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Numerical black holes: A moving grid approach
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Spherically symmetric (one-dimensional) black-hole spacetimes are considered as a test for nu-
Inerical relativity. A finite difference code, based in the hyperbolic structure of Einstein s equations
with the harmonic slicing condition, is presented. Significant errors in the mass function are shown
to arise from the steep gradient zone behind the black-hole horizon, which challenge the computa-
tional Huid dynamics numerical methods used in the code. The formalism is extended to moving
numerical grids, which are adapted to follow horizon motion. The black-hole exterior region can
then be modeled with higher accuracy.
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I. INTRODUCTION

Black-hole simulations are known to provide a severe
test of numerical relativity, even in the one-dimensional
(1D) case [1]. These strong field scenarios imply a wide
dynamical range involving very different time and length
scales. The coordinate degrees of &eedom must. be used
with special care in order to prevent the numerical code
&om crashing when spacetime approaches a singularity.
This is the idea underlying the difFerent singularity avoid-
ing conditions which have been proposed and tested in
numerical relativity [2—4]. This approach, however, is
not &ee &om problems. Spacetime dynamics get locally
&ozen near the singularity, leading to an abrupt transi-
tion zone around the horizon. This can cause either steep
space gradients [5] or spikes in the radial metric function
[2] which make it difficult to maintain the accuracy or
even lead to code crashing during numerical evolution.

A major step towards a singularity-proof scheme in nu-
merical relativity is the use of a horizon boundary condi-
tion. The idea [6,7] is to reduce drastically the dynamical
range by evolving just the observable region and impos-
ing a suitable boundary condition on or slightly inside
the horizon, which is a one-way membrane. This idea
has been actually implemented in Ref. [8] by the com-
bined use of a "horizon locking" coordinate system and a
"causal" Gnite difFerence scheme which is very similar to
the "causal reconnection" scheme introduced in Ref. [9].
Numerical evolution was there shown to proceed without
signi6cant errors beyond the limit of t = 100 m, where
the previous codes that used fixed boundaries [1] became

'On leave of absence from Departament de Fisica, Universi-
tat de les Ilies Balears, E-07071 Palma de Mallorca, Spain.

unstable or extremely inaccurate. The results presented
in Ref. [1] correspond to the maximal slicing condition
[2]. This does not mean that that code could not use al-
ternative slicings, such as the harmonic one. It is simply
due to the fact that maximal slicing happens to be very
robust, leading to longer numerical black-hole evolution
than other singularity avoiding slicings [1].

Singularity avoidance, however, is not our only guide-
line in constructing a numerical relativity code. We
want to use a system of evolution equations which ac-
tually translates the causal structure of the spacetime:
it should be a hyperbolic system of partial difFerential
equations with the local speed of light as characteristic
speed. It has been shown recently [10,11] that the use of a
harmonic time coordinate (harmonic slicing [4]) leads to
such hyperbolic evolution systems, which can also be ex-
pressed in fIux-conservative form. In that way, we can get
the well-known structure of the hydrodynamic equations
and the huge arsenal of the computational fIuid dynamics
(CFD) methods is at our disposal. The straightforward
use of such methods has yet resulted into a 3D numerical
code [12] which is able by now to evolve vacuum space-
times admitting periodic boundary conditions.

In the present work, we will use CFD methods to im-
prove the quality of harmonic slicing black-hole codes.
The first part (Secs. II—IV) of the paper deals with the
standard approach, where we use a 6nite difference dis-
cretization in a 6xed grid. The horizon boundary condi-
tion is implemented in the second part (Secs. V—VIII) by
using a moving numerical grid. The use of a moving grid
is not new in numerical relativity. Wilson [13] used it to
deal with the relativistic hydrodynamics equations. The
same "adaptive mesh" technique was then extended to
the 6eld equations and successfully applied to the study
of axisymmetric stellar collapse [14,15]. Here we pro-
vide a new application of this technique to the study of
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black-hole evolution, where we use the grid speed to keep
the numerical mesh outside the horizon. This approach
is compared with the "horizon locking" condition intro-
duced in Ref. [8].

II. THE 1D BLACK HOLE

which will be now different &om zero everywhere. This
means that the horizon will start moving outwards, away
&om the Gxed throat position. The coincidence between
throat and horizon in the static form (1) was because the
singular lapse choice (2) caused the vanishing of the local
speed of light at that point.

In order to locate the black-hole horizon [16], we will
make use of the apparent horizon local definition

Let us write the spherically symmetric (1D) vacuum
line element in isotropic coordinates: Y/n 4- Y'/X = 0, (7)

2 4

(p+ m/2) ( 2p)

where dots and primes stand for time and space deriva-
tives, respectively. The mass function M(t, p), defined
by

2M/Y = 1+ [(Y/n) —(Y'/X) ], (8)
which is locally isometric to the Schwarzschild metric.
The lapse function

p —m/2

p+ m/2
(2)

p m/2
m/2 p

(3)

mapping the black-hole outer region (p ) m/2) into the
inner part and vice versa; this provides a consistent inner
boundary condition at the inversion point p = m/2 (the
"throat"), allowing one to evolve just the exterior part
of the black-hole spacetime ("wormhole" evolution: see
Ref. [1]).

We shall use the space part of the line element (1) to
provide the initial data for our numerical models. The
singular lapse function (2) will be however replaced by a
nonsingular symmetric function with initial value

n(0, p) = const

in order to get a different spacetime slicing so that the
metric components are no longer static but evolving in
time. The line element is expressed in the generic spher-
ically symmetric form

ds = —n (t, p)dt +X (t, p)dp +Y (t, p)dO. (5)

The initial condition (4) preserves the inversion sym-
metry (3) of the spacetiine. This means that the throat
connecting the two isometric sheets will remain fixed at
p = m/2 and inner boundary conditions can be imposed
there consistently at every step of the evolution process.
Note however that the black-hole horizon [16] moves with
the local light speed

vanishes at p = m/2, which corresponds to the black-hole
horizon (r = 2m in standard Schwarzschild coordinates).

The form (1) of the line element is convenient for nu-
merical applications: (i) it is easy to express (1) in Carte-
sian coordinates, which allow one to consider the same
problem as a test for generic (3D) numerical codes, and
(ii) the metric (1) is invariant under the inversion syrn-
metry

gives at every instant the total amount of mass enclosed
by a sphere of coordinate radius p. Of course, it does co-
incide with the constant parameter m in our case. Con-
dition (7) then implies that Y' = 2m at the black-hole
horizon.

III. THE NUMERICAL CODE

Our code is a finite difference version of Einstein Geld
equations in first order form. This means that the set
of basic quantities includes not only the lapse function
n and the spatial metric components (the contravariant
ones g'~ in our case), but also their first order space and
time derivatives. The time derivative of the lapse func-
tion is given by imposing the time coordinate to be har-
monic (harmonic slicing [4]). For the sake of simplicity,
the remaining set of independent quantities will be de-
scribed in what follows as the components of a single
vector valued function u. These quantities are taken to
be independent because we consider the constraint equa-
tions as first integrals of our evolution system, which
are imposed on the initial data only (free evolution ap-
proach). The conservation of the constraints can then be
used as an accuracy test.

Under these conditions, it has been shown [10] that in
the generic 3D case the evolution system can be written
as a hyperbolic system of balance laws

B,u+ Oi,F"(u) = S(u),

where the Quxes F" and sources S are vector valued func-
tions of u. Moreover, it has been shown [11]that there is
an infinite family of hyperbolic evolution systems which
share only the physical solutions (the ones actually satis-
fying the constraint equations). We will use here a spher-
ically symmetric (1D) version of one of these systems,
which is explicitly given in Appendix A.

The source terms in (9) take into account the nonhnear
part of Einstein's equations. We have used an operator
splitting approach by considering separately the source
driven evolution

(10)

(6) and the transport process
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B~u+ oIpF(u) = 0.

These diferent processes are then combined (Strang
splitting [17]) to obtain a second order accurate dis-
cretization of the full equation (9).

In order to analyze the importance of the source terms
in the overall evolution, we have implemented both a
standard second order lunge-Kutta along with a sophis-
ticated high order Bulirsch-Stoer method [17). We have
found that the accurate modeling of the transport step
was far more signi6cant than the source treatment in the
overall evolution.

We have used a second order upwind method (see Ap-
pendix B) to deal with the transport step. Let us note
that the hyperbolicity of the system (11)allows one to ex-
press it as two uncoupled subsystems with the structure
of (the first order form of) the wave equation [10]. This
is useful when implementing the upwind method because
one can easily construct the linear combinations of the
original variables which propagate along light rays go-
ing in the forward or backward direction (characteristic
variables, see Appendix A).

The boundary conditions at the inner boundary are
then to be imposed on the forward propagating combi-
nations only. This is done by allowing for the inversion
symmetry (3) at the throat (we will give more details in
Sec. V). Conversely, the outer boundary conditions will
affect only the backward propagating combinations.

IV. FIXED CRID RESULTS

We have performed our computations with an evenly
spaced grid of 200 points ranging &om 1 to 40
Schwarzschild radii, thus obtaining a resolution that can
be tested in 3D codes [18], and allowing future compari-
son of results. The accuracy was monitored by computing
the mass function (8), which will keep its constant value
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FIG. 2. Successive plots of the time evolution of the log-
arithm of the metric component g„„.The crosses show the
successive positions of the black-hole horizon. Steep gradi-
ents appear just behind the horizon. The resulting dynamical
range rises up to 80 orders of magnitude.

M(t, p) = m only if the constraint equations are pre-
served. We have found that this provides an extremely
sensitive error test.

The results presented in Fig. 1 actually show the
mass function, as computed Rom the numerically evolved
quantities (m = 2 in our case). The time values corre-
spond to the proper time of the outermost evolving point.
Errors are big around the horizon position, which is com-
puted f'rom (7) and marked with a cross, in spite of the
huge dynamical range one gets at the black-hole throat
as one approaches the singularity, as is clearly shown in
Fig. 2 for the radial metric component.

This apparent paradox is explained by the collapse of
the speed of light in the inner zone which locally freezes
the evolution there, as is clearly shown in Fig. 3. This
behavior amounts to the well known collapse of the lapse
which is generic to singularity avoiding coordinate sys-
tems, like harmonic or maximal slicing. It allows us to
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FIG. 1. Plots of the mass function (fixed grid case), which
should be equal to 2 everywhere. The maximum error is
around 15/0. The successive horizon positions are marked.
with a cross. Note that the different plots coincide in the
inner part, where evolution is freezing due to the light speed
collapse (see Fig. 3).
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FIG. 3. Plots of the coordinate light speed, showing a sud-
den collapse of the inner part (the black-bole interior), due to
the singularity avoidance of the harmonic slicing.
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deal with the huge dynamical range in the metric com-
ponents near the singularity (see Fig. 2), but it has a
perverse side eKect: the appearance of steep gradients
near the horizon which are actually the main source of
numerical errors.

One, of course, can try to reduce these errors by in-
creasing either the grid resolution or the accuracy of the
numerical method. We have rather preferred, in keep-
ing with Ref. [8], to avoid the gradients by evolving just
the exterior part of the black-hole spacetime (a mov-
ing boundary problem) with the moving grid techniques
sketched in the following section.

the boundary values. One can apply this to the black-
hole problem by demanding the grid speed to coincide
with the local speed of light (characteristic speed) at the
horizon. In that way, one is placing the inner boundary at
the horizon (instead of at the throat), which will remain
attached to a speci6c node of the moving grid. The pro6le
can be fully deterxnined by demanding the grid speed
to vanish at (or near to) the external boundary. We
have found this characteristic boundary approach very
convenient to avoid the steep gradient zone behind the
horizon while keeping a high degree of accuracy in the
black-hole exterior, as we show in the following section.

V. A MOVING GRID APPROACH VI. MOVING GRID RESULTS

Let us introduce a new radial function r, which is re-
lated to the previous one p in a time-dependent way,

p = f(t, r), (12)

so that a grid of fixed points with respect to the new
variable r will be moving with respect to the original
one, attached to p. The first order derivatives of (12),

V—:Oif, 4=0„f,
can be interpreted as the relative speed and dilation fac-
tor, respectively, as computed by an observer attached to
the moving grid.

The structure of the set of conservation laws (11) does
not change when written in terms of the new radial func-
tion

Bi (Au) + B„[F(u)—Vu] = 0, (i4)

where we have transformed the quantities u in a scalar
way. The new characteristic matrix keeps the same set
of eigenvectors as the original one, so that hyperbolicity
is preserved. The new characteristic speeds are obtained
&om the old ones simply by subtracting the grid speed
V and then dividing by the dilation factor A. Notice
that the change of variables (12) introduces just one new
degree of &eedom, the dilation factor being obviously re-
lated to the grid speed:

BL —B„V=0.
Even the static choice V = 0 gives us the possibility

of choosing a nontrivial dilation factor to deal with nu-
merical grids which are not evenly spaced with respect
to the original variable p. We actually used it to obtain
the 6xed grid results of the previous section. The rea-
son has to do with the treatment of the inner boundary:
the image under (3) of an evenly spaced set of points
is no longer evenly spaced. Equation (14) with V = 0
provided an elegant way to preserve the overall accuracy
at the inner boundary [19]without running into stability
problems.

The next sixnplest case is the linear one, where the
dilation factor depends on the time coordinate only. This
leads to a linear speed pro6le which can be determined by
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FIG. 4. Same as Fig. 1 for the moving grid case. The
maximum error is now less than 0.5%. Note that the scale
has been enlarged by 1 order of magnitude.

We have redone with the moving grid the same com-
putations presented in Sec. IV, under the same initial
conditions. The linear relationship between the 6xed and
moving grid coordinates allows us to plot our moving grid
results in terms of the original variable p, allowing a di-
rect comparison with Sec. IV. In that sense, Fig. 4 is to
be compared with Fig. 1. The successive plots start now
at the horizon position because the inner part is no longer
computed. Note that the error in the mass has decreased
drastically: this con6rms that the larger errors in Fig. 1
were due to the steep gradient zone behind the horizon.

Note that we are now placing 200 evenly spaced points
in the region between the horizon and the outer bound-
ary. The evolution can then be pursued until this region
gets very small, leading to an extremely low dilation fac-
tor (extremely high characteristic speed) which freezes
the evolution. In this moving grid approach, the lifetime
of a numerical black hole is just the time it takes the
horizon to arrive at the grid outer boundary [20].

We have also tested other initial values for the lapse
function, different from (4). We found that the fixed grid
code crashed in some cases, due to large errors, while the
moving grid one kept its low error profile in every case.
We conclude that the xnoving grid approach is both a
more robust and a more accurate way to deal with the 1D
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black-hole problem, significantly improving the accuracy
of the results in every case.

VII. RELATED APPROACHES

A similar approach, which would be more appealing
to relativists, is to consider the transformation (12) as
a change of spacetime coordinates, not just affecting the
grid motion, but also the metric quantities. The line
element (5) would then transform into

de2 = —n2(t, r) dt2+ X'2(t, r)

(Ader+

Vdt)2
+Y'(t, r) dO' (16)

so that a radial shift vector appears

P" = v/A

and the radial metric component gets multiplied by the
dilation factor.

The new degree of freedom can now be used in a dif-
ferent way, by imposing a fixed form for the radial metric
function and adding the shift P to the list of the variables
[8]. The constant value of the radial metric function en-
sures that the use of a nonuniform dilation factor does
not lead to a premature freezing of the evolution. But
the main price to pay is that the structure of the original
system (11) is modified at the risk of losing hyperbolic-
ity and, with that, the possibility of applying standard
numerical algorithms. We are currently studying the
structure of the general 3+1 [or A.rnowitt-Deser-Misner
(ADM)] evolution system in order to see whether or not
hyperbolicity can actually be preserved when introduc-
ing shift vectors and/or when using other algebraic gauge
conditions.

There are of course other adaptive grid approaches,
based on mesh refinement algorithms [21], which have
been successfully applied to the 1D scalar field case [22].
Such powerful methods include sophisticated bookkeep-
ing routines to manage the grid, putting more resolution
just where it is needed, without modifying the equations
in any way. The application of these methods to the
generic 3D case is a big challenge to the present day com-
puting and programming capabilities.

cumulative numerical errors in computing the light speed
there. We have also implemented another routine which,
when the difference exceeds two grid zones, makes the
inner boundary to jump from its previous location (the
first grid point) to the actual horizon position, discard-
ing the grid points between the old and new positions
and recomputing the speed profile accordingly. We have
found that a few of these jumps do not compromise the
stability of the code and therefore we believe that the dis-
continuous horizon motion in 1D dynamical spacetimes
can be dealt with by using the same technique.

One would encounter other difhculties when trying
to extend this formalism to the multidimensional black-
hole case. For instance, the horizon can expand in an
anisotropic way so that the resulting speed profile can
lead to a highly distorted numerical mesh. To solve this
problem, one can make use of the relationship (17) be-
tween the grid speed and the shift vector. One could
demand that the velocity field satisfies either the "mini-
mal strain" or "minimal distortion" [2] or a similar con-
dition. The corresponding set of elliptic equations should
be solved by using the light speed components as inner
boundary values.

But possibly the main diKculty in going to the 3D case
is that the horizon finding routine cannot be a straight-
forward generalization of the 1D one. The multidimen-
sional analogue of (7) contains explicitly the unit normal
to the horizon surface (something one does not know a
priori. This is the Achilles heel of 3D adaptive grid black-
hole codes. We recently heard about promising progress
on that subject [23,24], and it seems that it will help in
solving such difBculty in a near future.
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VIII. DISCUSSION AND OUTLOOK APPENDIX A: EVOLUTION EQUATIONS

We are aware that many of the difBculties one would
encounter in evolving really dynamic spacetimes are
avoided in the Schwarzschild test. As a Grst example,
even in the 1D case, let us remember that a black-hole
can be formed in the collapse of a supermassive star.
The horizon forms at a given instant in the evolution
and new horizons can appear later. The evolution of the
inner boundary then will be piecewise continuous, jump-
ing every time a new outermost horizon appears.

As stated in Sec. II, our code contains an horizon find-
ing routine, based on the apparent horizon local defini-
tion (7), which can detect when and where a new horizon
does appear. This routine can also detect whether the
horizon is actually ahead of the inner boundary due to

The set of metric variables to evolve is

OgC= —C q e) (A1a)

a,r„=t."[2g'el,„+(g'e —&"„)D'e], (A1b)

u —= (&,r-, g"",g",g"-, g'e, D"„D'e),
where t = a.i/g"" is the local speed of light and we
have introduced the shortcuts D „=B„ln(g""),D e =
B„ln(gee),I'„—:Dee —2iD"„—I, , and I„—:8 ln(n).

With this notation, the vacuum Einstein evolution
equations in spherical symmetry can be written in first
order form as
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B&g"" = Cg""q"„, (Alc) so that, in the second step, the next time level is com-
puted in an explicit Hux-conservative way:

88 ~ 88 8 (A1d) ~+1 gg F +1/2 F +1/2
d~ i+1/2 i—1/2 (B4)

Ot (q"„+q) —B„[C(D"+ 2F„—2L„)]
= C (q's)' —(D's)' (Ale)

Bt {q s+ q) —8 C(D s —2L )

(A1f)

88
= C q s(2q s —q" ) + 2 —(D s) + 2L D s

Note that the stability of this explicit scheme im-
plies that the time interval of every step is limited by
the causality condition ensuring that the characteristic
speeds are lower than one grid zone per time step.

Allowing for the fact that this second step is centered
both in space and in time, first order accuracy in the in-
terface values leads to second order accuracy in the final
result, because the leading error terms cancel when sub-
tracting the Buxes between the right and left interfaces.

In order to obtain the interface values, we first compute
the forward and backward first order predictions for every
quantity:

Bt (D"„—2L„)= 8„[C(q'„+q)], (Alg)
i—1/2 g~i —1 2~i—2 2 g (Fi—1 Fi—2) I (B )

a, (D', —2L„)= a„C(q',+q) (Alh)

where we have also noted q = q'i = q"„+2q 8.
The nontrivial characteristic quantities are

tU~ ——C(D" + 2I', —2L„)+ (q"„+q),
tvs~ = C(Des —2L„)6 (q s + q), (A2)

with characteristic speeds +| .

APPENDIX B: DISCRETIZATION OF THE
TRANSPORT PROCESS

The finite difFerence version of the transport equation

B,u+ cl,F(u) = O

n+1/2
i+1/2 (B2)

are then used to compute the Buxes

n+1/2 n+1/2
F'+a/2 = F(n'+i/2 )

is constructed in two steps.
In the first step, one computes all the variables at the

cell interfaces (poin'~s i + 2) at an intermediate time level

n+ 2. The resulting predictions

B~ 1 1~& (x x
i—1/2 2 i 2 i+1 2 cga 4 i+1 i) ' (B6)

Note that, when dealing with shocks or large gradi-
ents, these one-sided predictions are known to produce
spurious oscillations: the predicted values at the i —

2
interface may get out of the interval defined by the val-
ues at the grid points i and i + 1. This is anomalous in
the sense that we are modeling a transport process and
the causality condition ensures that nothing coming kom
outside of this interval can reach the interface at the in-
termediate time level. We detect this spurious behavior
when one of the anomalous sequences (u";, u,"+z, uF+wz/2)

or (uB+w~/2, u,".
, u;+z) is monotonic. In these cases, we

take u,-+1/2 ——u";+1 or u,.+1/2
——u";, respectively, to make

sure that our predictions do not get out of range.
We perform then a local transformation at every in-

terface &om our original quantities u to the set char-
acteristic variables w which are given in the preceding
Appendix. The hyperbolicity of our transport equations
ensures that this is a one to one invertible transformation.
The interface values for each characteristic component m

are taken to be either the forward or backward prediction,
depending on the sign of the corresponding characteristic
speed (positive or negative, respectively). The interface
values of the original quantities u are finally recovered
by inverting the transforma'ion.
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