboratory experiments but are not
those of black holes. Thus, we are left with d = 2 (since
for d ( 2 no critical phenomena take place). The problem
here is that all operators of the form P and ~V'P~ s'P

are relevant and thus will modify the critical exponents.
Since all operators are relevant, we expect this theory to
be renormalizable. In fact, we know that field theory (as
well as gravity) in two dimensions is asymptotically free
in the ultraviolet allowing us to build up a finite quantum
field theory.

We can now conclude that the first-order approxima-
tion to quantum efI'ects in black holes corresponds to the
Gaussian approximation. Let us recall that the path
integral formulation of the Hawking [20] radiation and
black hole gravitational thermodynamics relies on the
stationary phase approximation to obtain a convergent
Gaussian integral. The next-order approximation should
include back reaction and self-interaction effects as well
as higher-order quantum corrections. In fact, whatever
would be the final form of the quantum theory of gravity,
we can assume that the Kerr metric should be a classical
solution to the vacuum field equations. The critical expo-
nents of this black hole solution will then be those given
in Eqs. (9)—(11). By applying the universality hypothe-
sis, these exponents will be the same (at first quantum
order) for the full family of black hole solutions to that
theory. We can thus conjecture that critical phenom-
ena in black holes will survive to higher quantum order
corrections. The scaling laws will continue to hold, but
the critical exponents that will satisfy these laws, when
quantum higher-order corrections are taken into account,
will be di8'erent &om those given by Eqs. (9)—(11).

III. THE BLACK HOLE HORIZON AS A
QUANTUM CRITICAL SYSTEM

Now that we have established that the dimensionality
of the system is d = 2, it remains to identify this two-
dimensional surface. A natural choice is the horizon of
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the black hole (or better, a slightly shifted outwards 2+1
hypersurface [21]). One observer far away from the black
hole sees all the matter of the collapsing body that will
form it to accumulate on the two-dimensional horizon
forming some kind of "membrane" [22] or subtle "skin"
[81

By analogy to the models for spin systems able to suf-
fer critical transitions, we can think of the event horizon
as having only a finite (and eventually discrete) number
of degrees of freedom at every (lattice) cell of Planckian
dimensions. We know that if there is a continuous in-
ternal symmetry in the order parameter, no long range
order, or broken symmetry, will occur in two space di-
mensions. If the symmetry is discrete it is possible (e.g. ,
Ising model).

It is interesting to compare our approach to black hole
quantization with that of 't Hooft [23,24] since several
points in common can be drawn. In this approach to
the problem of black hole quantization one postulates
the existence of an S matrix to describe the evapora-
tion process. This hypothesis seems to be supported by
new evidence revealing that processes such as stimulated
emission in the Hawking radiation might play an impor-
tant role in helping to solve the loss of quantum infor-
mation and/or coherence paradox [25]. The horizon shift
produced by light particles going out or coming into the
horizon is an essential ingredient in the construction of
the S matrix. Its elements are given by

a = d~r+r(r+) b = 32vrpr+2g„„(r+) .

b
P .+ [—cos(O —0')]

f(O —0') = ——
cosh m a —1 4

(30)

The Legendre functions P ry2+, , (z) are called conical
functions and are de6ned positives for z & 1.

The poles of the S matrix (27) can be evaluated as
follows. First, we note that the structure of these poles
depends essentially on the short distance behavior of the
function f(AO) (see Ref. [30]). For our function (30) this
is given by

f(bO) = b sin (mA) (AO&
21n

4' cosh m a —1 4

+eg(A + 1) + x cot (eA) I,
where

1
A = ——+ ivrga —1/4

2

This expression can be integrated by using the properties
of Legendre polynomials [29]:

(p "'(B)[p' (0)) =A'exp if f p "'(O)f(B —0') vP(z) = and p = 0.577215... .
I"( )=
r(z) (32)

xp'"(0')d Od 0'
What is essential here is the logarithmic dependence of
f(EA). For this dependence the poles of the S matrix
are found to lie in [31]

'rg'~ f —af = bb (0 —0'), (28)

where p'"(0) and p " (0) are the momentum distribution
at angle 0 = (6, (p) of the in- and outgoing particles,
respectively. The shift function f is the Green function
defined on the event horizon [26—28] satisfying

E = —ilMp& with l a positive integer .

These imaginary poles give the bound state spectrum and
correspond to the ultrarelativistic hydrogenlike poles.

A functional integral representation can be given for
the S matrix [23]:

(p "'(&)[lp"(&)) ~f &*(&) pI f &'& ——(&oe)'+ox* +**p'*'
) .2~- (34)

The similarity between this expression and the partition
function of our model, Eq. (23), is apparent if we identify
there the two-dimensional surface with the event horizon
and the scalar order parameter with the "membrane co-
ordinates, " x.

Near criticality the "mass term" p, in Eq. (23) vanishes
like p [T —T, [

. Thus, the model becomes conformally
invariant. In this case we can write the functional integral
formulation in a covariant "stringy" way:

Finite size efFects are not expected to acct the scaling
properties derived in the thermodynamic limit [3].

Zo(J) = A f gee(a)ggg e(c ) exp( —f geo[ i~gg e—
xg degede+iqiege[)I, (35)

where o stands for the two horizon coordinates (in Eu-
clidean space), the order parameter has now p internal
dimensions, and g is the metric on the horizon surface
(for a membrane interpretation see Ref. [32]).

Summarizing, we have started by showing the scaling
of black holes near criticality. This property of criti-
cal systems can be embodied in the conformal invari-
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ance theory [33,34]. Then, we are led to string theory,
which is a realization of a conformal Geld theory on the
two-dimensional world sheet [35]. Equation (35) corre-
sponds to the bosonic string case. The fermionic degrees
of freedom can be eventually incorporated in it, this cor-
responding to the addition of a fermionic order parameter
in the efFective Hamiltonian Eq. (25).

Actually, for a continuum model, the lower critical di-
mension is precisely two [4). This means that to have
critical phenomena we should consider d = 2+ e, where ~

remains small whenever the hole is big compared to the
Planck scale [36]. Otherwise, if we consider a discrete
model, the lower critical dimension is one. We could thus
keep d = 2 and deal with a discrete order parameter on
the surface of a black hole transformed now in a lattice
with a spacing of the order of the Planck length.

Of particular interest here is the result that the contin-
uum limit of the two-dimensional tricritical Ising model
near the critical point is supersymmetric [37] (in Ref. [9]
we remarked the existence of tricritical points in extreme
Kerr-Newman black holes).

The results presented in this paper lead us to consider
the following effective model for dealing with a coarse-
grained quantization of black holes: A black hole appears
to an external observer as if it had all its quantum de
grees of freedom concentrated on a thin membrane tightly
covering the horizon.

This "phenomenological" model is of course observer-
dependent, since in a reference system falling with the
matter that will form the black hole, nothing special nor
the membrane is seen when crossing the horizon. It is
also clear that it is the "skin" on the horizon that we
propose to consider as a system to quantize by using the
standard rules of quantum Geid theory. In particular,
we expect a unitary S matrix to exist, and to describe
the process of formation and evaporation of a black hole
without leaving room for loss of quantum coherence.

E
—0 + V' + 6 =0

H
(36)

where r~ = M + QM2 —a2 —Q2 is the horizon radius,
we have the following set of eigenfunctions:

in a similar way as is done, for example, with the details
of copper and zinc atoms &om the description of P brass
to obtain the Ising inodel [4].

We have shown conclusive evidence that black holes
undergo critical phenomena. Under this condition their
characteristic behavior is as if they had an effective di-
mension equal to two (plus, eventually, e). This dimen-
sionality was Grst obtained by asking that the critical ex-
ponents g and v, obtained from the correlation functions,
satisfy the scaling (and hyperscaling) relations. Then it
was shown that by comparison of the black holes other
critical exponents with those of the Gaussian model in
d dimensions, complete agreement can only be found for
d = 2. Finally, by quite general arguments coming &om
the renormalization group theory, we have argued that
the effective dimension cannot be d & 3.

The efFective two dimensionality [we remark that here
this is not imposed externally as in the case of two-
dimensional (2D) black holes [39]] has several interesting
consequences. Here we shall briefly discuss two of them.

A simple way to show how the mass of a black hole
should be quantized can be obtained by describing the
black hole by a wave function corresponding to the order
parameter in a critical system (collective variable) hav-
ing one component (a single scalar field) depending only
on the two angular coordinates that cover the horizon
surface and the proper time w. In this simplified model
the only efFect of the black hole's gravitational Geld is to
provide the background geometry, i.e. , the spherical sur-
face representing the horizon. If we impose to this wave
function the Klein-Gordon equation (which corresponds
to the Gaussian approximation)

IV. DISCUSSION ——exp ( iEir lYj~(8,—io), (37)

Prom the viewpoint of Geld theory the nonrenormaliz-
ability of quantum gravity is seen as a particularly an-
noying problem. Especially since the establishment of
the standard model of weak, electromagnetic, and strong
interactions, renormalizability has become a natural re-
quirement to any good theory. On the other hand, from
the point of view of statistical physics [38] the nonrenor-
malizability of gravity appears natural, since its weakness
suggests it is irrelevant (in critical phenomena language)
and therefore nonrenormalizable. At low energies, far
below Epi, only the relevant operators (which lead to
renormalizable theories) will survive. This explains why
all current experimental observations can be accurately
described in terms of an effective long distance gravi-
tational theory. As P decay is the low-energy remnant
of much richer physics above the electroweak scale, new
physics should be expected at energies E ) Ep~. Our
efFective model, introduced in the last section, can be
thought of as the low-energy version of the physics above
Epi obtained by eliminating the details of its structure

h'l(l + I)—p
H

l =0, 1, 2, ... . (38)

Since r~ 2GM/c (for a Schwarzschild hole) and (if
we consider that the whole black hole is represented by
P) E~ M, Eq. (38) implies

2

M —+ — @4+Mp4, l(l + 1) .

We have that, for big I (where we expect this approach
to be valid),

For the alternative view of MBH ——M+EI, i.e., quantization
of the Suctuations around the classical value, see Ref. [32].

where Y~ are the spherical harmonics and the energy of
the system is given by
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1
M Mpi v l, with l a positive integer. (39)

2

This represents a quantization of the black hole mass in
units of the Planck mass. It is interesting to remark that
the QL dependence has also been found in Eq. (33), and
by Bekenstein [40] using the quantization of adiabatic
invariant action integrals (see Refs. [41—45] for still other
independent derivations). We note that Eq. (39) consists
of three factors. While the First 1/v 2 term is expected
to be model dependent, the Mp~ factor could have been
guessed on dimensional grounds. There seems to be some
agreement in the cited literature as well as in our Eqs.
(33) and (39) on the Ql dependence. We thus think that
Eq. (39) represents a First approximation to the black
hole mass quantization. The black hole radiation will
now come out in the form of a line spectrum with most

of the radiation at the frequency Lu~ ——LMc = 4~
(also in multiples of this frequency), which corresponds
to the maximum of the (continuum) Hawking spectrum,

~ e-, ~max
Since our black hole system, as we have seen, has an

associated effective dimension equal to two, the propor-
tionality entropy area can be expected to appear in a
natural way. In fact, since the mass of the black hole
is quantized there must be a finite number of internal
states. They can be counted by noting [42] that a black
hole of mass M given by Eq. (39) can be formed in 2'
difFerent (and equivalent) ways &om units of Mpi. The
entropy associated with the ignorance of the exact way
in which the black hole formed, can be evaluated, in a
first approximation, as SBH kii ln [2 ] . For large l
we have

which gives the well-known proportionality between en-
tropy and area of a black hole.

One should not be bewildered by these results, since
they are founded on a crude approximation to the quan-
tum black hole problem. The model is necessarily incom-
plete (a second quantized description should be consid-
ered, for example). Also 't Hooft suggests that the quan-
tum states labeled by Ei in Eq. (38) are enormously de-
generated [46]. It is also important to evaluate the width
of each energy level (to account for the quantum insta-
bility of black holes) and compare it to the separation
between energy levels [47]. However, what we wanted
to rescue &om the above crude model is the relevance
of the essentially two-dimensional nature of semiclassical
black holes and the possibility of representing them, in a
First approximation, by a single scalar Field (playing the
role of the order parameter in a critical system).

Thus, in conclusion, we can say that black holes may
have "no hair" [48,49], but instead they seem to behave
as if they had "skin. "
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SiiH kJ3 ln2
~ [

ln 2 (4rrrH)
t' M ) k~/pi

g Mpi ) 4rr
(4o) A more detailed treatment is under study by the present
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