
PHYSICAL REVIEW D VOLUME 51, NUMBER 4 15 FEBRUARY 1995

Conditions for inflation in an initially inhomogeneous universe
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Using a long wavelength iteration scheme to solve Einstein s equations near the big-bang singu-
larity of a universe driven by a massive scalar field, we find how big initial quasi-isotropic inhomo-
geneities can be before they can prevent in6ation to set in.
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I. INTRODUCTION

The scale factor a(t) of a spatially Hat isotropic and ho-
mogeneous Robertson-Walker (fRW) universe driven by
a massive scalar field p evolves as follows: Near the big
bang (chosen to be t = 0) the scalar field goes to oo as
—lnt and behaves like a perfect stiff Huid (whose pres-
sure equals the energy density, that is, whose adiabatic
index I' is 2), so that a grows as ti~s [1]. Then a grows
quasiexponentially during the inflationary regime during
which rp slowly rolls down its potential well [2]. Finally
at the end of inflation when y oscillates in the bottom of
the well a behaves as if the Universe was driven by dust
and grows on average as t2~s [3].

A question is, how stable is this evolution against de-
partures from spatial flatness, isotropy, and homogene-
ity'? The effect of curvature was studied in [4]; since its
role after the big bang can become predominant, it can
prevent inflation &om ever starting if strong enough. In-
flation in homogeneous albeit anisotropic Bianchi models
was thoroughly analyzed, with similar conclusions: See,
e.g. , [5] for a review. Finally, the role of inhomogeneities
was studied analytically under simplifying assumptions
in [6]. They were studied numerically in the case of pla-
nar symmetry in [7] and in the case of spherical symme-
try in [8]. In [8], setting the initial conditions in such
a way that inflation would occur only in the central re-
gion if the Universe evolved like a fRW spacetime, the
conclusion was that inflation would indeed occur only if
the central region was larger than a few times the local
Hubble radius.

Here we shall tackle the problem semianalytically in
the long wavelength approximation.

The long wavelength iteration scheme, the history of
which goes back to [9], is a way to build, out of "seed"
spatial metrics, approximate solutions of Einstein's equa-
tions which describe inhomogeneous but quasi-isotropic
universes on scales larger than the local Hubble radius
(see [10] and references therein for a detailed description
of the scheme). When matter satisfies the strong energy
condition (that is, does not infiate) this approxiination

is well suited to describe the early Universe since most
scales are then larger than the Hubble radius on average
(this is the well-known horizon problem). These approx-
imate solutions, however, are not generic in the sense
that they are built out of a seed spatial metric, that is,
on three physically distinct arbitrary functions, instead
of six (four for the gravitational field, plus two for the
scalar field). The three missing functions can be seen as
describing departures &om isotropy. These anisotropies
cannot be neglected near the big bang (see, e.g. , [9,10])
but they decay with time much faster than all other con-
tributions to inhornogeneity and hence will be ignored
(see [11] for an analysis of the generic solution near the
big bang).

Within that scheme the growth or decay of inhomo-
geneities according to their equation of state can be easily
inferred, at least qualitatively (see [10,12]): They decay
when matter violates the strong energy condition, that
is, inflates, and grow otherwise, that is, when the eH'ec-

tive adiabatic index I',tr of matter is ) 2i3. Therefore
when matter is a scalar field the inhomogeneities first
grow (I',tr = 2) and then decay during the infiationary
period, to grow again at the end of infiation (I',tr = 1),
at the condition that they do not grow so large during
the first phase as to prevent inflation &om starting.

The purpose of this paper is to give quantitative esti-
mates on when inflation may be halted by the presence of
initial quasi-isotropic inhomogeneities. This will be done
by integrating numerically the ordinary second-order lin-
ear differential equations that govern their evolution in
the long wavelength approximation scheme.

II. EQUATIONS

The long wavelength approximation scheme [10] con-
sists in looking for solutions of Einstein's equations for
gravity coupled to a scalar field whose three-metric (in
the t = const slices of a synchronous reference frame)
can be expanded as a sum of spatial tensors of increas-
ing order in the gradients of a "seed" metric with time-
dependent coeKcients. The line element is thus of the
form
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ds: dt + pzj(t& x )dx dz, fzj fzj + pzj + pzj +k i q (1) (3) (5)

~ ~p;j = a (t)h;j(x"), ~ lp;j = a [a2(t)Rh;j + b2(t)R;j],
~ lp;z ——a a4(t)R h,~ + b4(t)RR;j + c4(t)R& R h;j + d4(t)R; R.

+a [e4(t)V' V' Rhj + f4(t)V';VjR+ g4(t)V' V' R~],

and the scalar field of the form

p = p(t) + $2(t)R+ $4(t)R'+ $4(t)R& R' + $4(t)V' V' R+

This solution is built on a "seed" h;j(x") of six functions of space which can be reduced to three by a suitable choice
of spatial coordinates. As shown in [10], it is not a generic solution (it should then depend on six physically distinct
functions), but it is an attractor of a class of generic solutions. At lowest order the metric reduces to p;~ = a2 (t)h;j (x")
and y = P(t), hence the name "quasi-isotropic" given to the solution. V'; is the covariant derivative with respect to
h;j, R,j its Ricci tensor, and R = R h;j the curvature scalar. The coefficients a(t), a2(t), etc., are functions of time
which are determined by Einstein's equations. We shall denote by L the characteristic comoving length on which the
spatial metric varies: 0;p~g I

At zeroth order Einstein s equations reduce to the Friedmann equations for a spatially flat Robertson-Walker (fRW)
universe and determine a(t) and P(t). Introducing the dimensionless variables

T=mt, F=2i/3vrGQ, H= ———, S=am ~,3 1GG

ma dt' (3)

where m is the mass of the scalar Geld, they read

(H2 F2) QH2 F2
3 CLT CLT

(4)

The solutions of Eqs. (4) depend on three integration
"constants": the time T(x") of the big bang that we

shall restrict to be T = 0 (see [11] for an analysis of
delayed big bang solutions); the size S(x") of the scale
factor at some given initial time: a "constant" which can
be absorbed without loss of generality in a redefinition of
the seed metric h,.~", and Gnally the initial value F for the
scalar Geld. A priori E depends on space but the first-
order Einstein equations (see [10] for details): 8;H =

4(dF/dT)B;F—imposes that it does not. Its value, the
same for all x", tells us which curve of the (F, dF/dT)
phase diagram the solution follows, and hence determines
the total amount of inflation. We shall therefore integrate
these equations up to the beginning of inflation with, as
initial conditions at time T = e,

B, = b, m'~', A2 ——a2m 4/3

F, =4 m
srG

3

they can be written as (see [10])

dtL

dT
dB2
dT S3'

At third order Einstein equations determine the time-
dependent coefficients a2(t), b2(t), and Pq(t) in (1) and
(2). In terms of the variables defined in (3) and intro-
ducing

dv

dT
&dFI '

4S dT ( dT)
dA, (dFI '
dT dT

e being chosen such that (in&) is numerically negligible
compared to e . If matter were a perfect fluid with adi-
abatic index I', the scale factor S would grow as T ~

In the initial regime (5) the scalar field hence behaves
like a stiff fluid (I' = 2) [1]. When F is large enough the
solution then enters an inflationary phase characterized
by a slow linear decrease of F and a quasiexponential
growth of S. The comoving Hubble radius L~ = 3/SH
hence first increases as T ~ during the stiK Quid regime
and then decreases exponentially. The moment it reaches
its maximum value can be taken as the beginning of in-
Qation. We shall denote L~ and E;„g the values of the
Hubble radius and the scalar field at that moment.

1 (1 dB2 dA2)
dF/dT 4 dT dT

It is easy to see that when the inflationary regime has
set in, B2 tends to a constant (which we shall call I2) as
well as F2. As for A2 it decreases linearly in time. Now,
as shown in [10], a gauge transformation modifies the
coeKcient of the scalar curvature B in ( )p;~ but leaves
untouched the Ricci term. During inflation it amounts to
adding an arbitrary linear function of time to A2. There-
fore the linear decrease of A2 can be gauged away by a
suitable choice of initial conditions for A2, v2, leaving B2
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as the only relevant quantity to be studied. Physically
the geometry evolves &om one configuration, 6;~, to an-
other, h;~ + (I2/m )R;~, where Iz is the "imprint" on
the geometry left by the initial inhomogeneity. We shall
therefore integrate (7) with the initial conditions (5) at
T = e together with dF/dTi;„= —1/e and

4/3 i 4/3in =
2 8

B2' (10)

III. SOLUTIONS

Equations (4) with initial conditions (5) and Eqs.
(7) with initial conditions (10) are integrated numer-
ically. The results can be encapsulated in a plot of
r2 = QiI2[/LH as a function of F;„f. See the curve
k = 0 of Fig. 1. We see that as E;„f increases, r2 tends
to a constant close to 1 [when a brutal extrapolation of
the analytical behaviors (5) and (10) would have given
1/2~2]. Going back to the expressions (1) and (2) for
the metric and the scalar fle]d, a sufficient condition for
inflation then appears clearly: Inflation will set in if the
corrective terms ( )p;~ remain small compared to ~

that is, if I2/L ( 1, which is equivalent, because w2

tends to 1, to L ) IH . This condition says that the
size L of the inhomogeneity must be larger than the (co-
moving) Hubble radius at the onset of inflation, when
the brutal analytic extrapolation gives L ) (1/2~2)L~ .
Moreover, when the zeroth order barely inflates, that is,
when F;„f is smally 72 o. ) 1 so that a sufBcient con-
dition for inflation is L ) ~L~'. We thus recover in this
semianalytical approach the result of Ref. [8].

IV. CONVERGENCE OF THE ITERATION
SCHEME

A rigorous mathematical analysis of the convergence
of the series (1) and (2) is certainly beyond the scope of
this paper. Using the results of the Appendix of Ref. [10]
we can, however, compute the next order, that is, the
coeKcients a4, b4, etc. , and see if including them spoils
the conclusion of the preceding paragraph, drawn from
the first iteration.

The relevant coeKcients, which are not afFected by a
gauge transformation, are t"4, d4, and g4. We shall con-
centrate on g4 which satisfies the linear second-order dif-
ferential equations

dtU

dT
——B2S)

dG4
dT

where we have introduced G4 = m / g4 with the initial
conditions

tU = ——e, G4i' = ——t27 8/3 81
64 ' 83 (12)

(Knowing G4 and B2, the coefficient D4 = msisd4 is
readily obtained: D4 ———4G4 + —B22, see [10].)

The results of the integration of (11) and (12) are sum-
marized in the diagram 74 = [G4i i /Lg as a function
of F' f (see the curve A = 0 of Fig. 2). We see that r4
follows the same pattern as w2. As F;„f increases it tends
to a constant value of the order of 0.63 when an extrap-
olation of the analytical behavior (16) would have given
8 i = 0.21. As for the ratio iD4i i /LH it tends to
0.60.

The inclusion of these fourth-order terms therefore
does not spoil the conclusion of the previous paragraph
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FIG. 1. Plot of r2 as a func-
tion of I';„f. The solid line cor-
responds to k = 0, the dashed
line above to positive k, and the
dot-dashed lines below to nega-
tive k.
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and, since r4 ( rz, is an indication (although certainly
not a proof) that the exact solution does not differ dras-
tically &om the second-order solution. Assuming then
that the series converges we conclude that, if the size of
the inhomogeneity is larger than the Hubble radius, then
the solution will inBate and the inhomogeneity be washed
away.

V. CURVATURE VERSUS GRADIENT EFFECTS
AND AN IMPROVED SCHEME IN THE CASE

OF SPHERICAL SYMMETRY

In the case when the inhomogeneity is imposed to
be spherically symmetric, the seed line element do.

I

h;~dx'dx~ can be written in the form

do. = +r dO,
dT

1 —kr2

ds = dt +R(—C dr +r dA), (14)

with

where dO is line element on the sphere and where k(r) is
an arbitrary function of r.

Expressing the Ricci tensor and its derivatives as a
function of k(r) we can write the long wavelength inetric
(1) and scalar field (2) in the form

iiR=R,Rw 1+
I
az+ b2 Ik'r+—, R,Rw

——a[1+(Saz+b2)k+. ], (15)

C = C.Rw 1+
~
a2+ —b2

~

k'r +.. . , C.Rw =
) (16)

and

& = &Xw+2k'r&z+ . . O'.Rw = 4'+6k%+

where a prime denotes differentiation with respect to
and where the time-dependent coefficients (a, P),

(a2, bz, Pz), etc. , are the same as before and satisfy Eqs.
(3)—(5), (6)—(10), (11), and (12).

The rewriting of Eqs. (1) and (2) under the form (14)—
(17) shows clearly the two ways in which a spherically
symmetric inhomogeneity makes the solution depart &om
the fRW solution. The first (trivial) effect is that of cur-

I

vature: If k g 0 but all its derivative are taken to be zero,
the long wavelength solution (14)—(17) can be checked to
be nothing but the Taylor expansion in t of the exact
curved Robertson-Walker (cRW) solution. In this case
then the exact metric and scalar field are given by (14)
with C = (1 —krz) ~, and R = a and P satisfying the
Friedmann equation
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