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Closed-form expression for the momentum radiated from cosmic string loops
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We modify the recent analytic formula given by Allen and Casper for the rate at which piecewise
linear cosmic string loops lose energy to gravitational radiation to yield the analogous analytic
formula for the rate at which loops radiate momentum. The resulting formula (which is exact when
the effects of gravitational back reaction are neglected) is a sum of O(N ) polynomial and log terms
where N is the total number of segments on the piecewise linear string loop. As an illustration, we
write the formula explicitly for a simple one-parameter family of loops with N = 5. For most loops
the large number of terms makes evaluation "by hand" impractical, but a computer or symbolic
manipulator may by used to yield accurate results. The formula has been used to correct numerical
results given in the existing literature. To assist future work in this area, a small catalog of results
for a number of simple string loops is provided.

PACS number(s): 98.80.Cq, 04.30.Db, 11.27.+d

I. INTRODUCTION

Cosmic strings are one-dimensional topological defects
that may have formed at phase transitions as the Uni-
verse expanded and cooled [1—4]. A cosmic string loop is
formed when two sections of a long string (a string with
length greater than the horizon length) meet and inter-
commute. After a loop is formed, it begins to oscillate
under its own tension. As cosmic string loops oscillate,
they lose energy in the form of gravitational radiation.
The formation and subsequent decay of cosmic string
loops is of fundamental importance to the evolution of
the cosmic string network. In addition, most of the ob-
servational limits on cosmic strings are obtained by con-
sidering the effects of the gravitational radiation emitted
as the loops decay ([4,5] and references therein).

The power emitted in gravitational radiation by a cos-
mic string loop depends upon its shape and velocity. If
the loop configuration is asymmetric, then the energy
may be radiated in an asymmetric way. In that case, the
loop will radiate and lose momentum as well as energy.
In this paper, we obtain an analytic formula for the mo-
mentum radiated for any piecewise linear cosmic string
loop.

In the center-of-mass kame, a cosmic string loop is
specified by the position x(t, o) of the string as a function
of two variables: time t and a spacelike parameter 0 that
runs &om 0 to L. The total energy of the loop is pL
where p is the mass per unit length of the string. L is
referred to as the "invariant length" of the loop. When
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gravitational back reaction is neglected, the string loop
satisfies equations of motion whose most general solution
in the center-of-mass kame is

1-
x(t, o.) = —a(t + o) + b(t —cr) .

Here a(u) = a(u + L) and b(v) = b(v + L) are a pair
of periodic functions, satisfying the "gauge condition"
~a'(u)i = ~b'(v)~ = 1, where a priine denotes differenti-
ation with respect to the function's argument. Because
the functions a and b are periodic, each can be described
by a closed loop. These loops are referred to, respectively,
as the a loop and the b loop. Together, the a and b loops
define the trajectory of the string loop.

If we define the four-momentum of the gravity waves
emitted by a string loop to be P = (E, P') where i =
x, y, z, then the average rate of energy and momentum
loss by an oscillating string loop is given by the four-
vector —P, where

P =(E,P') =p Gp, .

Here G is Newton's constant and we use units with c = 1
and metric signature (—,+, +, +). Throughout this pa-
per, a dot appearing over a symbol denotes the time
derivative of that quantity. In Eq. (1.2), E is the energy
radiated (i.e., the power) and P' are the three spatial
components of the momentum radiated, averaged over
a single oscillation of the loop. With our definition of

and metric signature, the string loop is losing energy
in the form of gravitational radiation when p is posi-
tive (which is always the case). Note that in Ref. [6] the
quantity p is denoted simply by p. When one of the
components of p' is positive, the loop is radiating a net
amount of energy and momentum in that direction, and
the loop itself will recoil and begin to accelerate in the
opposite direction. Thus, if p & 0, then the loop will be-
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gin to accelerate in the —x direction. The dimensionless
quantities p = (po, p') depend only upon the "shape"
of the cosmic string loop. That is, the energy and mo-
mentum radiated in gravitational radiation &om a loop
are invariant under a rescaling (magnification or shrink-
ing) of the loop, provided that the velocity at each point
on the rescaled loop is unchanged [3,7]. Thus, without
loss of generality, we consider only loops with invariant
length I = 1.

In a recent paper, we presented a new formula for p .
The formula is an exact analytic closed form for any
piecewise linear cosmic string loop [6]. A piecewise linear
loop is one which, at any time, is composed of straight
segments, each of which has constant velocity. Equiva-
lently, a piecewise linear loop is any loop for which the
corresponding a and b loops are piecewise linear. As
shown in Ref. [6], the piecewise linear requirement is not
very restrictive since in practice a smooth cosmic string
loop may be well approximated by a piecewise linear loop
with a moderately small number of segments, N.

In the present paper, we show how the formula given
in [6] may be modified to give an exact analytic closed
form for the spatial momentum p' as well as for p . The
formula for the components of the momentum radiated
is very similar to the formula for the radiated power. In
each case, the formula is a sum of O(N4) terms, each of
which involves nothing more complicated than logarith-
mic or arctangent functions.

The remainder of the paper is organized as follows.
Section II explains how the formulas of Ref. [6] may be
modi6ed to yield analytic, closed forms for the three spa-
tial components of the radiated momentum. This section
generalizes the work done in Sec. III of Ref. [6]. The final
steps of the solution which are described in Secs. IV—VI
of Ref. [6] are unchanged. Thus, those sections are not
repeated in this paper. In Sec. III the resulting formula
for both the radiated power and momentum is written
explicitly for the case of a simple one-parameter family
of string loops. The values of p for this family of loops
are compared to those given by an independent numeri-
cal method as well as to the results given by our c-code
implementation of the general formulas. Excellent agree-
ment is found in all cases. The formula is then used to
correct the small number of numerical values for the mo-
mentum radiated which appear in the existing literature.
These values are typically ofF by a factor of 2, though
in some cases they are ofF by as much as a factor of 10.
Section III is followed by a short conclusion. Finally, the
Appendix contains a catalog of p values for some simple
loop trajectories.

OO

P = ~G 2=) dAk='7 P dO '
n=o

(2.1)

where the constant four-vector p = (po, p') depends
only upon the shape of the string loop's trajectory. In
Eq. (2.1), the four-vector k is defined to be k = (1,A)
where

A —= (sin 8 cos P, sin 8 sin P, cos 8) (2.2)

is a unit spatial vector in the direction of the outgoing
wave. The integral f dO appearing in (2.1) denotes inte-
gration over angles on the two-sphere:

dO = sin 0d0 d

Because the loops oscillate with period I/2 = 1/2, they
radiate only at discrete angular &equencies given by

~„=4mn for n = 1, 2, 3, . . . (2.4)

The energy radiated per unit solid angle into the nth
mode is given by

" = —(u2[~„'„(u)„A)~""(~„A)—-'~~"„((u„A)~ ].

(2.5)

The Fourier transform of the stress tensor for a string
loop is

an arbitrary cosmic string loop. As in Ref. [6], we work
in the weak-field limit. In this limit the gravitational
back reaction on the loop is neglected so that the loop
oscillates periodically in time. This derivation is almost
identical to the derivation of the formula for the radiated
energy given in Sec. III of Ref. [6]. The difFerence is
that the present derivation yields the four-vector P
(E,P*). The total radiated momentum is simply given
by P = (P'P, ) ~ . We find that the three components of
the radiated momentum may be obtained exactly for any
piecewise linear loop by the same method used previously
for the radiated energy.

The rate at which a loop loses four-momentum (aver-
aged over a single oscillation) is [8,9]

II. MOMENTUM RADIATED BY' COSMIC
STRING LOOPS

In this section we derive a general formula for both the
radiated energy (E) and the radiated momentum (P') for

1 1

w„„((u„A) = 2p du dv G„~(u, v)
0 0

x~i „( +v —n [~( )+b( )j)/2 (2.6)

Our c code, which provides one implementation of the for-
mulas, is publicly available via anonymous FTP from the di-
rectory pub/pcasper at the internet site alphal. csd.uwm. edu.

where

G""(u, v) = B„x"B„x"+ B„x"B„x" (2.7)
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and x/' = (t, x(t, cr)). Combining Eqs. (2.1), (2.5), and (2.6), we find that

2 ~ 1 1 1 1
P = & dO du dv du dv' u ~kn u v u v ~~u, v, u, v, e

0 0 0 0
(2.8)

where we have defined

@(u,v, u, 6) = G„„(u,v) G""(u,6) ——G"„(u,v) G" (u, 6)

= —([a'(u) a'(u) —1][b'(v) . b'(6) —1] + [a'(u) b'(6) —1][b'(v) a'(u) —1]
8

—[a'(u) b'(v) —1][a'(u) b'(v) —1]). (2.9)

The functions b, t = (u + v —u —6)/2 and Ax = [a(u) + b(v) —a(u) —b(v)]/2 in (2.8) describe the temporal and
spatial separation of the two points on the string world sheet with coordinates (u, v) and (u, 6), respectively. To save
space, in some of the formulas that follow, the arguments of Lt and Lx are not shown. Since each term in the sum
over n equals its complex conjugate, as may be shown by redefining (u, v) = (u, v), P is explicitly real. For this
reason we have changed the siam over n to a sum &om —oo to oo at the expense of introducing an overall factor of
1/2 into (2.8). Froin here on, this sum will siinply be denoted by P„. Note that the timelike n = 0 coinponent of
(2.8) is identical to the formula for the radiated energy given in Eq. (3.8) of Ref. [6].

It is possible to carry out both the sum over n and the integral over the solid angle in (2.8) in closed form. This is
done by making use of the identity

) ~ /dOe' "~ '
~ = 2eri ) e(At + k/2)h((AI+ k/2) —

~Ex~~ ),
n k=—oo

(2.io)

where e(z) = 28(x) —1 is +1 for 2: ) 0 and —1 for x ( 0 and h is the Dirac delta function. We define a four-vector
linear differential operator

D (u, v, u, 6) = U (u, v, u, 6)0„+V (u, v, u, 6)8„—U (u, v, u, 6)B„- —V (u, v, u, 6)0„-,

where the vector functions U, V, U, and V are defined by the eKect of D on the exponential:

(2.11)

D exp(i~ [Et —A. b,x]) = i~ k exp(i(u [b,t —A b,x]). (2.12)

Because D is chosen to be a linear differential operator, (2.12) is equivalent to the 16 equations

D b, t(u, v, u, 6) = 1,
D'Et (u, v, u, 6) = 0,

D Ax~(u, v, u, v) = 0,
D'b, x~ (u, v, u, v) = —b'~, (2.i3)

where h*~ is the Kronecker delta function. With this definition of the operator D, the identity (2.10) can be used to
express the radiated energy and momentum (2.8) as

OO 1 1 1

P = 4Gp ) du dv du d6 @(u,v, u, 6)D (u, v, u, 6)[e(b,t+ k/2)b((At+ k/2) —(Ex~ )].
0 0 0 0

(2.14)

This equation has the same functional form as Eq. (3.15) of Ref. [6]. By the exact same arguments as those given
following (3.15) in [6], we find that Eq. (2.14) may be written

1 1 1 2

P = 8Gp du dv du dv Q(u, v, u, v)D [8(bt)h((At) —ibxi )].
0 0 0 —2

(2.15)

All that remains is to write down the explicit expression for the diEerential operator D
The operator D is determined by the equations given in (2.13). These equations may be written in znatrix form

as

U
—2I

a (u) b (") a (u) b (")) (V )
(2.16)
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where I denotes the identity matrix. Equation (2.16) may be solved to find U, V, U, and V (and therefore D )
explicitly. If we denote minus twice the inverse determinant of the prefactor matrix by

Q(u, v, u, 6) = 2[b'(v) . a'(u) x b'(v) —a'(u) a'(u) x b'(v) + a'(u) b'(v) x b'(v) —a'(u) b'(v) x a'(u)]

then we find that the coeFicients of the partial derivatives in D are

(2.17)

U = b'(v) a'(u) x b'(v) Q,
U = a'(u) b'(v) x b'(6) Q,

V = -a'(u) . a'(u) x b'(v) Q,
V = —a'(u) b'(v) x a'(u) Q, (2.18)

which is exactly the result found in Ref. [6]. In addition, the coefficients which define the operators D are given by

U' = [b'(v) xa'(u) + b'(6) xb'(v) + a'(u) xb'(v)]' Q,
V' = [b'(v) xa'(u) + a'(u) x b'(6) + b'(v) xa'(u)]' Q,
U* = [a'(u) x b'(v) + b'(v) xb'(6) + b'(6) x a'(u)]' Q,
V' = [b'(v) x a'(u) + a'(u) x a'(u) + a'(u) x b'(v)]' Q. (2.19)

Equation (2.15) may now be expressed in closed form for
any piecewise linear loop by exactly the same method as
given in Secs. IV—VI of [6]. The only difference between
the calculation of the radiated energy and the calculation
of a component of the momentum radiated is in the choice
of the coeKcients of the differential operator D

the small number of numerical values for the radiated
momentum which appear in the existing literature.

A. Analytic results

III. RESULTS

The formula (2.15) for P may be evaluated exactly
for any piecewise linear cosmic string loop. The general
solution is given in Secs. IV—VI of Ref. [6]. In most cases
the large number of terms involved makes it impracti-
cal to write out the solution explicitly; however, there
are cases where the solution may be written in a man-
ageable form. As an example, in Sec. IIIA we give the
closed-form solution for a one-parameter family of cosmic
string loops obtained with the aid of MATHEMATICA. In
the cases where it is impractical to write out the closed-
forxn solution, accurate values of p may stiH be obtained
using a computer implementation of the general formula.
In Sec. IIIB one such implementation is used to correct

We will now give closed forms for P for a one-
parameter family of string loops. These are defined by a
and b loops consisting of two and three segments, respec-
tively. The a loop is taken to lie along the z axis. One
kink on the a loop is positioned at the origin; the pa-
rameter u = 0 at this kink. The other kink (at u = 1/2)
is positioned above the first kink and has coordinates
(0, 0, 1/2). The three-segment b loop has the shape of
an equilateral triangle. For the b loop, we again position
one kink at the origin and set the parameter v = 0 at
that kink. The position of the other two kinks depends
on a parameter P. The kink at v = 1/3 has coordi-
nates —s~(cos P, ~3, sing) and the kink at v = 2/3 has

coordinates s(cosP, —~3, sing). If we make the defini-
tion s = sing, then the rate of energy loss by this set of
string loops may be written as

16G
E(s) = [12(1—s )(4+ s ) ln(2) + 18(4 —3s ) ln(3) —(1 —s )(2 —s) (1+2s) ln(1 —s)

(1 s2)(4 s2)2

—(1 —s )(2+ s) (1 —2s) ln(1+ s) —(1 —s)(4 —s ) ln(2 —s)

—(1 + s) (4 —s ) ln(2 + s) —(1 —s ) (2 —s) (4 —s) ln(4 —s) —(1 —s ) (2 + s) (4 + s) ln(4 + s)]. (3.1)

The x and y components of the momentum radiated by these loops both vanish. The z component is given by

16G '
P'(s) = [

—48s(1 —s ) ln(2) + 18s ln(3) —(1 —s )(2 —s) (1+2s) ln(l —s)
(1 —s)(4 —s)
+(1 —s )(2+ s) (1 —2s) ln(1+ s) + (1 —s)(4 —s ) ln(2 —s)

—(1+s)(4 —s ) ln(2+ s) —(1 —s )(2 —s) (4 —s) ln(4 —s) + (1 —s )(2+ s) (4+ s) ln(4+ s)]. (3.2)
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Note that E(s) and P(s) are even and odd functions of
8, respectively, as they must be. The exact results given
by (3.1) and (3.2) have been compared to those given by
our c-code implementation of the general formula as well
as to the independent numerical results given by the fast
Fourier transform method of Allen and Shellard [7]. The
difFerent sets of results are compared in Fig. 1. We find
excellent agreement between all three sets of results.

B. Corrected results

In this section we compare the results for the radiated
momentum given by other authors in the previous litera-
ture to the values given by our formula. The only family
of loop trajectories for which numerical values of the ra-
diated momentum have been previously published is a
two-parameter family of loops first studied by Vachas-
pati and Vilenkin [8]. The a and b loops which define
these trajectories are given by

a (u) = —[sin(2vru)x —cos(2vru) (cos Py + sin Pz)],2'
(~ .

b(v) = — —sin(6mv) —(1 —n) sin(2vrv) x
27l (3

—cos(6vrv) + (1 —n) cos(2vrv) y3

—[n(l —n)]'~ sin(4vrv)z (3.3)

where n and P are constant parameters, 0 ( n ( 1 and
—vr ( P ( vr. These loops have also been studied by
Durrer [9]. In both cases, the authors determined P
by numerically evaluating a finite number of terms of
the infinite sum appearing in (2.1), and then adding an
estimate of the contribution &om the truncated infinite
"tail." Although formally correct, it is difBcult to obtain

45 90
Q (degrees)

135

FIG. 2. Values of P = (P'P, ) ~ are shown (in units of
Gp ) for the loop trajectories given in (3.3) with n = 0.5.
The results of our formula are given every few degrees and are
connected by straight segments to form the solid line. Dur-
rer's results are shown as dots while the results of Vachaspati
and Vilenkin are shown as crosses.

highly accurate numerical results by this method. It is
shown in Ref. [6] that the errors in the numerical values
of p calculated by this method are typically due to errors
in the estimates of the contribution &om the tail. This
appears to also be the case for the values of P' calcu-
lated by this method, which are typically oK by a factor
of 2. The results found by Vachaspati and Vilenkin, and
Durrer, are shown in Figs. 2 and 3 along with the results
of our new method for the cases o. = 0.5 and o, = 0.8.
The results given by our formula are found by evaluat-
ing p for a piecewise linear loop with approximately
the same shape as the smooth loops given by (3.3). The
approximation becomes more accurate as the number of
piecewise linear segments used is increased. Although
there is no general way known to calculate the exact er-
ror when approximating smooth loops by piecewise linear
loops, it appears that the error typically falls ofF like I/jV
(see Ref. [6]). The piecewise linear loops whose p values
were used in Figs. 2 and 3 had 100 segments for both the
a and b loops. With this number of segments, the error
due to the piecewise linear approximation is estimated to
be no more than 5'%%uo.

75-

50-

25- uW. 8

0 A

45 90
Q (degrees)

135
A

FIG. 1. The power (E) and radiated momentum (P) for
a simple one-parameter family of loop trajectories given in
Sec. III A. The solid lines are the exact results given in (3.1)
and (3.2). The crosses are the results given by the c-code
implementation of the general formula and the triangles are
the results of the numerical fast Fourier transform method.
There is excellent agreement between all three sets of' results.

45 90
Q (degrees)

135

FIG. 3. Values of P = (P'P;) ~ are shown (in units of
Gp ) for the loop trajectories given in (3.3) with a. = 0.8.
The results of our formula are given every few degrees and
are connected by straight segments to form the solid line.
Durrer's results are shown as dots.
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IV. CONCLUSION TABLE II. The p values (shown as column vectors) for
the second two-parameter faxnily of string loops.

We have modified the method of Allen and Casper [6]
to yield analytic closed-form results for the linear mo-
mentuxn radiated by piecewise linear cosmic string loops.
Any cosmic string loop can be arbitrarily well approx-
imated by a piecewise linear loop with the number of
segments suKciently large. An exact formula is given
for a simple one-parameter family of string loops. Our
computer implementation of the general formula is then
used to investigate the small number of numerical results
published in the previous literature. These results are
found to be typically oK by a factor of 2 &om the correct
results, though in some cases they are o8' by as much as
a factor of 10. A small catalog of p values for some sim-
ple loop trajectories has been provided in the Appendix
as a set of benchmark results for future analytic or nu-
merical work. Although the string loops studied in this
paper are not physically realistic, they provide a simple
set of trajectories with which to test our formula. We
intend to use the method of this paper to investigate a
large sample of more physically realistic loop trajectories
in the near future.

18

36

54

72

18

(100.85 )—2.93
0.88

( -8.77)

( 82.00)
3.06
1.17

&
—2.O1)

(72.61 )5.16

(67.04 )
6.10
0.49

( 001)

36'

90.65
—6.34
—0.34
12.O2)

76.01
—1.79

0.88
5.24 )

66.51
0.44
0.83
1.45 )

(61.24 )1.38
0.46
0.08 )

54

74.48
—3.17
—0.81

(—6.4o)

70.97
—2.46

0.27
6.31)

( 63.68)
—0.77

0.54

( —9:00j
59.12
—0.06

0.38
( —D.QD)

72'

64.80
—1.55
—0.64

( -3.72)

64.82
—1.42
—0.03

4.68)

61.54
—0.64

0.33
(—2.2s)

58.80
—0.26

0.30
O.'27)
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APPENDIX

This appendix gives a short catalog of p values for
some simple loop trajectories. This catalog expands the

catalog given in Sec. VIII of Ref. [6] by including both
the radiated energy and the three components of the ra-
diated momentum. The values given in this catalog are
intended (as in the original catalog) to be "benchmark"
values which might prove useful in testing future analytic
or numerical methods. In fact, the original catalog has
already proven to be quite useful. The values of p are
shown as column vectors of the form

(A1)

TABLE I. The p values (shown as column vectors) for the
6rst two-parameter family of string loops.

TABLE III. The p values (shown as column vectors) for
the third two-parameter family of string loops.

18' 36' 54' 72' 18 36 54 72'

18

36'

54'

72

59.80
0.00
0.00

L —1.90 J

( 54.56)
0.00
0.00
1.53

50.15
0.00
0.00

( —o.67)

( 47.54)
0.00
0.00

(—0.12)

0.00
0.00

(—4.os)

56.86
0.00
0.00

(-3.47 j
( 52.56

0.00
0.00

&
—1.37)

( SO.12)0.00
0.00

& 0.04)

63.51
0.00
0.00

(—6.62 )
60.93
0.00
0.00

(—6.46)

( 56.40)
0.00
0.00

( —2.09)

( 54.47 )0.00
0.00
1.02 )

66.30
0.00
0.00

(—9.45)

67.45 II

0.00
0.00

&
—11.79 j

( 60.72)
0.00
0.00

(—2.'74)

(60.36 )0.00
0.00

& 37o)

18

36'

54

72'

( 64.15
I0.00

0.00
( 1.00 )

54.99
0.00
0.00

( o27)

(48.74 )0.00
0.00

( O.O3)

45.30
0.00
0.00

( o.oo)

66.04
0.00
0.00
2.3O)

(57.78 )0.00
0.00

( os4)

( 52.02)
0.00
0.00

(—o.o3)

( 48.74)
0.00
0.00

&
—o.o3 j

(69.28 )0.00
0.00

( 437)

(62.31)0.00
0.00

& O7O)

( 57.78)
0.00
0.00
0.63)

( 54.98)
0.00
0.00

&
—O.1O)

(74.52 )0.00
0.00

& s4s)
67.63
0.00
0.00

( o.44 )
( 66.36)

0.00
0.00
2.94)

( 64.04)
0.00
0.00

(—0.16 )
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TABLE IV. The p values (shown as column vectors) for
the fourth two-parameter family of string loops.

TABLE V. The p values (shown as column vectors) for
the fifth two-parameter family of string loops.

18 36' 54 72 18' 36' 54 72'

18

36'

54

72

(' 84.69)
1.98
0.76

(-i.27)

( 77.37)
3.40
0.97

( O52)

( 70.11)4.76
0.77

( oos)

(64.41 )5.50
0.42
1.81 )

75.43
—0.84

0.13
( —8:8ij
( 71.031

0.28
0.39

(—1.97)

(65.69 )1.68
0.54

( 0.12)

61.37
2.74
0.26
1.74)

( 67.82)
—1.21
—0.14

2.88)

65.71
—0.55

0.23

(—2.os)

( 62.72)
0.69
0.72
0.38 )

(6i.is )2.35
0.65

& 293)

62.44
—0.80
—0.29

3.47)

—0.63
0.28

&
—s.o2)

( 60.42)
0.06
0.82

L
—0.84 j
61.33
1.41
1.25

( 446)

18'

36

54

72'

114.46
—4.06
—0.32

( —2.2i)

( 93.52)
—2.28

0.37
&

—2.47)

( 77.15'
0.47
0.36

(—o.55)

(67.11)
1.50
0.15
0.18 j

94.04
0.72

—0.32

( 4O7)

82.49
—1.88
—0.32

( —1.40)

( 72.94)
—1.48

0.03
(—1.56 )

64.76
—0.40

0.11
0.41

80.22
1.21

i '-j
( 72.06)

—0.11
—0.20

0'.
VO j

( 67.22)
—0.34
—0.10

(—o.44)

64.05
0.30
0.06

( o55)

('68 84)
0.61
0.08

( ss2)
65.40
0.14

—0.09
1.04)

( 62.74)
0.04
0.02

&
—o.o6)

(62.98 )0.58
0.26
1.89 )

The trajectories chosen for this catalog are the same five
two-parameter families of loops used in the original cata-
log. The a and b loops for these trajectories are piecewise
linear loops composed of a small number of segxnents.
The relative orientation of the a and b loops is defined
by two angles P and 0. For a full description of these
trajectories, the reader is referred to Ref. [6].

The 6rst set of trajectories we consider are defined by
a and b loops consisting of two and three segments, re-
spectively. The three-segment b loop is an equilateral tri-
angle. Values of p for the trajectories de6ned by these
a and b loops are given in Table I for several values of
the angles P and 8. It should be noted that the one-
parameter family of loops obtained by setting 8 = 90 is
equivalent to the family of loops for which the analytic
formulas (3.1) and (3.2) are given in Sec. III.

The second set of trajectories we consider are defined
by a and b loops which are both equilateral triangles.
Values of p for this family of loop trajectories are given
in Table II for several values of the angles P and 8.

The third set of trajectories we consider are de6ned by
a and b loops consisting of two and five segments, respec-
tively. The five-segment b loop is a pentagon. Values of

for the trajectories defined by these a and b loops are

given in Table III for several values of the angles P and
8.

The fourth set of trajectories we consider are defined
by a and b loops consisting of 6ve and three segments,
respectively. The 6ve-segment a loop is a pentagon and
the three-segment b loop is an equilateral triangle. Val-
ues of p for the trajectories defined by these a and b
loops are given in Table IV for several values of the angles
P and 8.

The final set of trajectories we consider are defined by
a and b loops consisting of five segments each. Both
loops are pentagons. Values of p for the trajectories
defined by these a and b loops are given in Table V for
several values of the angles P and g.

The p values given in this appendix should provide a
convenient reference against which any future numerical
or analytical methods may be tested. Additional tests
are provided. by comparison to the analytic results given
in Sec. III and to the large number of simple analytical
results (for E) given in a recent paper by the authors
[10]. Finally, comparisons may be made, for any loop, to
the results given by the computer implementation of our
general formula.
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