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We develop a general formalism to study the renormalization-group- (RG-) improved effective
potential for renormalizable gauge theories, including matter-B -gravity, in curved spacetime. The
result is given up to quadratic terms in curvature, and one-loop effective potentials may be easily
obtained from it. As an example, we consider scalar QED, where dimensional transmutation in
curved space and the phase structure of the potential (in particular, curvature-induced phase tran-
sitions) are discussed. For scalar QED with higher-derivative quantum gravity (QG), we examine
the influence of QG on dimensional transmutation and calculate QG corrections to the scalar-to-
vector mass ratio. The phase structure of the RG-improved effective potential is also studied in this
case, and the values of the induced Newton and cosmological coupling constants at the critical point
are estimated. The stability of the running scalar coupling in the Yukawa theory with conformally
invariant higher-derivative QG, and in the standard model with the same addition, is numerically
analyzed. We show that, in these models, QG tends to make the scalar sector less unstable.

PACS number(s): 04.50.+h, 04.60.—m, 11.15.Ex

I. INTRODUCTION

It is a common belief in modern cosmology that, during
its evolution, the Universe went through one or more in-
flationary stages (for an introduction, see [1,2] and refer-
ences therein). Some of the models of an infiationary uni-
verse, in particular the so-called "new inflation" one [3],
are based on the scalar field effective potential [4—6] cal-
culated in Bat space, and the corresponding phase tran-
sitions are very important in such models. The basic ob-
servation is, then, that curvature corrections are not too
essential in the efFective potential for applications in the
in6ationary epoch. However, because of the fact that; we
consider curved spacetimes, for consistency one obviously
has to work with curved spacetime efFective potentials.

Furthermore, it seems that inaationary universe mod-
els based on Coleman-Weinberg-type phase transitions
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[5] are not quite consistent (usually, the one-loop ap-
proach is used). In these circumstances, it may happen to
be very useful to analyze the effective potential in curved
spacetime (for a general review, see [7]) beyond the one-
loop approximation, in order to 6nd more reliable forms
of it. It is well known that efI'ective potentials in curved
spacetimes can produce curvature-induced phase transi-
tions [7] which may become relevant in difFerent context
of cosmology.

From another viewpoint, it would be of interest to in-
clude also in such an analysis quantum gravitational cor-
rections. Even in the absence of a consistent quantum
gravity (QG) theory, we may work with some efFective
model for QG, which can be the Einstein theory [8, 9],
which is not renormalizable [9], or higher-derivative the-
ory [7, 10, ll] at scales below pp~ 10 GeV. Despite
its perturbative nonunitarity, higher-derivative QG may
be considered as some efI'ective theory, while the problem
of unitarity should be addressed in a more complete and
fundamental theory. Of course, the physics which can be
adressed in that &amework is between pGU T 10 GeV
and p,p~.

In the present paper we develop a general formalism
to study the renormalization-group- (RG-) improved ef-
fective potential (and also the one-loop one) for gauge
theories in curved spacetime and also in gauge theories
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interacting with higher-derivative QG. The RG-improved
effective potential, which gives the leading-logarithmic
behavior on the whole perturbation theory and hence
goes beyond the one-loop approxiro. ation, is quite well
known in Hat-space theories after the seminal paper by
Coleman and Weinberg [5] (see also [12,13]),and has nu-
xnerous applications. The conception of the RG-improved
effective potential may be extended to curved spacetime
[14] and, as we shall show below, to the situation where
we have an interacting renormalizable quantum matter-
gravity theory. We discuss a few relevant phenomena
caused by the RG-improved effective potential.

The paper is organized as follows. In the next section,
our general formalism for obtaining the RG-improved
efFective potential in gauge theories on curved back-
grounds, up to quadratic terms in curvature, is presented.
One-loop effective potentials may be derived from it after
expanding for a small RG parameter t. This formalism
is easily applied when, in addition to matter, we have
QG (any matter-gravity unified theory should, of course,
be renormalizable in our context). In Sec. III, the RG-
ixnproved effective potential, in the linear curvature ap-
proximation, is explicitly given for scalar QED. Dimen-
sional transmutation in curved space and curvature cor-
rections to the scalar-to-vector xnass ratio are discussed.
The phase structure of the potential is numerically inves-
tigated for some choices of the parameters. Section IV is
devoted to the study of the RG-improved (and one-loop)
efFective potentials in scalar QED with higher-derivative
QG. Gravity corrections to the scalar-to-vector mass ra-
tio are calculated for two versions of QG (one of which
is conformally invariant higher-derivative QG). The in-
fluence of QG on the stability of the effective potential is
numerically discussed. Spontaneous symmetry breaking
and curvature-induced phase transitions are shown to ex-
ist for some choice of the theory parameters, and induced
values of the Newton and cosmological constants are esti-
mated. In Sec. V we consider the stability of the Yukawa
theory with conformally invariant R2 gravity. Numerical
analysis shows that QG corrections change the running
of the scalar coupling constant, making it less unstable.
By way of some speculation, we repeat such a discussion
in the standard model interacting with the same QG the-
ory. An increase in the initial value of the QG coupling
constant can overcome the instability of the scalar cou-
pling, which, in turn, may change the bounds between
the Higgs and top quark masses. Finally, we end by giv-
ing a s»mmary and some outlook.

II. RENORMALIZATION-C ROUP-IMPROVED
EFFECTIVE POTENTIAL IN CURVED

SPACETIME

1 v 1 & 2 1 2 1 4+—g""V (pe'„(p ——m y + ('Ry ———f(p,
2 " "

2 2 4t

(2.3)

where 'V„= V'~ —igA~, V'~ is the covariant derivative,
and all indices are suppressed. Note that the necessity of
l: „q is dictated by the condition of multiplicative renor-
inalizability in curved space [7]. Because of the fact that
we are considering an external gravitational field, also
total derivative terms have to be included in 8 „q.

We will be interested in the calculation of the efFec-
tive potential [4—6] for the scalar field, i.e. , the effective
action on a constant background y, B. Since the theory
is multiplicatively renormalizable, its effective potential
satisfies the standard RG equation

~
p +P' —~V IV(pa, , ~) =0,( 0 8 Bi

Op, 'BA; Bp)
(2.4)

where A; = ((, f, h, g, m, p, , A, +, a ai2, as), p; are the
corresponding beta functions, and p is the background
scalar The . R term from (2.2) has disappeared owing
to our choice of background space of the form B = const.
For the gauge fields, a Landau-type gauge is supposed to
be chosen. As a result, in the one-loop approach, which
we apply for handling (2.4), the P function for the gauge
parameter is zero and its associated term in (2.4) may
be dropped. The RG equation for V has been discussed
in [5, 12, 13] (and references therein) for Hat space and in
[7, 14] for the case of curved space.

Solving Eq. (2.4) by the method of the characteristics
gives

curved spacetime, where the Lagrangian corresponding
to a multiplicatively renormalizable model reads

(2.1)

with

A +KB+Qg B +G2 Cpv~p C +gi3 G+a4 &B

(2 2)

t ~„p is the Acyl tensor and G is the Gauss-Bonnet in-
variant. The Lagrangian for matter contains gauge fields,
some multiplets of scalars p and spinors @, and kinds of
interaction which are typical of any grand unified theory
(GUT). Syinbolically,

G„„G—""+ @(ip"17„—hp —M) vP
1

t7L 4 p v

VFe begin with the presentation of a general forxnalisxn
for the RG-improved effective potential. Our starting
point will be some multiplicatively renormalizable theory
on a general curved background. In principle, such a
theory may include quantum gravity (QG) as well; then,
the curved background is simply the background part of
the metric (we use the background field method here).

First of all, let us consider some matter theory in

A;(0) = A;,

= —p(t) p(t), v(o) =v.

V(p„A;, &p) = V (pe', A, (t), (p(t) ),
where

(2.5)

(2.6)
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Physically, (2.5) means that the efFective potential can
be (locally) found provided that its functional at some
certain t is known.

Using the classical Lagrangian (2.1) for constant back-
ground as the initial value of V at t = 0, and working
only in one-loop aproximation, we can find [14]

= —,f(t)v'(t) —-&(t)&~'(t) + — '(t) ~'(t)

+A(t) + ~(t)R + a, (t)R'
+a2(t)C„„&C""~+ as(t)G,

where

(2.7)

~(t) = pf(t) f(0) = » (t) = p-(t) (0) =

(t) = P (t), ~(0) = ~, ';(t) = P., (t), ,(o) =;, = 1, 2, 3,
m~(t) = P ~ (t), m2(0) = m2, j (t) = —p(t)(p(t), (p(0) = p,
h. (t) = P~(t), A(o) = A. (2.8)

The one-loop P functions which appear on the right-hand
side (RHS) of (2.8) for any particular model are, as a rule,
known or may be obtained without serious problems. It
should be observed that the RG-improved effective po-
tential (2.7) was written in the approximation up to cur-
vature invariants of second order.

This RG-improved effective potential (EP) is given in
leading-logarithmic approximation (summing all leading
logarithms in perturbation theory) [5], which, in this
sense, is much richer than the standard one-loop version.
One-loop EP's can be obtained &om RG-ixnproved EP's
in some limit (small t, weak couplings). However, notice
that, contrary to what happens in the nonimproved case,
Eq. (2.7) is actually valid at all t's for which V~G does
not diverge (this is an improvement).

Now, we ask ourselves this natural question: What
is the choice of the RG parameter t which leads to the
summation of all logarithms to all orders? In fact, for
massive theories it is not easy to answer [13, 14]. One
has to introduce a few massive scales (which make the
discussion technically complicated), use the decoupling
theorem [15] and the efFective field theory [16] (and ref-
erences therein) to construct the RG-improved EP's at
all these scales. In the present paper we shall consider,
for simplicity, either massless theories, where the choice

is actually unique t = —ln —,or massive theories lim-
2 p2

ited to the case Qf very high p such that p )) m &, m
being the largest effective mass of the theory. Then, we
may drop all massive terms in (2.7) and make our choice
of t, again, as above.

In massless theories the RG-improved potential (2.7)
may be expanded for small t and weak coupling in a
general form, thus obtaining a very general expression
for the one-loop efFective potential [17] (see also [7]):

1 1 4 1 4 ( (p2 251V" = fV'+ (P—y —4f~)V'
I

l————
I

' =4! 48 p 6&
——(Bp ——(Pg —2(p)By

~

ln —3 i,
1 2 1 v'
2 4 )

(2.9)
where py, pg, p are the one-loop beta functions, and p2
is a mass parameter in the range p, p,GUT 10 GeV.

+ CqG,

l'.gG
———R' ——B,

3A
(2.1o)

where R" = C~„pC&" ~. Even in this case, starting
from higher-derivative QG without Einstein and cosmo-
logical terms, we may recover them as a result of a
curvature-induced phase transition at lower energies, as
we will see below. When dealing with such a theory, we
get again an RG-improved EP of the form (2.7), and a
one-loop efFective potential such as (2.9). The only dif-
ference, in comparison with the no-QG case, is that all

P functions have now changed due to explicit QG correc-
tions. Hence, our formalism is general enough for being
applied to a QG theory also.

It should also be observed that, as the metric is now
quantized. , one has to introduce the term —p~g~„& ing pv $g~
Eq. (2.4) [7]. However, in the one-loop approximation
and using the background Geld method, pz

——0, and

Note that Coleman-Weinberg-type normalization condi-
tions have been used to derive Eq. (2.9) (see [17] for more
details). This is a very useful expression which will be
employed for explicit analysis in a few different theories
below.

Next, we would like to point out that the above-
developed formalism can be easily applied to multiplica-
tively renormalizable QG theories with matter. As is
widely known, Einstein QG is a nonrenormalizable the-
ory [9]. That is why we have chosen to work with higher-
derivative QG, which is multiplicatively renormalizable
[7, 10] and asymptotically free [7, 11, 18]. It should be
noted that it may be asymptotically &ee for all couplings
when such a theory interacts with some GUT model [7,
18]. Of course, R2 gravity with matter cannot be consid-
ered as a reasonable candidate for a consistent QG theory,
due to the open question about its perturbative nonuni-
tarity, which is typical of any higher-derivative interac-
tion. However, one can regard it as an effective model for
some yet unknown, consistent, QG theory at scales below
p,p~ 10 GeV. That will be our viewpoint throughout
this paper.

Working, for simplicity, with massless theories, our ini-
tial Lagrangian, using standard notations, is
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therefore this term vanishes. Having at hand the general
formalism developed in this section, we may now set out
to study explicit examples.

III. RENORMALIZATION-GROUP-IMPROVED
EFFECTIVE POTENTIAL IN GAUGE THEORIES

IN CURVED SPACETIME

l:~ = —(B„yx —eA„y2) + —(B„y2 —eA„yx)
1 2 1

77K
2 gI gl 2 P

1 2 1 4 1+-(By — fy—
2 4t 4

(3.1)

Let us begin with the simplest model for an. Abelian
gauge theory: massless electrodynamics in curved space-
time. The classical Lagrangian for this theory is

where y = y& + p2. Using the Landau gauge for calcu-
lating the one-loop P functions, these turn out to be [5,
14]

1 (10
Py =

~
f——12e f+36e(4~)' &3 ) '

3" ((--,') (4
3(4~)2' (4~)2' (4~)' g3

(3.2)

From here on, limiting ourselves to the linear curvature
approximation, the P,. 's will be no longer necessary in
our dlscusslon.

The solutions of the RG equations for the coupling
constants are

2e2t ~ 2 2 ( 2e
e(t) —e i1 i, y(t) —y !1

f(t) = —e (t) /719tan
~

—y 7191ne (t) + C
~
+ 19=12 (1

10
)E2

1 (10f t 1
C = arctan

~

—19
~

——/7191ne,
/719 ( e'

1 ( 1) e2(t) ~ cos ~ (z/7191ne2+ C)
(-,x /719 ln e'(t) + C)

Using these efFective coupling constants, the RG-improved potential is found to be [14]

(3 3)

V = —,f(t)y (t) ——((t)By (t). (3.4)

This RG-improved EP in scalar electrodynamics has already been discussed in a more general case, namely, with a
xnassive scalar field [14].

Before starting to work with (3.4), we write down the one loop EP (2.9) for this specific theory:

1 4 1 10 2 4 4 ( y 251V(x) — fy4 + f +36e y—~

ln ———
~4! 48(4m) 3 I, y, 6 )

1 1 ( 1'I (4 I ( y——(By + /Q ——
/ / f —6e /~—6$e By2(ln ——3/.

2 12(4vr)2 g 6) (3 ) g p2
(3 5)

This one-loop EP in linear approximation was also ob-
tained in Ref. [19], where a background de Sitter space
was considered for explicit calculations.

A few remarks concerning dimensional transmutation
are in order. Restricting V!x& first to fiat space (B = 0),
choosing next p = y where y = y is the vacuum state,
and repeating the analysis by Coleman and Weinberg [5],
one can easily get

y(i)—

24

3e4 ( ys 11
y ln

64m 2 ( ys 2)

144(4m) 2
(3.6)

When carrying these considerations over to curved space-
time, the transmutation mechanism acts in a diferent
way [14]. Indeed, supposing again f e4 we arrive at

1 4 3e4V'" = fy'+ —y'
I

l
4! 64m~ ( p,2

25)
6)

——(By 2( ye By ~ln —3~.
2 4(4m)2 I p2 )

'

4! 64 4 4(4 )

(3 8)

Working in the linear curvature approxixnation (assuming
that curvature corrections are not large) one can impose

Choosing p, = y, where p = p is now the vacuum
state in curved spacetime (supposing that it exists), we
do not find such a precise connection between f and e4

as in fiat space [5] but, instead, we obtain
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then, is dimensional transmutation switched on in curve
space, yielding a condition to fix ( in terms o e2:

5x10

Q
2

(3.9)

In this case, the universal normalization-independent ex-
pression for the one-loop effective potential turns into

I ———' — Rp l
I —1 l.

4 2 1& e~ ( p2
64~, V

l& ~, 2) 64"'
(3.10)

0

Obviously, the above arguments do not holhold for models
in the presence of strong curvature,e where other choices
leaving ( arbitrary seem to be more natural.

f (3.10)~one can find the constant curvature
corrections to the scalar-to-vector mass ratio in e orm
(see [5])

—1x10
0.000 0.005

R=1.4x13

0.010

m~ (S) V('&" ((p ) 3e2 R
m2 (V) e2(p2 8m2 16m'2ip2

(3.11)

V((p, B,) = 0,
BV
0& ~.,R,

02V
02 y. ,R.

(3.12)

f this RG-improved potential in one o t e
most interesting cases, associated with e~ = 0.1, ( =
is shown in lg.F 1 If R is sxnaller than a certain value
Ri around 1.9 x 10 a local minimum for some p ) 0
exists. However, a s a eH th t state is just metastable until t e
value of B is lowered down to R 1.44 x 10 . e ow'

has become metastable while the p g 0 associated with

fore a symmetry-breaking phase transition, induced y
curvature itself, takes place at R = R, even in a situa

with ~~(0) = 0. The fact that scalar QED in curvedtion wit ~+&~~~—— . e
hase transi-space ime ut' undergoes a curvature-in uce p ase

tion was already noted some time ago [ ], using
one-loop effective potentia .' l.

8 our explicit numerical results, we have shown that
the RG-improved effective potential behaves qualita-
tively like its one-loop counterpart. Using the one-loop

That gives the Donzero curved space generalizalization of the
corresponding fiat space Coleman-Weinberg result [5].

Our purpose now will be to discuss the phase structure,
i.e., symme ry- ret -breaking and curvature-induced phase
transitions, in sca ar ~1 ~ED using the RG-improved ef-
fective potentia. e s a1 W hall be interested in first-order
phase transitions, i.e., othose in which the order parame-
ter jumps s arp y a soh 1 t me critical value of the curvature

The conditions on such phase transitions are [19]2 Lg e

FIG. 1. RG-improved efFective potential for scalar +ED
(SQED), with e (0) = 0.1, f(0) = 0.01, ((0) = 0 (p
1 is used t roug ou, oh houtj for different values of the curvature
R. Note the curvature-induced phase transition, whic ta es

1.44 xplacew en'= eh = 0 becomes metastable for R ( R
comes the lobal10, while the local minimum at y & 0 becomes e g o a

one.

potential (3.5) (keeping, for simplicity, only loganthmxc
terms in the one-loop correction) we have found curves
which dier just very slightly &om the ones plotte in
Fi . 1. Of course, it would not be dificult to repeat the
same ana ysis or i eren1

' f d 6' ent choices of the initial values o
the theory parameters.

IV. EFFECTIVE POTENTIAL IN SCALAR +ED
WITH HIGHER-DERIVATIVE GRAVITY

VV ll 1 ok at the effective potential in mass-
less scalar QED interacting with QG in the forms
and (3.1). QG corrections to QED P functions, w 'c

b taken from Ref. [18] (see also [17]), have a uni-
versal form for any matter theory. Unfortunate y,1 the

1 t f th RG equations for the total system o
roved EP

(2.7) explicitly. It can be obtained only in an imp ici
form (applying linear curvature approximation .

where
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A(t) = 203
o2At ' 15 'a2=, e (t)=
(4vr) 2

2e t
3(4~)~

1 10 5 ( 1)
dt (4m) 3

= P~ = — A —(u + (5+ a ) ur + —+ 3
I $ ——

I12 i 6)
d$ df 1 d(p—= Pt + &Pt —= Py + &0y

—— = 7 + &v.
dt dt y dt

In expressions (4.2), Pg, Py, p are the ones given in (3.2), and the universal QG corrections [7, 18] are

1 32 10 1 f 9
A4 —-6'+ 44+ 3+ —~+ —

I

—-('+ 5&+1
I(4n)2 2 3 (d ( 4

3 9$ 27('l (, 33, 6 1 lA'('
I
»+ ——+

I
Af

I

-5+3('+ 6' ——(+
(4 ir) ( 4~ ~ & ) ( 2tu tu 2(u )

A &13 1 2$ 3( l—
I

——8& —3(' — ——+
(4~)24 ~ s 6(u (u 2~ )

(4.2)

(4.s)

As one can see from (4.2), there are no QG corrections to e (t) (that is prohibited by local gauge invariance). The
calculation of b,p took place in the harmonic gauge [18]. For simplicity, we have not explicitly written in (4.2), (4.3)
the t dependence. Moreover, for these equations, the standard initial conditions u(0) = u, f(0) = f, ((0) = (,
y(0) = p were assumed (here, the u, f, $, y on the RHS denote truly t-independent quantities).

For the conformal version of higher-derivative gravity with scalar QED, one has

V = —f(t)y (t) ——Rp (t),
4t

where

g 2

e2(t) =A(t) =
1 2e

3(4~)~

4i 5
Af+ —A—' I,8 12(, 271

(4n-)2 g 32 ) 'I

—3e + —AI,

2 27
~g A~

(4~)~

df 1 (10 2 2 4f —12—e f +36e
dt (4m)2 ( 3

1 dp

y dt

(4 4)

and the QG corrections in this conformal model have been taken from [18]. Note that, in order to make such a theory
multiplicatively renormalizable, one has to use the so-called special conformal regularization (see [7, 18], third Ref. of
[11],and also references therein).

Using the above P functions, it is easy to find the one-loop effective potential (2.9) for higher-derivative QG with
scalar QED. In the general version (2.10), taking into account (4.2), (4.3) one can obtain (see also [20])

V(i) — f(p4 +1 4 1 10 2 4 2 2 ( 3 9( 27+if +36e —+ A ( I
15+

4! 48 (4~)& 3 ( 4(gf 2 (gJ 2

(28 (' 8( 1 l, ( p' 25&
Af I

—+1—8————8(+ I
v'I »

Es 3~) ( p2 6 )

1 & (4f- «' I+6(-"4(4.)
5 io i (, is&, (

+A( 8(+ —+ ~+ —
I

——3( +6/+ —
I

R&p
I

ln ——3
I
.

6 3 ur q 12) ( p2

1 2——(R(p
2

In this case, we suppose that @GUT & p & pp&.
As for the conformal version, the one-loop EP turns out to be

—Be + —A Rp Iln- —3I.27
32 ( p' )

1 4 1 10 2 4 5 2 17 4 ( p 25)V(i) f2+ 36e + ——A — Af (p
I

ln ————
4! 48(4vr) 3 12 2 ( p 6 )

12 12(4m) 2

(4.6)

(4.7)

First, we discuss the dimensional transmutation in the presence of QG (see also [20]) on a Hat background. Taking
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Eq. (4.6), supposing either A~ and e4 of the same order or A~ dominant, choosing p,
2 = p~ (where y is the minimum),

gy (~)
and applying &

——0 as in Sec. III, one finds that, due to dimensional transmutation, f A2 + e4, and

therefore

y(~) 36e +A/ !15+ ——+ ! (p !ln
48(4m) ( 4id2 id2 id2 j ( A@2

, , ( 3 9( 27(')
2(47r) f = —A ( ! 15+ ——+ ! +36e

3 ( 4&d2 id2 id2 j

11
2j

(4 8)

If e4 is leading as compared with the QG term, we are in the case already studied by Coleman and Weinberg [5]: QG
corrections are negligible. However, in the opposite situation, where A2 )) e4, dimensional transmutation is a purely
quantum gravitational eKect.

From Eq. (4.8) one can obtain the scalar-to-vector mass ratio in the presence of QG:

m'(S) 1, A'(' ( 3
m2(V) 6(4n)2 e' ( 4id2

9( 27(2 &

!+
id id

(4.9)

This is to be compared with the original Coleman-Weinberg [5] result (A = 0 case); see (3.11). As one can notice,
the QG corrections in (4.9) may become the dominant ones.

We also find the analogous ratio for the conformal version, which reads

m'(S) 1, 5 A'

m2(V) 6(4m)2 12 e2 (4.10)

Again, QG corrections may turn out to be the leading ones.
It is interesting to realize that, in principle, curvature corrections to (4.9) or (4.10) may be calculated as we did in

Sec. III. Next, our aim is to define ( in terms of e, A in the general version. To this end, we take (4.6) assuming
f - A2 + e4, and get

V(i) — fp4 +1 4 1 4 2 2 ( 3 9( 27(2) 4 ( (p2 25)e'+ A'('
I
15+ ——+ !

V'!»———
I4! 48(4z.)2 ( 4~d' id' id' j q p' 6 j

5 10 1 (, 13),& y'——(Rp e + A( —+ 8(+ —id + —
I

—3( + 6(+ —
! Ry

2 4(4~) 6 3 id ( 12j ( V j (4.11)

gy(&)Choosing p, = &p and requiring +& ——0 on (4.11), we do not obtain the same connection among f, A2, and

e as on a flat background (the situation is the same as in Sec. II). If we impose such a condition, following from fiat
space considerations, we get expression (3.9), as the connection between ( and e, even in the presence of QG. This
fact is caused by the particular form of the QG corrections to the Ry2 term in (4.11) (it is always proportional to ().
It is also very interesting to note that, if we started from the theory without the electrodynamic sector, i.e., e = 0,

&& ' (v=v )we would get, &om the condition " ' ——0, the equation

f 11 1,, ( 3 9( 27('l
12(4~)2 ( 4id2

5 10 1 (, 13&—B — A —+8 + —u+ — —3 +6 + — = 0. 4.12
(4vr)2 6 3 id ( 12j

Generally speaking, this is an equation to determine the
minimum (assuming that it exists) in terms of the curva-
ture and the theory parameters. However, if, as before,
we put by hand the fiat space condition for f, we are led
to

A 5 10 1 ~, 1311— —+ 8$ + —id + —
!
—3g' + 6(+ —

!
= 0.

(47l')2 6 3 id ( 12j
(4.13)

This condition is inconsistent, as it causes one of the QG
coupling constants to be larger than unity, which contra-

diets the implicit assumptions in our perturbative treat-
ment of the theory. Hence, without the electromagnetic
coupling constant e, dimensional transmutation does not
work order by order in curvature.

Some properties of the model under consideration are
illustrated by means of Figs. 2—5. The scalar coupling
f(t) is represented in Fig. 2, for the conformal version,
and in Fig. 3, for a case of the general model where this
function is seen to go negative in a certain region, thus
turning the effective potential unstable in that range.
While conformal invariance seems to prevent instabili-
ties of this type, in a general situation the positiveness
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16' G;„g
4.2 x 10 p ,

—3.3 x 10 p ,
2A;„

16~G;„,
(4.14)

where, as we have already mentioned, p, & p, p~ As
one can see, Einstein gravity is induced, with the large

I

in the general model, make the passage from symmetric
to symmetry-breaking phase take the speci6c form of a
Grst-order transition, ind. uced, of course, by the change
in curvature. The "broken" phase exists for every pos-
itive B below a critical value B . Thus, we have found.
the existence of a curvature-induced phase transition in
scalar QED with QG. Examining the RG-improved EP
at the critical point, we obtain the following estimates
for the induced Newton (G;„g) and cosmological (A;„~)
couplings:

cosmological constant. In principle, it is not difBcult to
generalize the above results for more realistic gauge the-
ories. For example, let us consider the minimal SU(5)
GUT (without fermions) with a 24-piet of gauge bosons
A„and a 24-piet of Higgs bosons y transforming under
the adjoint representation of the group SU(5). The Higgs
sector of this theory has the form

1T—r(—0„$—ig[A.„,P])2

——fg(TryP) — f2T—rg + (RT—rg . (4.15)
4 2 2

Considering the breaking SU(5)-+SU(3) xSU(2) xU(l),
with P = y (1,1, 1, —2, —

&) and working, for simplicity,
on a Hat background, we obtain the following one-loop ef-
fective potential with QG corrections in the SU(5) GUT
(for a discussion in curved space with no QG, see [17]):

15 4 15 32 x 91
V = —(15fi + 7f2)y +

16 32(4~)'
15 x 64f, + 1296fq f2 + f25

375 ( 3 9( 27(
+ g'+A'('

~

»+ ——+
2 g 4ld (d Ld )

f'28 ( ( 1i ~ t y 25)—A(15f~+7f2)
I

—+18——8 ——8(+
I

v'
I
» —,——

I( 3 4J ld 3id) ( P, 6) (4.16)

where the Landau gauge has been used. This result shows
explicitly the universality of QG corrections and the pos-
sibility of applying them to different theories.

V. STABILITY IN THE YUKAWA MODEL
WITH CONFORMALLY INVARIANT

HIGHER-DERIVATIVE GRAVITY

using the simplest, i.e. , conformal, version of our QG
theory (2.10), we will try to understand whether it is
possible to change the stability properties of the EP to
the better side by virtue of QG corrections.

The RG-improved EP looks like (4.4), but the following
substitutions must be done for the RG equations (see [7,
18] for QG corrections to Yukawa couplings)

The purpose of this section is to discuss the issue
of stability in a Yukawa theory with conformal higher-
derivative QG. The Lagrangian of the Yukawa theory
that we consider reads

A(t) = 803
60 '

+Q(ip" V„—hp)@, (5.1)

where Q is a massless Dirac spinor. It is known that,
because of Yukawa interactions, the scalar coupling con-
stant becomes negative at large t (high energies), thus
rendering the scalar effective potential unstable. Here,

dh~ 1
dt (4m. )
df 1
Ch (4~)'

lip 1

(p dt (4')2

i10h ——h A
16

i
3f +8fh —48h — Af + —A—

8 12
27

/

2h'+ —A f.32
(5.2)

In the one-loop approach, the Ep is given by

1 ~ 1 5 2 q q
t' (p 25& 1 ~ 1 2 27 2 ( rp~V(l) f 4+ —A —48h rp

i
ln ———

i

— Rrp- 2h'+ —A Rp'
(

ln ——3 ~,4! 48(4m) ~ 12 ( p2 6 ) 12 12 (4m') 32 ( p2

(5.3)

where we have supposed that f A2 —h and, therefore, higher-order terms such as f2, fh2, fA have been dropped
out. We shall also consider the situation in which A and h2 are of the same order, but A ) 10h2 (otherwise the potential
is necessarily unstable). From expression (5.3), it is possible to get the QG corrections to the scalar-to-fermion mass
ratio (the fermion becomes massive after spontaneous symmetry breaking):
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m'(8) V(')"((p )'
m2(F) h2p2

5 A'———48h,
6(4n)2 12 h2 (5.4)

In this model s onpontaneous symmetry breaking can take place onl as a
the other hand, Fig. 6 illustrate h
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g
2

19+
3(4vr)2

/2

g"(t) =
1 — 41

3(4~)2

g (t) =
14

(4)' '

A(t) =
o.22At

'

(4 )'

481
A2 =

30 '

df 1
dt (4~)'
dh 1
dt (4~)'

4f + 12fh2 36h4 gf 2 3f /2+ /4+ 2 I2 4—g + —gg + —g — Af+——A+2 4 8 12
(9 s q 9 2 17 61—8g h — gh ——— ' h ——Ah
E2 4 12 16

As shown in Fig. 7, at A = 0, i.e., no gravity, the scalar
coupling can sometimes be negative, but by virtue of A

corrections, the sign can be reversed thus restoring the
~ ~

stabihty of the model. Although the general appearance
of this figure is quite siinilar to one included in [13], the
efFect exhibited is diH'erent: There no gr tere, no gravi y was present

and the negativeness could be corrected by raising the
value of f(0); in our case, f(0) is held at a fixed value
while we change the strength of QG perturbations. In
t ese circumstances, such a stability restoration can be
regarded a purely quantum gravitational efFect.

It was pointed out in Ref. [22] and the first reference of
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FIG. 6. Running scalar coupling f(t) for the conformal
Yukawa model. The picture represents the cases h (0) = 0.01,
f(0) = 0.01 and h (0) = 0.1, f(0) = 0.002. For each of them,
we have considered a pair of curves: &a& i th bs: &aj in e a sence of
QG, (b) with the corrections corresponding to A(0) = 0.25.
The instability is already noticeable for the second set of ini-
tial values. In the QG-corrected version, f(t) tends to be
marginally less negative than in the absence of gravity.

FIG. 7. Behav'avior of the running scalar coupling f(t) for
the SM with ~G ccorrections. The present curves correspond
to the initial values g(0) = 0.65, g'(0) = 0.36 gs 0 = 4mo, ,

of A(0& uoted. An increase in this constant may correct the
instability brought about by the negativeness of f(t).
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[13] that demanding absolute stability of the electroweak
coupling implies that [13]

mH & 1.95m' —189 GeV,

where m~ and mq are the Higgs boson mass and the
top mass, respectively. Thus, the stability of the scalar
coupling constant puts some bounds on the relation be-
tween m~ and mq. As we can infer &om the above study,
QG corrections may change or coinpletely destroy these
bounds. Of course, the mechanism of the appearance of
large QG corrections in the SM P functions is not clear
at all; neither do we have reliable estimations for the QG
coupling initial values. Hence, the above results should
be considered rather as a speculation which, however,
may open quite an interesting field of QG applications to
SM phenomenology.

VI. DISCUSSION

In this work we have studied the RG-improved (and
one-loop) efFective potential on a curved background. A
general formalism has been applied to scalar QED with
and without B gravity on a curved background for both
cases. We have discussed a few phenomena caused by
QG, particularly dimensional transmutation in the pres-
ence of classical and quantum gravitational Gelds, in-
ffuence of QG on the stability of the effective potential
(in the examples of the Yukawa model and the standard
model). In particular, we have shown that, as a result
of QG eff'ects in the conformal version of R2 gravity, the
running scalar coupling may become less unstable.

A numerical study of the phase structure in scalar QED
on a curved background and also in the presence of quan-
tum B gravity has been done. We have shown the possi-
bility of spontaneous symmetry-breaking and curvature-
induced phase transitions. Is is interesting that, after
the phase transition, one can get the Einstein theory in
the low-energy limit even in situations where the Ein-
stein sector was not present in the original B2 quantum
gravity.

QG corrections to the scalar-to-vector mass ratio are
calculated in scalar QED. Because of their universal
structure, it is not diKcult to repeat the same analy-
sis for any reasonable GUT theory with higher-derivative
gravity.

The general formalism developed in this paper may
be easily applied to any multiplicatively renormalizable
theory of matter with QG. There are many questions
pending in such more realistic GUT theories, such as the
study of stability in the scalar sector, development of
a clearer understanding of the connections between an
eff'ective theory for QG and GUT phenomenology, the
inducing of Einstein gravity with realistic values of cos-
mological and Newton coupling constants at the critical

point of a curvature-induced phase transition, and so on.
We would like to remark that in string theory, at

the low-energy limit there also appear higher-derivative
terms in the string effective action. However, the string
efFective action includes the dimensionless dilaton 6eld
and, hence, it is rather di8'erent &om the starting action
(2.1) for higher-derivative quantum gravity. Moreover, as
a rule string quantum corrections are included into the
string efFective action, which represents the expansion on
o, ' and derivative terms, and should therefore be treated
classically. Hence, the results that we have obtained here
are in fact restricted to the class of QG theories of the
form (2.1) and cannot be applied to string-inspired mod-
els of QG. Moreover, in effective actions corresponding
to string theories the Weyl tensor term squared that ap-
pears in (2.1) is prohibited, as a rule (apart from the
fact that the coeKcients of the curvature terms in such
theories become dilatonic functions).

It is worthwhile to note also that higher-derivative QG
with matter of the form (2.1) has been considered re-
cently in Ref. [23] where the RG flow of the gravita-
tional coupling constant has been studied. It was sug-
gested there to use the dependence of the gravitational
constant on the induced distance in actual cosmological
applications, as for a possible solution of the dark mat-
ter problem [23]. Of course such a possibility may exist
only within R -gravity models of type (2.1). In our pa-
per we have been dealing with another circle of questions
in matter —R -gravity models, i.e. , the study of QG cor-
rections in the matter sector. Certainly, however, in the
model studied of QED with R -gravity the qualitative be-
havior of the gravitational coupling constant in (2.7) is
of the same type as in Ref. [23]. Hence, the conclusions
of that paper about the possibility of solving the dark
matter problem remain true for the matter —R -gravity
models studied in the present work.

Another interesting possibility is connected with an
inflationary universe based on a Coleman-Weinberg-type
efFective potential. One may hope that taking into ac-
count QG corrections to this potential in the above dis-
cussed form may improve the situation and make such an
inQationary universe more realistic. Viewed kom another
side, it would be of great interest to include QG correc-
tions in the back-reaction problem analysis [24] (albeit
which is not so easy). We plan to return to some of these
questions elsewhere.
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