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Gravitons and light cone fluctuations
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Gravitons in a squeezed vacuum state, the natural result of quantum creation in the early Uni-
verse or by black holes, will introduce metric Quctuations. These metric Quctuations will introduce
Quctuations of the light cone. It is shown that when the various two-point functions of a quantized
field are averaged over the metric Quctuations, the light cone singularity disappears for distinct
points. The metric-averaged functions remain singular in the limit of coincident points. The metric-
averaged retarded Green's function for a massless field becomes a Gaussian which is nonzero both
inside and outside of the classical light cone. This implies some photons propagate faster than the
classical light speed, whereas others propagate slower. The possible effects of metric Quctuations
upon one-loop quantum processes are discussed and illustrated by the calculation of the one-loop
electron self-energy.

PACS number(s): 04.60.—m, 04.62.+v, 11.10.Gh, 98.80.Cq

I. INTRODUCTION

It was conjectured several years ago by Pauli [1] that
the ultraviolet divergences of quantum field theory might
be removed in a theory in which gravity is quantized. The
basis of Pauli's conjecture was the observation that these
divergences arise &om the light cone singularities of two-
point functions, and that quantum Buctuations of the
spacetime metric ought to smear out the light cone, pos-
sibly removing these singularities. This conjecture was
discussed further by Deser [2], in the context of a path
integral approach to the quantization of gravity, and by
Isham, Salam, and Strathdee [3]. However, there seems
to have been little progress on this question in the inter-
vening years. Indeed, it is well known that perturbative
quantum gravity, far from being a universal regulator,
is aRicted with nonrenormalizable infinities of its own.
In the present work, the issue of light cone Huctuations
will be examined in a context where they are produced
by gravitons propagating on a Bat background. We as-
sume that the gravitons are in a squeezed vacuum state,
which is the appropriate state for relic gravitons created
by quantum particle creation processes in the early Uni-
verse [4] or by black hole evaporation. More generally, a
squeezed vacuum state is the quantum state which arises
in any quantum particle creation process in which the
state of the created particles is an in-vacuum state rep-
resented in an out-Fock space. It will be shown that av-
eraging over the metric Huctuations associated with such
gravitons has the effect of smearing out the light cone.

It should be noted that the metric Buctuations be-
ing considered in this paper are distinct from those due
to Buctuations in the energy-momentum tensor of the
source [5, 6]. It is possible for the energy density, for ex-
ample, to exhibit large Buctuations. This arises in the
Casimir effect and in quantum states in which the ex-
pectation value of the energy density is negative. This
means that the gravitational field of such a system is
not described by a fixed classical metric, but rather by
a Huctuating metric. However, these metric Huctuations

are "passive" in the sense that they are driven by Buc-
tuations in the degrees of freedom of the matter field.
In contrast, the metric Huctuations due to gravitons in
a squeezed state are "active" Buctuations produced by
quantized degrees of freedom of the gravitational field
itself.

In Sec. II, the retarded, Hadamard, and Feynman func-
tions will be averaged over metric Buctuations. The re-
sulting smearing of the light cone is also discussed. The
average of the square of the Feynman propagator for a
scalar field is also calculated. The results are given in
terms of the mean square of the squared geodesic sep-
aration between points. In Sec. III, this quantity is
calculated explicitly for various cases. In this section,
gravitons in an expanding universe are also discussed,
and some estimates for the present background of relic
gravitons are given. The one-loop electron self-energy
in the presence of metric Huctuations is calculated and
discussed in Sec. IV. The results of the paper are sum-
marized and discussed in Sec. V.

II. AVERAGING TWO-POINT FUNCTIONS
OVER METRIC FLUCTUATIONS

A. The retarded Green'8 function

Let us consider a Hat background spacetime with a
linearized perturbation h„propagating upon it. Thus
the spacetime metric may be written as

ds2 = g„dx"dx"= (rl„„+k„„)dx"dx
= dh —dx. + h„„dx"dx".

In the unperturbed spacetime, the square of the geodesic
separation of points z and x' is 2op ——(x —x') = (t-
t')2 —(x —x')2. In the presence of the perturbation, let
this squared separation be 2o, and write

so oi is the shift in 0 to first order in h„„.
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Let us consider the retarded Green's function for a
massless scalar 6eld. In Qat spacetime, this function is

G,'.'(* — ') = ~( )
(()), 8(t —t')

which has a b-function singularity on the future light cone
and is zero elsewhere. In the presence of a classical metric
perturbation, the retarded Green's function has its b-
function singularity on the perturbed light cone, where
o = 0. In general, it may also become nonzero on the
interior of the light cone due to backscattering off the
curvature. However, we are primarily interested in the
behavior near the new light cone, and so let us replace
G(„)(x —x') by

8(t —t')
G,.t(x, x') = b(o) .

4m. (4)

We are assuming that the curved space Green's functions
have the Hadamard form, in which case their leading
asymptotic behavior near the light cone is the same as
in fiat space [7]. One may regard this assumption as a
restriction on the physically allowable quantum states.
If we terminate the expansion of 0 at first order (higher
orders will be discussed below), then Eq. (4) may be
expressed as

0(t —t'&

—OO

We now replace the classical metric perturbations by
gravitons in a squeezed vacuum state I@). Then oq be-
comes a quantum operator which is linear in the graviton
6eld operator, h~„.A squeezed vacuum state is a state
such that oz may be decomposed into positive and neg-
ative &equency parts. Thus we may find oz+ and oy so
that

~i+I@) = o

where oq ——oz + oz . In terms of annihilation and cre-
ation operators, o ~+ = P. a~ f~ and (r~ = P. at f*, where
the f~ are mode functions. We now write

(G,"(-,-')) = 8(t —t')
&(~l) 1(~l) ) ' (10)

Note that this averaged Green's function is indeed 6nite
at oo ——0 provided that (o&2) g 0. Thus the light cone
singularity has been smeared out, as illustrated in Fig. 1.
Note that the smearing occurs in both the timelike and
spacelike directions.

This smearing may be interpreted as due to the fact
that photons may be either slowed down or boosted by
the metric Quctuations. Photon propagation now be-
comes a statistical phenomenon; some photons travel
slower than light on the classical spacetime, whereas oth-
ers travel faster. We have now the possibility of "faster
than light" signals. This need not cause any causal para-
doxes, however, because the system is no longer Lorentz
invariant. The graviton state de6nes a preferred frame of
reference. The usual argument linking superluminal sig-
nals with causality violation assumes Lorentz invariance
[8]

The effects of light cone Quctuations upon photon
propagation are in principle observable. Consider a
source which emits evenly spaced pulses. An observer
at a distance D Rom the source mill detect pulses whose
spacing varies by an amount of the order of Lt. For a
pulse which is delayed by time Lt,

0 = —[(D+ At) —D ] = DAt,
1
2

Lt && D.

Thus the typical time delay or advance is of the order of

The expectation value of oz is formally divergent. How-
ever, in Qat spacetime this divergence may be removed
by subtraction of the expectation value in the Minkowski
vacuum state. Henceforth, we will take ((r&2) to denote
this renormalized expectation value.

The above integral converges only if (oz) ) 0, in which
case it may be evaluated to yield

e'A(10'1 'Eca(o'1 +0'1 ) 'L110'1 e 1 11 [0'1 0'1 j 'lcxo'1
(7)

In the second step we used the Campbell Baker--'&aHausdorff formula, that e + = e e ~ ~ ~ e for any pair
of operators A and B that each commute with their com-
mutator, [A, B]. We now take the expectation value of

2 CXD'this expression and use the facts that e' & I@) = Ig) and
(@Ie' & = (@I, which follow immediately &om Eq. (6) if
the exponentials are expanded in a power series. Finally,
we use [o~+, o.

~ ] = P. f~ f* =(Oq ) to writ. e

Thus when we average over the metric Quctuations, the
retarded Green's function is replaced by its quantum ex-
pectation value:

FIG. 1. The smearing of the light cone due to metric Buc-
tuations. A photon which arrives at Point A from the origin
has been slowed by the eKect of metric Buctuations. A photon
which arrives at Point B has been boosted by metric Quctua-
tions, and appears to travel at a superluminal velocity in the
background metric.
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This effect leads to the broadening of spectral lines. The
observer will detect a line which is broadened in wave-
length by LA = Lt. Some observational aspects of this
eg'ect will be discussed in more detail in Sec. III.

Note that it is essential that the gravitons be in a non-
classical state, such as a squeezed vacuum, in order to
obtain light cone smearing. Gravitons in a coherent state
will represent a classical gravity wave. In this case, the
retarded Green s function will still have a b-function sin-
gularity on the light cone of the perturbed spacetime.

In the above calculation of (G„i(x,x')), the expansion
of o. was truncated after the first order. However, it is
of interest to consider the effect of second-order terms.
This is particularly pertinent in view of the fact that
the crucial corrections involve (0 i), which is itself second
order in h„[9].We now write

0' = 0 p + CJi + 0'2 + O(h ~),

but not of the functions themselves. This seems to be
self-consistent in that retaining successively higher terms
in o. leads to small changes in the form of the results, as
we saw in going from Eq. (10) to Eq. (18).

B. The Hadamard function

G.(,*') -=(014(*)4(*')+ 4(*')4(*)I0), (19)

where ~0) is the vacuum state In. the inassless case in
flat spacetime, it has the explicit form

In addition to the retarded and advanced Green's func-
tions discussed in the previous subsection, there are sev-
eral other singular functions in quantum field theory
which can be expressed as vacuum expectation values of
products of field operators. In particular, the Hadamard
function for a scalar field P is defined as

so that o.2 is the second-order correction. We now wish to
include this correction in the calculation of (G„t(x,x')).
Let us first write

0.2 —.02 . +(0.2), (14)

g&~(~1+~2) g&~~1 g 2 ~ [~1 1 ]g~~~l g ~(~2)' &~.~2.

where the colons denote normal ordering with respect to
the state ~g), and the expectation value is understood to
be in this state. Equation (7) is now replaced by

Gi(x, x') =—

Recall that o is one-half of the square of the geodesic
distance between x and x', and in fat spacetime, cr =
2i(x —z')2. Even in the massive case, and/or in curved
spacetime, Eq. (20) gives the asyinptotic behavior of
Gi(z, x') near the light cone. As in the case of the re-
tarded Green's function, we now wish to replace o. by
op + (7' and take the quantum expectation value of the
result. Let us use the identities

Here we have ignored all terms which are of third or-
der or higher, including those which arise when: o.2 . is
commuted past o~+. We use the fact that

" '"'I&) = 14)

and

f 2
do. e* = —+ orb(z),

0 x

f 2dae ' = ——+ vr8(z),
0 x

to write the analogue of Eq. (8):

( ia(ay+ay)) in(ag) —~a (a~) (i7)

to write

op+ oy
i(crp+cri) cx —

i(op+cry�

)a
2 p

As in the case of (0 i), we assume that (o 2) is a renormal-
ized expectation value. Now the metric averaged Green's
function becomes

Now use Eq. (8) to take the expectation value of the
above expression and write

(G„g(z,z')) = 8(t —t') 7r op + (02)
2( l)

OO

do, sj.nopo. e
4' 2

(24)
Comparison with Eq. (10) reveals that the effect of re-
taining the oq term is simply to shift slightly the position
of the peak of the Gaussian. Thus (02) enters in a dif-
ferent way from (cri), due to the different powers of n
in Eq. (17). The same phenomenon would occur for the
other functions to be discussed below, so henceforth the
o.2 terms will be ignored. .

It should be noted that although we are expanding o
in powers of the metric perturbation h~„,the averaging
procedure used to obtain (G„q(z,z')) retains terms of all
orders in h,„„.This is essential in order to obtain nontriv-
ial results. We can think of this as an expansion of the
argument of the exponential functions in Eqs. (5) or (15)

(Gi(x, x')) - —
( ), op m0.

Thus the light cone singularity is removed so long as
(oi2) g 0, which will generally be the case for nonco-
incident points. Equation (24) may be rewritten as

This expression gives us the Hadamard function averaged
over metric fluctuations for the case that (vari) & 0.

Let us examine the asymptotic forms of this result.
Near the classical light cone, op + 0. If we expand the
integrand of the above expression to lowest order in op,
and perform the integration, we find that
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(Gz(x, x')) = — 1 —
2 dtt cost( l)

4~2~o - Op2 o

(26)

In the limit that 0p )) (0&2), the second term above is
negligible and we recover the classical form of G~.

and it is the case of greater physical interest. Combining
Eqs. (10) and (24), we obtain

2

OO
1 2 2

do. sincron e
Sm2

(G~(»x )) -—I 1
4m'20p (27)

Again, this quantity is finite except in the coincidence
limit, x' m x.

Alternately, we can write
The above expression for (Gq(x, x')) is valid for (0'~) )

0. We can, however, obtain an alternative form valid for
the case that (o~2) & 0. To do so, we use the representa-
tion

Gs(x, x') = 1 i 1——orb(0. ) = — dne '
Svr2 o 8+2

0'o + 0'y

—(CTO+C71 )CX

0
(28) Averaging this integral form for G~ over metric Quctua-

tions yields

Now we have

(G~(x~ x')) = —
4

OO

dA e
—boa e &

a (a&)
4' 2 o

Near the light cone, this quantity is finite:

(29)

(G (x, x')) = — dne ' ' e ') . (36)
8vr2

This form is equivalent to Eq. (34). Note that whereas
the real part of the above integral may be expressed in
terms of elementary functions, the imaginary part may
not.

D. The square of the Feynman propagator

1
(G (* *)) op —+ 0.

We may rewrite Eq. (29) as

1 02)
(G, (x, x')) =—, 1+ ', dhte-'

47l' Op 0p p

(( 2)t2)
x exp

20p
(31)

C. The Feynxnan propagator

The average of the Feynrnan propagator G~ over the
metric Buctuations can readily be obtained by combining
the results of the previous two subsections. We use the
identity

Gp(x, x') = ——G„g(x,x') + G s„(x,x') ——Gg(x, x'),

From this form, we again obtain Eq. (27) when 0p )&
~(0&)l. Alternatively, Eq. (31) may be derived by ex-
panding (0'p+ 0'q) in a power series in oq, using Wick's
theorem to replace (0'z2 ) by (2n —1)!!(0~2), and finall
resuming the result by Borel summation.

Earlier in this section, we obtained expressions for the
various singular functions averaged over metric Huctu-
ations. However, the Feynman diagrams for one-loop
processes often involve products of at least two Feyn-
man propagators. Thus, if we wish to study the e8ect
of metric Buctuations upon these processes, we need an
expression for quantities such as (G+~), the average of the
square of the Feynman propagator. We will again assume
that (0&2) & 0. We may use Eq. (35) to write

G2 dn dP ei(a+P)cr (37)
(8m 2) p

If we set o = o'o + crq, and average over the metric Quc-
tuations, the result is

dn dP e
—*'(a+A)aoe —-', (a+&)'(ai)

(8n 2) p

We next change the integration variables, first to po-
lar coordinates defined by n = pcos 8 and P = psin8,
and then to a rescaled radial coordinate defined by t =
(cos8+ sin8)p:

OO

(G2 ) d8 d
—i(cos 8+sin s)crc p

(Sm2) p p

G, (*,x') = G...(*',*). (33)

We restrict our attention to the case that (0~2) ) 0, both
because it is only here that we have a formula for (G„q),

(32)

and the fact that the advanced Green's function is related
to the retarded Green's function by

x exp ——(cos 8 + sin 8) (0 z )p
1 ~ 2 2 2

2

1 & d8

(8~2) 2
p (cos 8 + sin 8)2

X dtte ' 'e
0

(39)
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We now use the identity

d8 =1 40
(cos 8 + sin 0)2

to write our result (for later use, it is convenient to relabel
the integration variable):

1 1 2 2(G') = dncie ' ' e
(8vr2) o

In this case, the imaginary part of the integral can be
expressed in terms of elementary functions to write

2 1 1n2 O2
(G&) = dcin cos ooci e64~4,

V'2~oo oo+~ 3 exp (42)
128vr4(cri2)~ 2(o'i)

(41)

Again, these forms hold for the case that (cri2) ) 0. As in
the case of the averaged Green's functions, this quantity
is finite on the classical light cone, op = 0, so long as the
points are not actually coincident, so (cri2) g 0.

III. GRAVITONS AND THE FORM OF (oi2)

A. Gravitons in Hat spacetime

h~ = O h'~ = h = O. (43)

In particular, h„„haspurely spatial components h, ~ in
a chosen coordinate system. Thus, in this gauge, a null
geodesic is speci6ed by

dt = dx —h; dx'dx~,

and along a future-directed null geodesic, one has

(44)

dt = 1 —h; n'n& dr 1 ——h; n'n~ dr. (45)

Here dr = IdxI, and n' = dx'/dr is the unit three-vector
de6ning the spatial direction of the geodesic. Thus the
time interval Lt and spatial interval Lr = r~ —rp tra-
versed by a null ray are related by

&1

Lt = Lr —— h;~n'n~ dr.
2

(46)

Denote the right-hand side of the above expression by
AE, the proper spatial distance interval between the end
points. Now consider an arbitrary pair of points (not
necessarily null separated). The square of the geodesic

So far, we have only assumed that the quantum state
Iv)) of the gravitons is such that oi can be decomposed
into positive and negative parts which satisfy Eq. (6).
However, we must have more information about the state
before we can deterxnine the explicit form of (cri2). Even
the calculation of oq for a given classical metric pertur-
bation can be a diKcult task, involving the integration
of the square root of Eq. (1) along a geodesic. How-
ever, as we are interested in gravitational wave pertur-
bations, we may simplify the analysis by the adoption of
the transverse-trace&ee gauge, which is speci6ed by the
conditions

so

1 &1

h,~n'n dr.
2

If we now treat h;~ as a quantized metric perturbation,
we obtain a formula for (cri2):

1 7 1 &1

(o.,) = (Ar) — dr dr' n'n~n" n
Tp Tp

x(h, , (x)hl, (x')) . (49)

Here the graviton two-point function (h;z (x)h~ (x')) is
understood to be renormalized, so that it is finite when
x = x' and vanishes when the quantum state of the gravi-
tons is the vacuum state.

Of particular interest is the case where only modes
with wavelengths long compared to Lr are excited, so
the two-point function is approximately constant in both
variables. Then

2 1
(cri) ——(hghg )Ax'Ex~Ex" Ax

4 tg TA (50)

where b,x' = (dx'/dr) Ar is the spatial coordinate sepa-
ration of the end points. In this frame of reference, (o i2)

will depend only upon Lx'.
We may illustrate the calculation of (oi) more explic-

itly. The 6eld operator h„„maybe expanded in terms of
plane waves as

h„=) [ui, ge„(k,A) fi, + H.c.],
k, A

where H.c. denotes the Hermitian conjugate, A labels
the polarization states, fi, = (2urV) ~e'~"'" l is a box
normalized mode function, and the e„„(k,A) are polar-
ization tensors. (Here units in which 32m G = 1, where G
is Newton's constant are used. ) Let us consider the par-
ticular case of gravitons in a squeezed vacuum state of a
single linearly polarized plane wave mode. Let the mode
have &equency u and be propagating in the +z direction.
Take the polarization tensor to have the nonzero compo-
nents e = —e» ——1/y 2. This is the "+" polarization
in the notation of Ref. [10]. Then we have that

(oi) = [( *)' —(»)'I' R, -( t
) + ( 2)

2' ( —)
16(uV

A squeezed vacuum state for a single mode can be de6ned
by [11]

IC) = ~(C) I»
where 8(() is the squeeze operator defined by

separation between these points is
&1

2cT = (b,&) —(AE) = (b, t) —(Zr) +Dr h,,n'n~ dr,
Tp

(47)
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S(g) = exp —/*a ——((at)
2 2

Here

(55)

Note that in this case, (oi2) ) 0, whereas more generally
it may have either sign. Recall that the forms of the
averaged Green's functions obtained in Sec. II depend
upon the sign of (o.i2), and it is only for the case (criz) ) 0
that expressions were found for (G„q)and (G~).

St (g) a S(() = a cosh r —at e* sinh r, (56)

and

S (g) at S(() = at coshr —ae ' sinhr.

Prom these properties, we may show that

(57)

is an arbitrary complex number. The squeeze operator
has the properties that

B. Gravitons in an expanding universe

For the most part in this paper, we are concerned with
gravitons and light cone fluctuations on a background of
flat spacetime. However, relic gravitons &om the early
Universe are one of the more likely sources of metric fluc-
tuations. Thus we need to discuss gravitons on a cosmo-
logical background, which we will take to be a spatially
flat Robertson-Walker universe. The metric can be writ-
ten as

and

(ata) = sinh r, (58)
ds2 = dt —a (t)dx (65)

(a ) = —e' sinh r cosh r .

Hence in this example

.(»)' —(»)'
16~V

sinh r

(59) where a(t) is the scale factor. Linearized perturbations of
this metric were investigated by Lifshitz [13],who showed
that it is still possible to impose the transverse-trace-&ee
gauge conditions, Eq. (43). The nonzero components of
the perturbation satisfy

x sinhr —coshrcos 2' z —t +

Here (oi2) will be positive in soine regions and negative
in others.

Of particular interest to us will be the case of an
isotropic bath of gravitons. Here rotational symmetry
and the tracelessness condition imply that

3 3
(h;~hhi) = A b;~bgi ——b, i, b~i — b,ib~i, —

2 2 )
where A = —is (h;~h'~). In this case, we have that

(66)

However, this is just the equation satisGed by a minimally
coupled scalar Geld in this background,

(67)

Thus the graviton field may be treated as a pair (one for
each polarization) of massless, minimally coupled scalar
fields. The quantization of cosmological metric pertur-
bations in this framework was discussed in Ref. [14j.

Consider a power law expansion, for which

(0., ) = h r, (62) a(t) = ct (68)
where r = iKx~ is the magnitude of the spatial separa-
tion, and

In this case, the solutions of Eq. (66) are of the form
gi, e'"'", where

h = ——A = —(h;~h'~)
1 =1
2 30 Qi„.= g~& ciH„l(kg) + c2II )(kq) (69)

(64)

is a measure of the mean squared metric fluctuations.
In some cases, the gravitons may be regarded as be-

ing in a thermal state. Although a thermal state is a
mixed state rather than a pure quantum state, quantum
particle creation processes often give rise to a thermal
spectrum of particles. In the case of gravitons created by
the Hawking eKect, this correspondence is exact. In the
case of cosmological particle production, it is possible to
obtain an approximately thermal spectrum in some cases
[12j. We may find h for a thermal bath of gravitons by
noting that here, due to the two polarization states for
gravitons, (h,~h'~) = 2(p2), where p is a massless scalar
Geld. In a thermal state at temperature T, it is well

T2known that (p2) = z~. Thus, for a thermal bath of
gravitons at temperature T,

(~:) =
180

Here b = (n —1)(3n —1) and v = (2ib~) . Further-
more, ci and cq are arbitrary constants, and g is the
conformal time given by

q= a 'dt= c1—n 't' (70)

~a('&(k&)~ - ~a('l(k&)~- 2

m)kryo[
' (71)

as ~rj~ ~ oo for fixed k. In the latter case, we use the
small argument limit:

We are interested in the late time behavior of these solu-
tions, which will indicate how quantities such as (0 i) or
h2 scale with the expansion of the universe. As t ~ oo,
g —+ oo if o. & 1, and g —+ 0 if 0, & 1. In the forxner case,
we use the large argument limit of the Hankel functions:
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IIi')(kn)I - lII&')(k~)I - -lknl, Ik~l ~ 0.r(~) (1
(2 )

(72)

From these forms, we find that [@~~ a if n ( 1, and
const if o. ) 1. Thus as t -+ oo,

2 1

G

6' ~ const,

a&1,
o, &1. (74)

P~
2

Pj ~ I,

p~
(75)

This energy density will subsequently be redshifted by
the expansion of the universe to an energy density at the
present time of the order of

Now let us make some estimates of the magnitude of
h2 due to a background of relic cosmological gravitons.
The creation of gravitons in an expanding universe is a
topic upon which there is a vast literature [15]. Let us
consider a model in which gravitons are created at the
end of an inflationary epoch. This type of model was
discussed in Ref. [16], where it was argued that the typ-
ical energy density of gravitons present just after infla-
tion will be of the order of the energy density associated
with the Gibbons-Hawking temperature of the de Sitter
phase. Let p~ be the vacuum energy density during in-
Qation and p~ be the Planck density. Then the energy
density of the created gravitons at the end of inflation
will be of the order of

Planck time and is hence unobservably small. The best
hope for observing the efFects of the light cone fluctua-
tions seems to be through their indirect influence upon
virtual processes, which will be the topic of the next sec-
tion.

IV. ONE-LOOP PROCESSES: THE ELECTRON
SELF-ENERGY

In this section, we wish to explore the extent to which
quantum metric fluctuations can act as a regulator of the
ultraviolet divergences of quantum Beld theory. These di-
vergences typically appear in one-loop processes, which
represent the lowest-order quantum corrections to the
classical theory. We will focus our attention upon the
one-loop electron self-energy illustrated in Fig. 2. The
self-energy function Z(p) is formally given by the diver-
gent momentum space integral:

4

Z(p) = ie' D~~"(k)p„Sp(p —k)p .

Here D+& (k) and S~(p —k) are the momentum space
photon and electron propagators, respectively, and the
p„are Dirac matrices. This integral is logarithmically
divergent for large A:. In the conventional approach to
Geld theory, this divergence is absorbed by mass renor-
malization. Here we wish to investigate the e6'ects of
introducing metric fluctuations. First, let us rewrite the
expression for Z as a coordinate space integral by use
of the following relations between momentum space and
coordinate space propagators:

(76)

where T~ is the temperature of reheating after inflation.
Here we are assuming that the subsequent expansion rate
of the universe corresponds to n & 1, so that the gravi-
tons redshift as ordinary massless particles. The typical
wavelength of the gravitons at the time of creation is

(77)

and will be redshifted at the present time to a wavelength
of the order of

i=i, (' ).
The corresponding mean squared metric fluctuation will
be of the order of

D (x- x')
F

If, for example, inflation were to occur at an energy scale
of 10 GeV, and the reheating occurs to the same energy
scale, this model would predict a present-day mean gravi-
ton wavelength of the order of A 10 cm and 6 10
For most purposes, the e6'ects of these gravitons will be
completely negligible. For example, the light cone Buc-
tuations will produce a spread in arrival times of pulses,
&om Eq. (12), of the order of At 10 D, where
D & 10 cm. This is a time spread of no more than one

S (x-x')
X

FIG. 2. The Feynman diagram for the one-loop electron
self-energy in (a) momentum space and in (b) coordinate
space. Here D~ is the photon propagator, and Sp is the
electron propagator.



GRAVITONS AND LIGHT CONE FLUCTUATIONS 1699

Dze (Ee") = —f dez e'"' Dze'(z), (s1)

Se(E) = f d ze'e Sz(z) . (s2)

D~~ (x) = g""G—p ( x) (84)

Note that the scalar propagator, G~(x), in Eq. (83) is
that for a massive field, whereas Eq. (84) is that for a
massless Geld. However, we are interested in the behav-
ior near the classical light cone, and so ignore the mass
dependence of the former. Recall that Z is a 4 x 4 matrix.
The mass shift can be expressed as

bm = —Re TrZ(0) .1
(85)

The electron propagator S~(x) is expressible in terms of
the scalar propagator by the relation

Sy (x) = (ip"V—'„+mp)Gp (x).
Here mp might be interpreted as a bare mass. If we adopt
the Feynman gauge, the photon propagator becomes 1 e'er

d x (G~(x)) = h ~ e ~ l D s
327r2 2h

f de
(91)

where D„(z)is the parabolic cylinder function.
If h &( 1, we may use the large argument expansion

[18] of D„(z):
p(p —1) 3

D (z)-e 4' z" 1—p Z2
+". 1»g(z)l &—

4

The r integration is logarithmically divergent at both
limits. The infrared divergence at large r is an artifact
of our having neglected the electron mass in the electron
propagator. The ultraviolet divergence at small r is more
serious, and reBects the failure of metric Buctuations to
render quantum field theory fully finite. The basic prob-
lem is that although the light cone singularity has been
removed, quantities such as (G+) are still singular at co-
incident points. Nonetheless, it is still of some interest
to determine the h dependence of our expressions. The
u integration may be performed explicitly [17] to yield

If we combine the above relations and use the fact that
Tr(p") = 0, this may be written as to write

(92)

bm = mpe Im d z G~ x . (86) D 3 —— e4' h2 e 1+15hZ S
iver

S i6h2 2

2h
h g&1.

This relation has been obtained assuming a Gxed, Bat
background metric. However, we will assume that it also
holds to leading order when we introduce small metric
perturbations. Now we wish to average over metric Buc-
tuations and write

If we now combine this result with Eqs. (87) and (91),
we finally obtain the formal expression for the mass shift
to be

6m = (bm) = mee Em f d z (Gz(z)). (87)
mpe dr

b,m =, (1+15h'+ . )Svr2 p r (94)

Use Eqs. (41) and (62) to write

f 1d'x (Gs(x)) =
(sar')' 0

x d xe 2'~' " ~ e

If we ignore any space or time dependence in h, then this
integral may be explicitly evaluated. This should be an
excellent approximation, as h is expected to vary on a
cosmological time scale, whereas the dominant contribu-
tions to Lm should come &om scales of the order of or
less than the electron Compton wavelength. If we de-
form the contour for the o. integration into the lower half
plane, then the t integration becomes absolutely conver-

gent, and we can write

This expression is divergent, and hence still needs to
be carefully regularized and renormalized. Here we will
simply observe that the dependence of Qm upon h seems
to be rather weak. If one were to absorb the divergent
integral into a redefinition of mp, then the self-energy
would seem to be time dependent if h decreases as the
Universe expands. However, this time dependence would
be extremely small at the present time. Even if one were
to identify the renormalized one-loop self-energy with the
observed mass of the electron (there could be a piece
of nonelectromagnetic origin), one would have a time-
dependent electron mass with m/m = 30hh. If lh/hl =
10 io/yr, and h is of the order of the estimate given in
the last paragraph of Sec. IIIB, then lm/ml = 10 /yr.
This is well within the observational limits on the time
variation of the electron mass, which are of the order of

——C7r1
e 4 (89) [19]

1 2 2xe--"" . (90)

If we perforxn the t and angular integrations in Eq. (88),
and then replace o, by the variable u = nr, we Gnd

f d4x (G~(x)) = e d — du~ue~"
167rs () r ()

& 10 /yr.
m

V. SUMMARY AND DISCUSSION

We have seen that the introduction of metric Buctua-
tions, such as those due to gravitons in a squeezed vac-
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uum state, can modify the behavior of Green's functions
near the light cone. For distinct but lightlike separated
points, the usual singularity is removed. However, the
singularity for coincident points remains. The smearing
of the light cone leads to the possibility of "faster-than-
light light, " in the sense that some photons will traverse
the interval between a source and a detector in less than
the classical propagation time.

The smearing of the light cone is expected to modify
virtual processes. This was explored through the calcu-
lation of the one-loop electron self-energy in the presence
of metric Buctuations. The results were somewhat am-
biguous, due to the presence of the remaining ultravi-
olet divergences. They can, however, be interpreted as
supporting a very small time-dependent contribution to
the mass of the electron in an expanding universe. Of
course, the dominant source of metric Buctuations need
not be relic gravitons. Any stochastic bath of gravitons
will also contribute to h. It is possible that the major-

ity of gravitons at the present time are those due to local
sources (thermal processes, etc.) rather than those of cos-
mological origin. It is also possible that passive metric
Buctuations due to quantum Buctuations of the energy-
momentum tensor of matter produce the dominant effect
in smearing the light cone. It would be of particular in-
terest to find a one-loop process which is rendered finite
by the effects of the metric Buctuations. Such a process
would presumably lead to observable quantities whose
values depend upon the graviton background. Thus the-
ories in which gravitons regulate ultraviolet divergences
can have the property that local observable quantities
may be determined by the large scale structure or his-
tory of the Universe.
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