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String cosmology with a time-dependent antisymmetric tensor potential
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We present a class of exact solutions for homogeneous, anisotropic cosmologies in four dimen-
sions derived from the low-energy string efFective action including a homogeneous dilaton P and
antisymmetric tensor potential B„„.Making this potential time dependent produces an anisotropic
energy-momentum tensor, and leads us to consider a Bianchi type I cosmology. The solution for
the axion 6eld must then only be a linear function of one spatial coordinate. This in turn places an
upper bound on the product of the two scale factors evolving perpendicular to the gradient of the
axion field. The only late-time isotropic solution is then a contacting universe.

PACS number(s): 98.80.Cq, 04.50.+h, 11.25.—w

I. INTRODUCTION reduced to four dimensions [9]:

The massless excitations of a string consist not only
of the graviton field g&„of general relativity, but also
a dilaton field P which determines the strength of the
gravitational coupling, and an antisymmetric tensor po-
tential B~„.While the cosmological consequences of the
dilaton have been extensively discussed [1,2], the role of
the antisymmetric tensor field strength

Hp, vA = [p, BvA]

is often less clear. This is partly due to the difBculty
of handling the many new degrees of &eedom this intro-
duces in higher dimensions. Here we will consider the
Geld restricted to a four-dimensional cosmology where
we have only one degree of &eedom which can be rep-
resented by a pseudoscalar "axion" Geld. The omission
of H„„~ is often justified due to the existence of duality
transforms of the string action which relate the dilaton-
only solutions to nontrivial H Geld solutions, but the
complete equivalence of the solutions is only true if this
duality extends to the full action. In a previous paper
[3] we gave exact solutions of the lowest-order string P
function equations for four-dimensional cosmologies with
a time-dependent axion field (see also [4]) which are re-
lated to the homogeneous dilaton-vacuum cosmologies by
an SL(2, R) transforin [5].

Another commonly invoked symmetry is the O(d, d)
duality [6—8] which requires (in a cosmological setting)
both the antisymmetric potential and the metric to be
functions only of time. Here we will give explicit solutions
for cosmologies including a time dependent B„„,which
can be seen to preclude any time dependence of H~ p
&om its definition. We shall show that, as it is the field H
that appears in the metric equations of motion, this is a
highly restrictive prescription. In particular it introduces
an anisotropic energy-momentum tensor which we shall
show inevitably leads to an anisotropic cosmology.

We will solve the string P function equations only to
lowest order, which can be derived &om the low-energy
efFective action of the bosonic sector of a string theory

S = d4xg ge ~—R+ (V'P)' —n(VP)'1

H2
12

(1.2)

g„" (&4)'+ (—g„"—g"" —g„"g"")& &-4

(1.3)

where H = H„gH""", ]c = SAG, and the modulus
field P represents the evolution of n compact dimensions.
For simplicity we assume that these dimensions are de-
scribed by a spatially flat (Bianchi type I) metric with
scale factors b;, and we define nP2:—P,. (b;ib;) . We
have adopted the sign conventions denoted (+++) by
Misner, Thorne, and Wheeler [10]. The constant V is
proportional to the central charge of the string theory.

The effect of certain types of stringy matter" has been
considered elsewhere in the literature [1],where an equa-
tion of state for matter was assumed. The symmetries of
the vacuum, as well as any additional gauge symmetries
that may be present, will affect the matter Lagrangian
as well, and also the value of the central charge V. We
shall assume that the original string theory, &om which
the effective action Eq. (1.2) is derived, contrives to set
the central charge V = 0, by adding appropriate bosonic
or fermionic conformal matter. Initially we shall restrict
ourselves to vacuum solutions as regards these matter
fields in order to examine the dynamical effect of the
bosonic Gelds. Later we will brieQy discuss the possible
efFect of other matter, in particular radiation.

The field equations are derived by varying this action
(with V = 0) with respect to g„„,B„„,and P, respec-
tively:

1 „ 1 ( „~„ 1R" — g"R = —
~

3H g—„H"""— gH—
l2~ 12" 2
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V„(e ~H""") = 0,
V e ~V" = 0,.( p)

2 Cl P = —R+ ('7&]&) + n (VP) + H—
12

(1 4)

(1 5)

(i.6)

These equations can be rewritten in a more famil-
iar general relativistic form in terms of the conformally
transformed Einstein metric, defined as

condition, O~~H ~„~ ——0, which becomes

H h+ 2V"QV„h = 0 . (i.i7)

We shall follow the usual string nomenclature and refer
to h as the axion, even though its axionlike properties
are not relevant to our analysis. The effective energy-
momentum tensor for the antisymmetric tensor Geld in
the Einstein frame can then be written as

gpv e gpv . (1 7)

In terms of this metric, the action (with V = 0) appears
as the Einstein-Hilbert action of general relativity while
the dilaton appears simply as a matter Geld, albeit one
interacting with the other matter fields:

Similarly the dilaton equation of motion, Eq. (1.12),
can be rewritten in terms of h rather than of H„„g.

2S= dx —gB —— V H P= e ~(Vh)

2—n V ——e ~H (i.s)
II. SOLUTIONS

V„(e ~H""")= 0

(1.12)

The energy-momentum tensors appearing on the right-
hand side of the Einstein equations correspond to the
energy-momentum tensors for the dilaton, moduli, and
H fields, respectively:

' '~'T„" = —
1

g„"g "—-g„g""
I
&~4&-4,

i g„"g "—g„g"" & p&-p, — (i.i4)

In this expression, raising of the indices was done with
the inverse g"" of the transformed metric (1.7). Note that
H~p„= H„p„, the definition being metric independent.

The corresponding Geld equations are then those for
interacting fields in general relativity:

T„" = diag( —p, p, p, p (2.1)

There are several possible homogeneous four-
dimensional cosmologies one may have in this system of
dilaton and axion coupled to gravity. The case where
the axion is time dependent was discussed in a previous
paper [3]. Here we consider the case where the compo-
nents of the antisymmetric tensor potentials B„depend
only on time, Bo; ——0 and B,z —B,z(t). Note that
Bp can be always set to zero by utilizing the symme-
try of the action under the vector gauge transformation
B~ —+ B~ + Ot~A„~. This is the case commonly dis-
cussed in the literature in the context of the O(d, d) sym-
metry of the low-energy action, Eq. (1.2), when the rnet-
ric and antisymmetric tensor potentials are independent
of d = D —1 of the spacetime coordinates. As can be
easily checked, for our ansatz (1.16), a homogeneous B„
corresponds to the situation where Bqh = 0.

The modulus and dilaton fields are taken to be ho-
mogeneous as well: P—:P(t) and P = P(t). They
then act like stiK Huids in the Einstein frame with an
isotropic pressure equal to their density, and so the
energy-momentum tensors are

lT" = —e ~
~

3H i„H "—gH
~

. (—1.15)

HpvA 2p~vA~V (1.16)

where ~""""is the antisymmetric volume form in four
dimensions (obeying V'~e" ""= 0). The field h obeys a
new equation of motion, derived &om the integrability

While the total energy momentum must be conserved (as
guaranteed by the Ricci identity) there are interactions
between the components.

Because we assume that all fields are independent of
the compact dimensions we can immediately solve the
equation of motion for the antisymmetric tensor Geld,
Eq. (1.10), in four-dimensional spacetime by the ansatz

where the energy densities are

-=1 2Py= 4, 4 (2.2)

ds = dt + ai(dx ) + a2—(dx ) + as(dh ), (2.3)

and an overdot denotes d/dt.
We wiH consider a Bianchi type I cosmology g„

diag( —1,ai(t), a2(t), as(t)), the simplest form for an
anisotropic metric, where the homogeneous hyper-
surfaces of constant time have zero spatial curvature. We
shall see that anisotropic expansion is a necessary conse-
quence of our choice of a homogeneous tensor potential.

We solve first the evolution in the Einstein frame, (1.7).
This metric is given by
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al a2 a3
(2.4)

where we have defined a; = e 4'~ a; and dt = e ~~2dt.
Since our metric is diagonal, the equation of motion for
h, Eq. (1.17), takes the form

~ ~

ni + ni(ni
~ ~

n2 + n2(ni

+ nz + ns) = 0,

+n2+ns) =0,
2$L2

3
2

G3

~ ~

ns + ns(ni + nz + ns)

together with the constraint equation

(2 9)

(2.1o)

(2.11)

Also, &om the off-diagonal components of Einstein equa-
tions, Eq. (1.9), we have (since 8,$ = 0)

0 = —e ~B;hO~ h(i, j = 1, 2, 3,i g j, no sum). (2.5)
1

0;h=L, , (2 6)

where L;(i = 1, 2, 3), are constants, since Oqh = 0. Then
we have L;L~ = 0, for all i P j, which tells us that only
one of L; can be nonzero. For definiteness, we choose
Lz ——I2 ——0. The resulting energy-momentum tensor
for the axion field is then

T& = diag (—p~, —p~, —p~, p~), (2.7)

where

2$L2
pH=4

K Q3
(2.8)

The axion thus exerts an anisotropic pressure —positive
in the x3 direction but negative pressure along xq and
X2 ~

The Einstein equations, Eqs. (1.9), then lead to the
equations of motion for the scale factors, o.; = lna;:

In addition, by our assumption of homogeneity the stress-
energy tensor depends only on the time coordinate, which
implies that the only solution of Eq. (2.4) is

1.2 n 2 1e L3nln2+ n2ns+ nsnl 4' + p + — & ( )4 2 4 a2

where overdots denote differentiation with respect to
time in the Einstein kame, t. The modulus and dila-
ton equations can be written as

P+ P(ni + n2+ ns) = 0,
e2 I23

P+ P(ni + n2 + ns)
G3

(2.13)

(2.14)

dt e&dt
dA—:

a~a2a3 aia2a3
(2.15)

In terms of this variable the above equations simplify
considerably:

dA dA dA dA ' )
2d P —24'L

2 3 1 2 (2.17)

The equations for the scale factors and modulus can be
readily solved:

The axion field drives the evolution of P and as but leaves
ai, a2, and p to evolve as "free" fields, subject only to
damping by the spatial expansion.

Let us introduce a new time coordinate A via the rela-
tion

ni ——Ci(A —Ai),

n2 —— C2 (A —A2),

ns+ 2P = Cs(A —As),

ai ——exp[zan+ Ci(A —Ai)],

a2 ——exp[2$+ C2(A —A2)],

as = exp [Cs (A —As) ],

(2.18)

(2.19)

(2.2o)

and

P = C„(A —A„), (2.21)

I

Since the last term is necessarily non-negative, the re-
quirement that the dilaton P be real translates to a con-
straint on the constants C;:

where C;, A; (i = 1, 2, 3, n) are constants of integration.
The "free" fields ni, nz, and p are monotonic functions
of time, while P and ns, both driven by the axion field,
are linked. The conformal transform back to the string
metric cancels out this dependence of the third scale fac-
tor on the dilaton, leaving a3 a "&ee" field, while it is the
evolution of aq and a2 that becomes tied to the dilaton.

These expressions can be substituted into the con-
straint equation (2.12) to give

fdP) (dPl
I

—
I

+ 21 I (Ci + C2) —4CiC2 —4Cs(Ci + C2)
qdA) gdA)

+2nC + e ~Lsaiaz ——0. (2.22)

Co = 2 (Ci + C2 + Cs) —(Ci —C2) —2Cs —2nC~
&0. (2.23)

1
exp[Ci(A —Ai) + C2(A —A2)Ci+ C2+ C3

+ C, (A —A, )], (2.24)

where to is a constant of integration which corresponds
to an arbitrarily chosen origin of proper time in the

We will choose Ce to be non-negative. (It can be zero
only when Ls ——0, corresponding to a vacuum solution. )

Note that &om the definition of A in Eq. (2.15), we
have



1572 E. J. COPELAND, AMITABHA LAHIRI, AND DAVID WANDS 51

—oo & t & tp for C» + C2 + C3 &

tp & t & oo for C»+C2+C3

(2.25)

(2.26)

Henceforth we will consider solutions only for C» + C2 +
C3 ) 0 without loss of generality. When C» + C2 +
C3 & 0 we obtain the time-reversed solutions for t
tp. For simplicity we shall set tp ——0 below; it can be
reintroduced by substituting t —tp for t in the appropriate
expressions.

string frame. Note that from Eq. (2.23) it follows that
+ C2 + C3 ——0 only when Cp ——0 and all the C; = 0

(i = 1, 2, 3, n), corresponding to the isotropic general rel-
ativistic vacuum solution (Minkowski spacetime) which
we are not interested in here. The variable A runs from
—oo to +oo, which means that t —tp is on the positive or
negative half-line, depending on the sign of C» +C2+ C3..

G2 —02*
I

t ) —-', (+s —~)

t, )
(2.33)

G3 = G3g (2.34)

Here we have renamed various combinations of constants;
in particular, we have

Cp

C»+ C2+ C3'
C2 —C»

C, +C2+C3'

C3
C»+ C2+ C3'

C„
C»+ C2+ C3

(2.35)

The various prefactors e~', a,, (i = 1, 2, 3) are appropri-
ate combinations of the constants that appear in A-time
solutions. The characteristic time t, corresponds to the
value of t when A = Ap.'

A. Dilaton-vacuum solutions

Cy+ Cg+ Cg = exp(A —Ao).t, (2.36)

For purposes of comparison, let us first give the so-
lutions for L3 ——0, when the axion Geld 6 and tensor
potential B„„remain constant and so do not afFect the
dynamics. This corresponds to the well-known dilaton-
vacuum cosmology [1]. We have dP/dA = Cy + C3 + Cp
and thus

e = exp [+Co(A —Ao) —Cq(A —Aq) —C2(A —A2)]

(2.27)

Thus we have, from Eqs. (2.18)—(2.20),

1
ag ——exp! —Cg (A —Ag) ——C2 (A —A3)(2 2

In terms of these new constants the constraint, Eq. (2.23),
becomes

12 2 12
2
—p +g + —T +As = 1

2
(2.37)

Solutions with p ( 0 correspond to solutions for t (and
thus t, ) negative. Considering only solutions for t ) 0
(i.e., Cq + C3+ C3 ) 0) implies that p ) 0. In either case
we have two possible vacuum branches corresponding to
the choice of +p in the solutions (unless Co and thus p
are zero .

While these solutions are in general anisotropic, this
is simply a consequence of having allowed ourselves the
&eedom to choose anisotropic initial conditions. If we
pick isotropic initial conditions, the metric remains an
isotropic (Friedmann-Robertson-Walker) metric.

1+—Co(A —Ae) !,
(1 1

a3 ——exp! —C2 (A —A3) ——C] (A —
Ay )(2 2

1
+-Co(A —Ap) !,

(2.28)

(2.29)

B. Axion-dilaton solutions

When I3 g 0 we define v = dP/dA+ (Cq + C3) so that
the equation of motion for the dilaton, Eq. (2.17), can be
written as

a3 ——exp[C3(A A3)]. (2.30)
dA

= —e L3G»CL2 = V —Cp (2.38)

The constants Ce, C; are constrained by Eq. (2.23), while
the constants Ap, A; are &ee. All of these constants, of
course, are fixed by the initial conditions on the cosmol-
ogy.

Using Eq. (2.24) to rewrite these in terms of the proper
time in the string kame we have simply power-law solu-
tions

( t 1+I+~—1
e4 —e4»

!

which can be solved to give (note that v3 ( C02)

v = —Cp tanh Co(A —Ap), (2.39)

Cp 1
e

L3 cosh Cp(A —Ao)

)& exp[ —C&(A —A&) —C2(A —A2)] for L3 g 0.
(2.40)

where Ap is a constant of integration. The solution for
the dilaton then follows from Eq. (2.38):

( ) —
g (+3+~)

(2.32) We can now collect our solutions for the scale factors in
the string kame:
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Gj

exp 2 C2 (A —A2) —
2 Ci (A —

A i)
(2.42)is /cosh Co(A —Ao)

as = exp[Cs(A —As)]. (2.43)

exp —Ci(A —Ai) —2C2(A —A2)
(2.41)i3 /cosh Co (A —Ap)

0:— O. g + O.2+ ~3

1
3(Ci + C2) + 2Cs

4a&G2G3

yCo t ash CD (A —Ao)

I

(2.50)

(2.51)

Note how the dilaton-vacuum solutions contain two dis-
tinct branches according to whether we choose +Cp,
whereas the axion-dilaton results above are independent
of the choice of sign, smoothly evolving from the —Co
vacuum branch, when (A —Ao) is large and negative, to
the +Co branch, when (A —Ao) becomes large and posi-
tive.

In terms of the string frame time coordinate t, the
solutions for the scale factors and the dilaton take the
forms [with p, q, and r as defined in Eq. (2.35)]

(2.52)

C,'+ C,'+ 2(C& —C2)'
4a&G2G&

+ [2Cs + Cp tanh Cp(A —Ao)] (2.53)

is the expansion rate and the anisotropy (or "shear") is
given by

( t l "+"
Gy = Gy

4 t*)
(tl "+

+I

(tl'

(tl" ' (tl
a2 ——a2,

(2.44)

(2.45)

(2.46)

(2.47)

L, a,a,2 2 2

2 2 2 24K Gga2ag
C2

2 (1 —tanh Co(A —Ap))4K Gga2G3

(2.54)

(2.55)

for the axion-dilaton solutions given in Eqs. (2.41)—
(2.43).

Each term in the constraint equation (2.49) is non-
negative and so the relative importance of each term on
the right-hand side in determining the expansion rate is
simply given by their magnitude. Thus at early or late
times we recover the dilaton-vacuum solutions where the
expansion rate is proportional to square of the volume in
the Einstein frame (8 oc p@ oc pp oc 0' as A m +oo),
while the axion energy density evolves as

Again we see the evolution from one vacuum branch [with
the lower signs in Eqs. (2.31)—(2.34)] for t (( to to the
other vacuum branch (with upper signs) for t )) t„.

Note that the efFect of the axion field is to decelerate
the scale factors aq and a2, placing an upper bound on
the product:

Gya2
Gy G2 ( Cp(t)" (tl" is

& '*) «*)
(2.48)

In contrast with the dilaton-vacuum solutions, even an
initially isotropic metric (r = 0, q = p/2) becomes
anisotropic in the presence of the axion resulting from a
time-dependent tensor potential. The only solution that
can approach isotropy at late times is a contracting met-
ric.

To understand how this occurs it is useful to return
to the Einstein frame solutions. We can always write the
Einstein constraint, Eq. (2.12), in a Bianchi type I metric

e@

Gg G2

Oi2
2@

gdet g'

(2.56)

(2.57)

and vanishes relative to the other terms as A ~ Woo.
The axion field only plays a dynamical role for a brief

period around A Ao (t t, ). It is the only anisotropic
fIuid in the system, and so it delivers an "anisotropic
impulse" to the metric. As can be seen from Eq. (2.53)
this causes a change in the shear, around A = Ao (t = t, ),
Ao oc pq. The only stable late-time vacuum solutions
have the area perpendicular to the gradient of the axion
field (aia2) decreasing.

In order to solve for B~, we first note that we have
already chosen Bo, ——0, and setting B;~ =B;~(t) im-.
plies H,~k ——0. Further, the choice Lq ——L2 ——0, made
because of Eq. (2.5), implies that B2s and Bsi are con-
stants, and it follows that Hpq2 ——0&B~2. Then, combin-
ing the two expressions

8 =3ic (py+ pp+ p~)+3o (2.49) and using the definition of A, Eq. (2.15), we obtain

where 2@—2-2 2 2
OgBq2 ———L3e aza2 ———L3aza2. (2.58)
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Of course, if Ls ——0, then Bq2 is just a constant. Otherwise, use of Eqs. (2.18), (2.19), and (2.40) allows us to
rewrite the above equation and solve for B12'.

Cp 1

L3 cosh Cp(A —Ap)

Cp
B12 — tanh Co(A —Ao) + B12I3 (2.59)

III. DUALITY

The class of homogeneous solutions of the metric, dila-
ton, and antisymmetric tensor potential in four dimen-
sions has been shown to have a global O(3, 3) invariance
[in general, a global O(D —1,D —1) invariance in D
dimensions] [6—8] under which

MwM'=0 MO, P = P —ln gdet G -+ P,

(3.1)

where 0 is a 6 x 6 constant matrix satisfying

where B12 is a constant Gxed solely by the initial con-
ditions on the antisymmetric tensor and is independent
of the choice of all the other constants. For the sake of
completeness, the other components of B~„are given by

Bp; ——0, B23 ——B23,B31 ——B31, both constants.
Thus we see that, except for A Ap (or equivalently

t t, ), the tensor potential remains very nearly con-
stant and we recover the vacuum solutions. Only in the
vicinity of A = Ap does the potential change, resulting in
a nonzero axion 6eld, which delivers an anisotropic im-
pulse to the metric, before the potential becomes roughly
constant, again returning to the vacuum branch.

G i G —iB=
i BG-' G —BG-'B '' (3.3)

2
I2 a2

a2a2+B2 '
1 2 12

2
I2 a1

a2a2+B2 '
1 2 12

/2 1
Q3 = —2)

a3

(3 4)

(3 5)

(3.6)

where G and B are, respectively, g,~ and B,~ written
as 3 x 3 matrices. Any 6 x 6 constant matrix 0 obeying
Eq. (3.2) generates new solutions for the metric, antisym-
metric tensor, and dilaton, corresponding to M', &om the
original set of solutions.

In the case where B;~ vanishes the special choice 0 = g
is called the "scale factor duality" transformation [6,7]
because it takes the scale factors a, ~ a, , thus ex-
changing "large" directions with "small" directions. Let
us consider what happens to the solutions of the previous
section with this particular choice of O. This generates
nonequivalent solutions; i.e., it is not just a spatial ro-
tation or gauge transformation [7], while it will allow us
remain within our class of Bianchi type I solutions if we

set B23 ——B31 —0.
In this case, a bit of algebra shows (with primes de-

noting the duality transformed functions)

0 @0=AD,
& O 1 l

1O (3.2) I B
12 a2a2 + B2

1 2 12
(3.7)

(1 is the 3 x 3 identity matrix), and From our solutions (2.41), (2.42), and (2.59) we have

2

a~a& + B~2 ——
L2 h C (1+B&2) cosh Co(A —Ap) + 2Bq2 sinh Co(A —Ao)L3coshCp A —Ap

(3 8)

2B12 ——6 sinh CpAp, (3.9)

It follows that the dual solutions can be divided into two
separate classes.

(a) Bq2 g +1. In this case, we can define a constant
A(,

' such that

a1—

I
a2 ——

Ls exp 2C2(A A2) 2C1(A Al) -, (3.11)
bCo /cosh Cp(A —Ap)

Ls exp -'C&(A —A&) —-'C2(A A2)2 -, (312)
bCp +cosh Cp (A —Ap)

where b = ~1 —B&22~. Then 1 + B&2 ——b cosh CpAo, and
Eq. (3.8) becomes

as = exp[—Cs(A —As)],

B~2 = ~ tanhCp(A —Ap) —Bi2
p

(3.13)

(3.14)

bCp cosh Cp(A —Ap)

coshC (A —A )
' (3.10)

with Ap ——Ap —Ap. The dual transformed solutions [(3.4)—
(3.7)] can be then rewritten as

where the sign for BI2 is positive or negative as (1 —B&2)
is negative or positive, respectively. As is obvious, these
fall in the same classes of solutions as our original ones
Eqs. (2.40)—(2.43), (2.59). The dilaton P is shifted,
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L3 1e&-+ e& = exp[ —Ci(A —Ai) —C2 (A —A2) —2Cs(A —As)],
bCp cosh Cp (A —Ap)

(3.15)

while P as defined in Eq. (3.1) is invariant, as is the coordinate A. Obviously, the duality transformation can be
expressed as a transformation on the constants that appear in the solutions. For example, when the solutions are
expressed in terms of the string time coordinate t as in Eqs. (2.44)—(2.47), the duality transformation is essentially
equivalent to the following transformation on the constants:

P~ —P~ qM —q, T M T$

Q2
Ls -+ +II —Bi21 L' .

3
(3.16)

Note that the duality transformation changes the characteristic time defined by Eq. (2.36) (but now with Ap replaced
by Ap):

t +t' =t e-(
1/p

1 —B12
1+B12

(3.17)

Thus the characteristic time tends to zero or infinity as B12 tends to +1 or —1, respectively.
(b) Bi2 ——+1. In this case, we have

2

aia2 + Bi2 ——
2 sech Cp(A —Ap) + (tanh Cp(A —Ap) 6 1)12

~2 2 +Co(A —Ao)e

Ls cosh Cp(A —Ap)'
(3.18)

The dual transformed solutions turn out to be nothing more than anisotropic solutions of pure dilaton cosmology:

Ia1
Ls (1 1

exp
I

—C2(A —A2) ——Ci(A —Ai) p —Cp(A —Ap) I,
2Cp (2 2 2 ) ' (3.19)

1 1
a2 —— exp

I

—Ci(A —Ai) ——C2(A —A2) + —Cp(A —Ap)
2Cp (2 2

)2

as = exp[ —Cs(A —As)],
I3

Bi2 = [sinh Cp(A —Ap) + cosh Cp(A —Ap)] e+12
2CO

(3.20)

(3.21)

(3.22)

The sign (+) in the above corresponds to the sign of Bi2.
Thus we see that these "vacuum" (H~„p = 0) solutions
appear as a limit of the duality transforms of type (a)
above as Ap -+ koo (alternatively, as t', -+ 0 or oo).

IV. CONCLUSIONS

We have considered four-dimensional cosmological so-
lutions of low-energy effective string theory in which the
metric, dilaton, modulus, and antisymmetric tensor po-
tentials depend only on the time coordinate. This restric-
tion inevitably leads us to a homogeneous but anisotropic
universe except for the isotropic vacuum solution with
the antisymmetric tensor B~ =const. Even in a situa-
tion with B;~ g 0 (but with H„„q = 0) the three coxnpo-
nents of B;~ form a three-vector, thus specifying a chosen
direction. However, it is when the components of B„„are
allowed to vary with time that the variation (the axion
field h) drives the anisotropy of the metric. In order
to gain an understanding of how such a universe would
evolve, we have considered Bianchi type I universes in

I

this paper possessing shear but no spatial curvature.
We find models which behave like dilaton-vacuum

models (where the axion can be neglected) at early and
late times. However, the axion field does acct the dy-
namics for a brief period around. t = t„producing an
anisotropic "impulse" at this point. The Einstein metric
provides a useful &arne in which to discuss the behavior of
these solutions. During the electively vacuum regimes,
the shear o 2 and density of the modulus, pp, and dilaton,
py, in this &arne drive the expansion and are proportional
to (aia2as) . However, the axion density pH oc e as
will grow relative to the shear, modulus, and dilaton den-
sities at early times while e ~a1a& ——a1a2 grows. Thus
the axion's anisotropic pressure must eventually become
important. It tend. s to decelerate the scale factors a1
and a2, and. produces an upper bound on the product
aia2ILsl & Cp. The dilaton-vacuum solutions (Ls ——0)
are thus atypical of the general axion-dilaton solutions.
The stable, late-time, electively vacuum era must have
a1a2 decreasing, while the third scale factor a3 is &ee to
grow (or decrease) monotonically.

Such anisotropy is not observed in our Universe to-
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day. We usually expect shear will be diluted away at
late times by the presence of other isotropic matter, in
particular isotropic radiation in the hot big bang model.
However, it is far &om clear whether ordinary isotropic
radiation can dominate over the axion in this model. The
isotropic late-time behavior (with a = ai ——a2 ——as)
dominated by a radiation (p = p/3) is only possible if
pJr/p oc e&a2 M 0 as t -+ 0. Because the pure radiation
plus dilaton solution has P ~const, a late-time isotropic
radiation-dominated solution Inust be a contracting uni-
verse, i.e., a ~ 0.

We cannot rule out some expanding isotropic solution
with radiation at late times, but for the anisotropic ax-
ion field not to spoil this isotropy we must have pH/p
remaining negligible, and thus a decreasing dilaton, or
some reason (such as an infiationary era in the Einstein
frame) for the axion gradient to be vanishingly small. As
any variation from the standard hot big bang model (with
constant dilaton) is tightly constrained by, for instance,
results from primordial nucleosynthesis, radiation alone
does not seem to be sufhcient to erase the anisotropic in-
Huence of a time-dependent antisymmetric tensor poten-
tial. Spatial curvature (zero in the Bianchi type I metric)
would in general introduce further anisotropy. Again, we
would require in6ation in the Einstein &arne to avoid
curvature dominating the evolution at late times.

The "characteristic time" t, plays a major role in both
the evolution and in the interpretation of duality trans-
formations of the solutions. At early times, the antisym-
metric tensor B„„is approximately constant. It changes
rapidly around t, and becomes approximately constant
again, albeit at a difFerent value. When a transformed

characteristic time t', is deGned, the duality transfor-
mation is seen to change the time dependence of the
scale factors and the antisymmetric tensor potential by
(t/t, ) ~ (t', /t). The duality transformation is then seen
to relate a given solution at late times with another solu-
tion at early times. In particular, we Gnd that for special
choices of initial values of the antisymmetric tensor, the
universe that results is duality related to a vacuum solu-
tion of pure dilaton cosmology, where t', —+ 0 or oo.

The O(3, 3) invariance of the low-energy action proves
to be of limited use in a cosmological context. The re-
quirement that the metric and potential B„both be
functions only of time is highly prescriptive. Given a
homogeneous metric a more natural expectation would
be that the axion field (which determines the energy-
moinentuin tensor and thus the metric) should be time
dependent [3,4], rather than the potential. The only met-
ric (with zero vorticity) which can meet this prescription
is Bianchi type I and in such a case the axion Geld de-
rived from B„(t)can have no time dependence and must
be anisotropic. This prohibits isotropic expanding uni-
verses at late times in the string &arne. In this respect
the dilaton-vacuum solutions B„=const are atypical of
the behavior of the general axion-dilaton solutions.
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