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larity of a universe driven by a massive scalar field, we find how big initial quasi-isotropic inhomo-
geneities can be before they can prevent inflation to set in.
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I. INTRODUCTION

The scale factor a(t) of a spatially flat isotropic and ho-
mogeneous Robertson-Walker (fRW) universe driven by
a massive scalar field ¢ evolves as follows: Near the big
bang (chosen to be t = 0) the scalar field goes to co as
—Int and behaves like a perfect stiff fluid (whose pres-
sure equals the energy density, that is, whose adiabatic
index T is 2), so that a grows as t}/2 [1]. Then a grows
quasiexponentially during the inflationary regime during
which ¢ slowly rolls down its potential well [2]. Finally
at the end of inflation when ¢ oscillates in the bottom of
the well a behaves as if the Universe was driven by dust
and grows on average as t2/3 [3].

A question is, how stable is this evolution against de-
partures from spatial flatness, isotropy, and homogene-
ity? The effect of curvature was studied in [4]; since its
role after the big bang can become predominant, it can
prevent inflation from ever starting if strong enough. In-
flation in homogeneous albeit anisotropic Bianchi models
was thoroughly analyzed, with similar conclusions: See,
e.g., [5] for a review. Finally, the role of inhomogeneities
was studied analytically under simplifying assumptions
in [6]. They were studied numerically in the case of pla-
nar symmetry in [7] and in the case of spherical symme-
try in [8]. In [8], setting the initial conditions in such
a way that inflation would occur only in the central re-
gion if the Universe evolved like a fRW spacetime, the
conclusion was that inflation would indeed occur only if
the central region was larger than a few times the local
Hubble radius.

' Here we shall tackle the problem semianalytically in
the long wavelength approximation.

The long wavelength iteration scheme, the history of
which goes back to [9], is a way to build, out of “seed”
spatial metrics, approximate solutions of Einstein’s equa-
tions which describe inhomogeneous but quasi-isotropic
universes on scales larger than the local Hubble radius
(see [10] and references therein for a detailed description
of the scheme). When matter satisfies the strong energy
condition (that is, does not inflate) this approximation
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is well suited to describe the early Universe since most
scales are then larger than the Hubble radius on average
(this is the well-known horizon problem). These approx-
imate solutions, however, are not generic in the sense
that they are built out of a seed spatial metric, that is,
on three physically distinct arbitrary functions, instead
of six (four for the gravitational field, plus two for the
scalar field). The three missing functions can be seen as
describing departures from isotropy. These anisotropies
cannot be neglected near the big bang (see, e.g., [9,10])
but they decay with time much faster than all other con-
tributions to inhomogeneity and hence will be ignored
(see [11] for an analysis of the generic solution near the
big bang).

Within that scheme the growth or decay of inhomo-
geneities according to their equation of state can be easily
inferred, at least qualitatively (see [10,12]): They decay
when matter violates the strong energy condition, that
is, inflates, and grow otherwise, that is, when the effec-
tive adiabatic index Ieg of matter is > 2/3. Therefore
when matter is a scalar field the inhomogeneities first
grow (Ieg = 2) and then decay during the inflationary
period, to grow again at the end of inflation (Teg = 1),
at the condition that they do not grow so large during
the first phase as to prevent inflation from starting.

The purpose of this paper is to give quantitative esti-
mates on when inflation may be halted by the presence of
initial quasi-isotropic inhomogeneities. This will be done
by integrating numerically the ordinary second-order lin-
ear differential equations that govern their evolution in
the long wavelength approximation scheme.

II. EQUATIONS

The long wavelength approximation scheme [10] con-
sists in looking for solutions of Einstein’s equations for
gravity coupled to a scalar field whose three-metric (in
the ¢ = const slices of a synchronous reference frame)
can be expanded as a sum of spatial tensors of increas-
ing order in the gradients of a “seed” metric with time-
dependent coefficients. The line element is thus of the
form
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ds? = —dt? + vi;(t, 2*)dzide?, ;= Py 4+ Oy + Oy 4100
Moy; = a®(B)hij (@),  Pyij = a® [a2(t) Rhyj + b2 (t) Rij] (1)
®)yi; = a? [aa(t)R?hij + ba(t)RRi; + ca(t) Rim R'™hij + da(t) Rim BT
+a? [e4(t) Vi V™ Rhyj + fa(£)ViV;R + g4 () V. V™ Ry5],

and the scalar field of the form
© = d(t) + p2(t) R+ ¢pa(t) R + Y4(t) Rt R™ + £4(t)Vu VR + -+ . (2)

This solution is built on a “seed” h;;(z*) of six functions of space which can be reduced to three by a suitable choice
of spatial coordinates. As shown in [10], it is not a generic solution (it should then depend on six physically distinct
functions), but it is an attractor of a class of generic solutions. At lowest order the metric reduces to v;; = a%(t)h;;(z*)
and ¢ = ¢(t), hence the name “quasi-isotropic” given to the solution. V; is the covariant derivative with respect to
hij, R;; its Ricci tensor, and R = R¥h,; the curvature scalar. The coefficients a(t), az(t), etc., are functions of time
which are determined by Einstein’s equations. We shall denote by L the characteristic comoving length on which the
spatial metric varies: 8;vjr ~ L™ ;.

At zeroth order Einstein’s equations reduce to the Friedmann equations for a spatially flat Robertson-Walker (fRW)

universe and determine a(t) and ¢(¢). Introducing the dimensionless variables

F = 2v/37G,

T = mt,

where m is the mass of the scalar field, they read

ds _HS dH
dr — 3’ dT

The solutions of Egs. (4) depend on three integration
“constants”: the time T(z*) of the big bang that we
shall restrict to be 7 = 0 (see [11] for an analysis of
delayed big bang solutions); the size S(z*) of the scale
factor at some given initial time: a “constant” which can
be absorbed without loss of generality in a redefinition of
the seed metric h;;; and finally the initial value F' for the
scalar field. A priori F depends on space but the first-
order Einstein equations (see [10] for details): §;H =
—4(dF/dT)8;F imposes that it does not. Its value, the
same for all z¥, tells us which curve of the (F,dF/dT)
phase diagram the solution follows, and hence determines
the total amount of inflation. We shall therefore integrate
these equations up to the beginning of inflation with, as
initial conditions at time T = e,

1
Sin = 61/35 Hi, = ;’

F; in = F ) (5)
€ being chosen such that (In€)? is numerically negligible
compared to e~2. If matter were a perfect fluid with adi-
abatic index T, the scale factor S would grow as T'2/3T,
In the initial regime (5) the scalar field hence behaves
like a stiff fluid (T = 2) [1]. When F is large enough the
solution then enters an inflationary phase characterized
by a slow linear decrease of F' and a quasiexponential
growth of S. The comoving Hubble radius Ly = 3/SH
hence first increases as T?/3 during the stiff fluid regime
and then decreases exponentially. The moment it reaches
its maximum value can be taken as the beginning of in-
flation. We shall denote Li3f and Fiy¢ the values of the
Hubble radius and the scalar field at that moment.

— @ -FY), T=-

ZE;— S =am y (3)

H? - F2. (4)

At third order Einstein equations determine the time-
dependent coefficients az(t), b2(t), and ¢2(t) in (1) and
(2). In terms of the variables defined in (3) and intro-
ducing

B, = b2m4/3, Ay = a2m4/3,
Fy = 4| " m#3 g, (©)
they can be written as (see [10])
du dB2 u
Zl—T_ - _233 dT - —S.Ea (7)

dv u d dF\ 2 dA, dF\?
== | (s= , 2=y (=), ®
dT 45 dT dT dT dT

__1 (ldB;  dA,
dFjdT \4dT " 4T )°

Fp= (9)
It is easy to see that when the inflationary regime has
set in, B, tends to a constant (which we shall call I;) as
well as F>. As for A, it decreases linearly in time. Now,
as shown in [10], a gauge transformation modifies the
coefficient of the scalar curvature R in (3)’)’,:]' but leaves
untouched the Ricci term. During inflation it amounts to
adding an arbitrary linear function of time to A;. There-
fore the linear decrease of A; can be gauged away by a
suitable choice of initial conditions for Az, vs, leaving B,
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as the only relevant quantity to be studied. Physically
the geometry evolves from one configuration, h;;, to an-
other, h;; + (I2/m*/3)R;;, where I, is the “imprint” on
the geometry left by the initial inhomogeneity. We shall
therefore integrate (7) with the initial conditions (5) at
T = € together with dF/dT|;, = —1/¢ and

3 9
Uin = —564/3, Bs|in = —§€4/3- (10)

III. SOLUTIONS

Equations (4) with initial conditions (5) and Egs.
(7) with initial conditions (10) are integrated numer-
ically. The results can be encapsulated in a plot of
T2 = 4/|L2|/L as a function of Fi,. See the curve
k = 0 of Fig. 1. We see that as F¢ increases, 7, tends
to a constant close to 1 [when a brutal extrapolation of
the analytical behaviors (5) and (10) would have given
1/2v/2]. Going back to the expressions (1) and (2) for
the metric and the scalar field, a sufficient condition for
inflation then appears clearly: Inflation will set in if the
corrective terms (3)%]- remain small compared to (1)7,-j,
that is, if I,/L? < 1, which is equivalent, because 7
tends to 1, to L > Lif’}f. This condition says that the
size L of the inhomogeneity must be larger than the (co-
moving) Hubble radius at the onset of inflation, when
the brutal analytic extrapolation gives L > (1/2v/2)Li3t.
Moreover, when the zeroth order barely inflates, that is,
when Fj,s is small, 7 = a > 1, so that a sufficient con-
dition for inflation is L > aLijf. We thus recover in this
semianalytical approach the result of Ref. [8].
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IV. CONVERGENCE OF THE ITERATION
SCHEME

A rigorous mathematical analysis of the convergence
of the series (1) and (2) is certainly beyond the scope of
this paper. Using the results of the Appendix of Ref. [10]
we can, however, compute the next order, that is, the
coeflicients a4, b4, etc., and see if including them spoils
the conclusion of the preceding paragraph, drawn from
the first iteration.

The relevant coefficients, which are not affected by a
gauge transformation, are ¢4, dg, and g4. We shall con-
centrate on g4 which satisfies the linear second-order dif-
ferential equations

dw dG4 w
ar =55 g =

9T (11)

where we have introduced G4 = m8/3g, with the initial
conditions

27
_ 2l e8/3

81 g/3
64 ) G4|in=_8_35/ .

Win = (12)
(Knowing G4 and B,, the coefficient Dy = m8/3d, is
readily obtained: Dy = —4G4 + 1BZ; see [10].)

The results of the integration of (11) and (12) are sum-
marized in the diagram 74 = |G4|/%/L%f as a function
of Fiy¢ (see the curve k£ = 0 of Fig. 2). We see that 74
follows the same pattern as 75. As Fi,¢ increases it tends
to a constant value of the order of 0.63 when an extrap-
olation of the analytical behavior (16) would have given
873/4 = 0.21. As for the ratio |D4|'/*/L'5f it tends to
0.60.

The inclusion of these fourth-order terms therefore
does not spoil the conclusion of the previous paragraph
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and, since 74 < T3, is an indication (although certainly hijdm‘dmj can be written in the form
not a proof) that the exact solution does not differ dras-
tically from the second-order solution. Assuming then do? = dr? + r2dQ (13)
that the series converges we conclude that, if the size of 1—kr2 ’

the inhomogeneity is larger than the Hubble radius, then
the solution will inflate and the inhomogeneity be washed
away.

V. CURVATURE VERSUS GRADIENT EFFECTS
AND AN IMPROVED SCHEME IN THE CASE
OF SPHERICAL SYMMETRY

In the case when the inhomogeneity is imposed to

where dfQ is line element on the sphere and where k(r) is
an arbitrary function of r.

Expressing the Ricci tensor and its derivatives as a
function of k(r) we can write the long wavelength metric
(1) and scalar field (2) in the form

ds? = —dt® + R*(C?%dr? + r2dQ), (14)

be spherically symmetric, the seed line element do? = with
J
a 1 a)
R = RRY, |:1+<a2+1b2)k’r+...], R, =a[l+ (Baz+b2)k+--], (15)
C=C 1+ a,+lb kKr+ Cerw = ! 16
= UcRW 2 2 2 9 cRW = ma ( )
and ¥
o= $Bhy +2hrda -, SRRy =S+ kdn - ()

where a prime denotes differentiation with respect to
r and where the time-dependent coefficients (a,®),
(az,b2, ¢2), etc., are the same as before and satisfy Egs.
(3)-(5), (6)-(10), (11), and (12).

The rewriting of Egs. (1) and (2) under the form (14)-
(17) shows clearly the two ways in which a spherically
symmetric inhomogeneity makes the solution depart from
the fRW solution. The first (trivial) effect is that of cur-

[
vature: If k£ # 0 but all its derivative are taken to be zero,
the long wavelength solution (14)—(17) can be checked to
be nothing but the Taylor expansion in t of the exact
curved Robertson-Walker (cRW) solution. In this case
then the exact metric and scalar field are given by (14)
with C = (1 — kr2?)~'/2, and R = a and ¢ satisfying the
Friedmann equation
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Ly

FIG. 3. Plot of the comoving
Hubble radius as a function of
time for various values of the
curvature term k and a given
initial value for the scalar field.
The solid line corresponds to
k = 0, the dashed lines below to
negative k, and the dot-dashed
ones to positive k. Finally the
dotted line is an example of a
curvature strong enough to pre-
vent inflation from setting in.

dS HS dH _ s s 6K
-3 ar - H )

dF

o = —VH? - F? 1+ 9K/$?, (18)

where/ T,F,H,S are defined by (3) and where K =
—2/3

Integrating (18) numerically with the same initial con-
ditions as before [Eq. (5)], we recover the results of Ref.
[4]; that is, that if the curvature term K/S? is too large,
then inflation is halted. This can be seen in Fig. 3 where
Ly is plotted as a function of T for different values of K
and a given initial value F' for the scalar field. We see
that a negative K “favors” inflation whereas a positive
value delays its setting in and, if large enough, can even
prevent it (dotted line).

The second effect is that of the gradients, that is, the
derivatives of k(r), which reflects the point-to-point cor-
relation due to the variation of the curvature. It can be
enhanced by choosing a seed k(r) such that it is small ev-
erywhere but has a steep gradient k'r around, say, r = R.
From (16) and the result of Sec. III, that 7, ~ 1, we
know that these gradient effects will not prevent infla-
tion to set in if the function k(r) is everywhere such that
k'r < 2m#/3/(Liaf)2.

One can also improve the long wavelength scheme
by replacing in (14)—(17) the approximate cRW values
by their exact values as given by (18) and taking for
A3, B3, F, the solutions of Egs. (7)—(9) where S, H, and
F are taken to satisfy (18) instead of (4). The results are
summarized in Figs. 1 and 2 and show that the improved
and the standard schemes coalesce for large Fji,s, that

is, for strongly inflating solutions. This confirms what
the previous section already indicated, that is, that the
iteration scheme seems to converge nicely.

VI. CONCLUSIONS

An important question in inflationary cosmology is,
how generic is it? As already shown by Goldwirth and
Piran and confirmed here, inflation by itself requires a
certain level of homogeneity: It can start if initial in-
homogeneities are larger than the local Hubble radius.
While the numerical calculations of [8] can explore in
a detailed way a specific (spherically symmetric) case of
strong initial inhomogeneity, the semianalytical approach
presented here is limited to rather small perturbations,
but it gives a better global picture on the factors that
control the behavior of the system. It gives only suffi-
cient conditions for the ouset of inflation, not as strong
as the necessary conditions obtained in [8], but they are
general and do not assume any spatial symmetry. We
plan to extend the comparison between these analytical
and numerical approaches by solving an identical initial
value problem. This requires further investigation of the
various coordinates systems used.
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