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Class of supersymmetric solitons with naked singularities
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We study vacuum domain walls in a class of four-dimensional N = 1 supergravity theories where
along with the matter field, forming the wall, there is more than one "dilaton, " each respecting
SU(1,1) symmetry in their subsector. We find supersymmetric (planar, static) walls, interpolating
between a Minkowski vacuum and a new class of supersymmetric vacua which have a naked (planar)
singularity. Although such walls correspond to idealized configurations, i.e., they correspond to
planar configurations of infinite extent, they provide the first example of supersymmetric classical
solitons with naked singularities.

PACS number(s): 04.20.Dw, 04.65.+e, 11.27.+d

Some of the solutions of gravity theory correspond to
configurations with naked space-time singularities, i.e.,
singularities which are not hidden behind horizons. This
uncomfortable feature is remedied by Penrose's conjec-
ture, which states that generic initial conditions do not
evolve to form naked singularities [1]. Such a conjec-
ture is difBcult to prove, and the dynamical formation of
naked singularities has been addressed only for speci6c
cases [2].

On the other hand, it has been observed [3—5] that in
supersymmetric theories the allowed black hole con6gu-
rations are only those with mass I bounded &om below

by the Bogoxnol'nyi bound, e.g. , M & gP + Q, where
P and Q correspond to the magnetic and electric charges
of the black hole, respectively. Incidentally, such a bound
coincides with the one of cosmic censorship. Namely,
black holes in supersymmetric theories have singulari-
ties hidden behind (or at) the horizon. This observation
prompted a conjecture [5] that supersymmetry acts as a
cosmic censor; i.e., in supersymmetric theories, con6gu-
rations do not have naked singularities. The conjecture
applies [5] only to configurations which have asymptot-
ically Bat space-time. In a related context, it has been
proven [4] that in ungauged extended supergravity the-
ories there are no classical "solitons" without horizons.
Such solitons were assumed to have a nontrivial struc-
ture in the interior and to tend at large distances toward
a supersymmetric vacuum without matter sources. The
notion that "supersymmetry does not like naked singu-
larities" [5] is intriguing and thus warrants further inves-
tigation.

In this paper we present supersymmetric vacuum do-
main wall configurations in a class of four-dimensional
(4D) foal' = 1 supergravity xnodels, where along with the
matter field, forming the wall, there are n & 2 "dilaton"
fields, each respecting SU(l, l) symmetry in their subsec-
tor. Such walls are supersymmetric (planar, static) con-
figurations, where on one side of the wall the space-time
is Minkowski, while on the other side the space-time has a
(planar) naked singularity [6]. Although such configura-
tions correspond to idealized solutions —i.e., they corre-
spond to planar configurations with infinite extent —they
provide the 6rst example of classical solitons with naked
singularities in a supersymmetric theory. Such solitons

provide another counterexample to the notion that in
supersymmetric theories naked singularities are hard to
realize [7]. One is able to trace the origin of these singu-
larities to the fact that these walls interpolate between
(supersymmetric) Minkowski vacuum and a nexo class of
supersymmetric vacua associated with a nontrivial mat-
ter source due to dilatons. Namely, in such supersym-
metric vacua, n & 2 dilatons render the vacuum energy
positive and for n ) 3 the stress-energy tensor violates
the strong energy condition. Such vacua are in sharp
contrast with the Minkowski and anti —de Sitter space
times, i.e., unique supersymmetric vacua without matter
sources [4]. Such walls should also be contrasted with
ordinary (n = 0) [8—11] and dilatonic (rx = 1) [12] super-
gravity walls.

We consider 4D N = 1 supergravity theory with n & 2
dilatons S;—:e 4" + ia, (i = 1, . . . , n), which we
choose to describe as scalar components of the chiral
supermultiplets [13]. Dilatons have a Kahler potential
K(S,, S;) = —P,. i ln(S; + S;) and no superpotential
[W(S,) = 0], thus respecting SU(l, l) noncompact syxn-
metry in each subsector [14]. The scalar component T
of the matter multiplet has a Kahler potential KM (T, T)
and superpotential WM(T), which allow for isolated min-
ima of the matter potential and thus for T to form the
wall. A crucial property of the effective action is that
it can be written in terms of the separable Kahler po-
tential K = KNx(T, T) + K(S;,S,) and superpotential
W = W~(T), which depends only on the matter field T.

Such a class of supergravity theories is motivated by
the no-scale supergravity xnodels [15] as well as by the
efFective theory of (4D) superstring vacua [16]. In the
latter case, one Geld corresponds to the dilaton field of
the string theory and the other (n —1) fields are the com-
pactification moduli. Note, however, that for superstring
vacua the rx —1 moduli cannot be rewritten as scalar
components of linear multiplets and matter fields in gen-
eral do couple to the corresponding moduli fields in the
Kahler potential. The above proposed class of supergrav-
ity models should thus be viewed primarily as a specific
&amework which illustrates the existence of classical su-
persymmetric solitons with naked singularities.

The scalar part of the tree-level N = 1 supergravity
Lagrangian is of the form
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is the part of the potential which depends only on the
matter field T. Here K = (KTT) i =— (BTB&K)
and DTWM = e ~b9T(e WM). We use the conven-
tion (+ ———) for the metric and the gravitational con-
stant r = 8vrG = 1. In (1) we have already set a; = 0
(which turns out to correspond to the solution of equa-
tion of inotion) and turned off the gauge fields. We also
assume that the models are &ee of mixed Kahler-Lorentz
anomalies [17].

We assume that V has isolated minima, thus allow-

ing for T field to form a wall configuration. Note
that V is modified as a result of the presence of n
real scalar fields P, , which yield an additional contribu-
tion e K ' 'IDs, Wl = 2e ~'e™IWMI to V for each
field P;. For supersymmetric ininima, DT WM = 0 and
V = (n —3)e~~ IWM I

. Therefore, at such minima dila-
tons P; screen the rnatter potential by 2 Q,. i e2~' [see
Eq. (1)] as well as changing an overall scale factor of the
matter potential from —3 (for the ordinary supersym-
metric vacuum) to (—3+ n), thus rendering the matter
potential (2) less negative. For supersyminetric minima
V is nonpositive for 0 & n & 2, it vanishes identically for
n = 3, and it is always non-negative for n & 4. We have
therefore constructed examples of supergravity models,
where supersymmetric minima can have positive vacuum
energy. This is counter to the prevailing lore that for the
supersymmetric vacua the vacuum energy is nonpositive.

We start with the metric ansatz for planar [in (x, y)
plane], static domain wall solutions:

ds = A(z) (dt —dz —dx —dy ),
and the scalar fields T(z) and P;(z) depend only on z.
Using a technique of the generalized Israel-Nester-Witten
form developed in Ref. [8] for the study of supergravity
walls, one obtains the following Bogomol'nyi bound for
the energy density 0. of the planar domain wall configu-
ration:

o —
~C~~

= f 6.@tg"b.p, + bgv, gb Ztb —Z. .

c), lnA = 2g 2 A exp 2)
1

B,P; = —( 2 "Aexp 2)
1

- 1/2

1/2

e~M~2IWMI,

where ( is either +1 or —1 and can change sign when
and only when W vanishes [8,9]. The above coupled
first-order differential equations can be viewed as "square
roots" of the corresponding Einstein and Euler-Lagrange
equations; they provide special solutions of equations of
motion which saturate the Bogmol'nyi bound (4).

The topological charge ICI can be determined in the
thin wall approximation. Then in the wall region (z
zo ——0, without loss of generality) the matter field T
is a quickly varying function, resembling a step function
centered at the wall, while the metric A(z) and P, (z)
fields vary slowly. With the choice A(0) = 1 and the
boundary conditions P;(0) = (P;)o (i = 1, . . . , n), one
obtains [8,12]

A( )
2Q' (z) — 2(P')p i 1) ~ ~ ~ ) A g

~ = I&l —= 2IKIWe ~'I).=o+ —(CIWe 'I).=o-
I

= 2(ai + n2), (6)

~h~~e ~i 2
—= 2 "~ exp[+", (P, )o] M 2lwMIi, 2.

the subscript 1 (or 2) refers to the side of the wall with
the larger (or smaller) value of a. The plus and minus
signs correspond to a solution with WM crossing zero
and WM g 0 everywhere, respectively. Note that there
are no walls corresponding to o, 1

——o.2 ——0; i.e., the
superpotential TVM has to have a nonzero value at least
on one side of the wall.

The first two equations in (5) describe the evolution
of the matter field T = T(z) with z. The first equation
is the "geodesic" equation [8] for the complex T field.
It is the same as for the ordinary and dilatonic super-
gravity walls. The third and fourth equations in (5) for
the conformal factor A(z) and the real scalar fields P, (z)
imply

) .Ks, s, bz'fjthzrh' dz + 0
j=1

(4)

This bound is saturated if and only if the supersymmetry
variations b, g~, h, g, and b, i)~ of the fermionic partners
of the fields g», T, and Sz, respectively, vanish. For this
case, one has 8upersymmetric bosonic backgrounds, and
the metric and scalar fields satisfy coupled first-order dif-
ferential equations (self-dual or Bogomol'nyi equations):

Here we have used the boundary conditions A(0) = 1 and

P;(0) = (P;)o. Note that this equation is true everywhere
in the domain wall background. If one chooses to take
one of the fields, say, P;, to be the dilaton field of the 4D
string vacua, then Eq. (7) implies that the string frame
metric [A, (z) = A(z)e ~'(')] is Pat everywhere in the
domain wall background. For n g 1 the second equation
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in (5) for the matter field T does not decouple &om the
conformal factor A(z) and the scalar fields P;(z), and
therefore the evolution of T(z) will be affected by the
presence of P;(z) [18]. For a thin wall, one sets V =
(n —3)e™[WM[= const outside the w'all and then the
solutions can be found explicitly [19,20].

One can classify solutions into type I, II, and III walls
in manner similar to those of ordinary supergravity walls
(n = 0) [8,9] and dilatonic walls (n = 1) [12]. Here we
concentrate [21] on the type I solutions corresponding to
the case where ai g 0 and az ——0; i.e. , on one side of
the wall, TVM ——0. The thin wall solution has the form

A(z) = [1 —(n —l)ni[z~) ~( ), y = (y )9 — i iii[1 —(n —l)ni[z[], z (0,
A(z) = 1, P; = (P;)o, z & 0 .

On one side of the wall (z & 0) the space-time is ffat,
and on the other side (z ( 0) A(z) vanishes at the finite
coordinate distance ]z~„„z ——I/(n —1)ai from the wall.
Both the scalar fields P;(z) and the curvature invariants
blow up in this region [22]. For n = 2, B = 0, but
B„B~"= oo at the singularity. For n & 2, not onlyB„Ri'" = oo, but also B = 3 x 2(2 —n)o. [1 —(n—
1)ai]z]] "~& ) blows up at ~z[„. z and the space-time
becomes more singular as the number n of dilatons P, {z)
increases. Clearly, ]z~„„z is a finite proper distance d =
I QA(z)dz = I/nni ( oo as well as within a finite affine
parameter from the wall [23]. Thus the singularity is
naked [24].

One can trace the origin of the naked singularity to the
nature of the stress-energy tensor on the side of the wall
with varying dilaton fields. The stress energy is diagonal
with nonzero components: Ttt —— T= T»———(2n ——
3)~,'[I—{n—I)n, ~z]]-' and T..= 3n,'[I—(n —i)n, ]z]]-'.
Thus it satisfies the weak energy condition Tq& & 0 for
n & 2 and the dominant energy condition Ttt & ~T,;~
(i = z, y, z) for n & 3; however, it violates the strong
energy condition Ttt —

z P,. t T,' & 0 for any n & 3.
Our supersymmetric solutions are thus in agreement with

the theorem [25] that static planar solutions are singular
when the stress energy satisfies the weak energy condition
Tqq & 0. On the other hand, such new supersymmetric
vacua violate the strong energy condition for n ) 3. This
is in sharp contrast with the Minkowski anti —de Sitter
space-times, i.e., unique supersymmetric vacua without
matter sources [4].

We found new supersymmetric vacuum domain walls
within a class of 4D, N = 1 supergravity models, where
along with the matter field forming the wall there are
n & 2 dilatons, each of them respecting SU(l, l) sym-
metry in their subsector. Such walls interpolate between
(supersymmetric) Minkowski vacuum and a new class of
supersymmetric vacua with the naked singularity. The
origin of the naked singularity is traced to the nontriv-
ial matter source due to the dilaton fields. Although
such walls correspond to idealized solutions —i.e., they
are planar configurations of infinite extent —they corre-
spond to the first example of classical supersymmetric
solitons with naked singularities.
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