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We consider directly the equations by which matter imposes anisotropies on freely propagating
background radiation, leading to a new way of using anisotropy measurements to limit the deviations
of the Universe from a Friedmann-Robertson-Walker (FRW) geometry. This approach is comple-
mentary to the usual Sachs-Wolfe approach: the limits obtained are not as detailed, but they are
more model independent. We also give new results about combined matter-radiation perturbations
in an almost-FRW universe, and a new exact solution of the linearized equations.
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I. INTRODUCTION

The cosmic background radiation (CBR) is the key-
stone of modern cosmological analysis, in particular
through use of the results of the Cosmic Background
Explorer (COBE) [1,2] and other [3,4] measurements of
anisotropies in the CBR to help us understand the nature
of inhoxnogeneities in the Universe (see [5] for a review of
these observations). This paper presents a way of ana-
lyzing this relationship that is an alternative to the usual
analyses based largely on the Sachs-Wolfe effect (modi-
fied by astrophysical efFects). Our analysis proceeds &om
slightly diferent assumptions than those usually made
(though essentially compatible with them); it is to a con-
siderable degree more model independent than they are.

In [6] we established a theoretical framework for inves-
tigating the direct implications of CBR anisotropies (i.e.,
those that follow without assuming particular inBation-
ary or other evolutionary models for the Universe). In
that paper, we set up fully covariant and gauge invariant
evolution and constraint equations governing the pertur-
bations of the photon distribution and metric. These
equations were then used to show that if (A1) all funda-
mental observers measure the CBR to be almost isotropic
in some domain, then it follows that (A2) the spacetime
geometry is almost Friedmann-Robertson-Walker (FRW)
type; i.e. , the shear, vorticity, spatial gradients, and Weyl
tensor are almost zero, and the metric may be put into
perturbed-FRW form in that domain. The latter is the
assumption which underlies the usual Sachs-Wolfe anal-
yses, for it is the starting point used to set up the Sachs-
Wolfe equations.

In this paper, we use the formalism of [6], extending
its results to find quantitative limits on the anisotropy
and inhomogeneity of spacetime set by anisotropies in
the CBR, without assuming a particular model for the

origin of such perturbations. We end up with a series
of estimates (Sec. IV) relating the inhomogeneity and
anisotropy of the Universe directly to the background
radiation anisotropies. In addition, we find some new
exact results on perturbations in almost-FRW universes
with both matter and radiation (Secs. II and V). For
a class of almost Hat FRW universes, we reduce the full
set of linearized dynamical equations to two linear ordi-
nary difFerential equations (ODE's), and give a new exact
solution at late times (Sec. V).

The difference &om the more usual analyses is that
they consider observations of the CBR made at one
spacetime event P ("here and now"), relating them to
assumed perturbations of the Universe at the time of de-
coupling, these in turn taken to arise from some particu-
lar evolutionary history or other. Here we make no such
evolutionary assumptions; however [cf. (Al)], we assume
that the nature of CBR anisotropies is known not only
at our own spacetime position P, but also throughout
an open domain containing that event (eventually cho-
sen to represent the period between last scattering and
the present, in a region containing our world line and
past light cone).

At first glance this seems to make our analysis far more
dependent on unobservable data than the standard ap-
proach. However, this is an illusion, for that approach
builds in equivalent assumptions at the outset, but in a
rather hidden way, because it assumes (A2), which can-
not be proved on the basis of observational evidence alone
[7,8]. It can only be deduced from such data on the ba-
sis of some kind of Copernican assumption such as (Al),
which is not directly testable [6—8]. Our approach helps
make clear precisely what these hidden assumptions are,
and thereby enables one to test how weak they can be
and still allow deduction of the desired results.

In the covariant approach we work in the real non-FRW
spacetime, rather than starting Rom an assumed FRW
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model and perturbing away &om it. The former approach
considers the full set of dynamical equations that gov-
ern the real variables. The latter approach risks missing
certain efFects [9,10] or masking underlying assumptions.
We provide an example of the second kind by showing
that the Boltzmann equation imposes constraints on the
photon distribution if the monopole moment is assumed
to be Planckian to first order. The covariant formalism
for analyzing Huid inhomogeneities [9,11,12] is a devel-
opment of Hawking's approach [13], and gives a gauge-
invariant alternative to Bardeen's formalism [14]. The
covariant approach to the photon distribution function
in this paper and [6] is based on [15,16], and is an alter-
native to the application of a Bardeen-type formalism,
as presented in [17,18] (in difFerent contexts &om that of
this paper).

Despite the success of the standard in8ationary mod-
els with dark matter and critical density [19,20], current
CBR observations are consistent with alternative mod-
els, and do not by themselves give independent tests of
infiation [21,22]. Bzrthermore, future observations could
produce problems for the standard models. The covari-
ant approach provides a clear and direct relation between
observational and theoretical quantities, unobscured by
particular gauge choices or by the complexities of har-
monically determined variables. Furthermore, we do not
impose any specific model to generate Quctuations in the
CBR. Thus we investigate, as far as possible, what is
determined directly by observations of the CBR made
by the family of fundamental observers. Where we are
forced to make additional assumptions, they are made
about observational quantities, and are thus in principle
falsifiable by observation, provided we make some kind
of Copernican assumption such as (Al), stating that all
fundamental observers see the same kind of thing (the
nature of the required assumptions is clarified below). In
this sense, we provide a &amework for comparing and
testing various models, in which there is as clear as pos-
sible a distinction between observed and assumed prop-
erties.

Notation. The metric g g has the signature
(—,+, +,+). Einstein's gravitational constant, the speed
of light in vacuum, and Planck's constant are 1. Paren-
theses on indices denote symmetrization, square brack-
ets antisymmetrization. V' is the covariant derivative
defined by g p. Given a four-velocity u, the associated
projection tensor is h g

——g g + u ug, and the comoving
time derivative and spatial gradient are

Qa t=—u Vc"Q. a" s)

V' Q ...s = h, "h ' . hg~VgQ, y...

for any tensor Q ...~ (in [6] we used V for V' ). If the
tensor is spatial, we define

I Q-" s I= (Q-" ~Q'-')'~'.

Given a smallness parameter e, O[N] denotes O(e )
and A B means A —B = O[2] (i.e. , these variables are
equivalent to O[1]). When A 0 we shall regard A as

vanishing (for it is zero to the accuracy of the first-order
calculations that are the concern of this paper).

II. COVARIANT
AND GAUGE-INVARIANT ANALY'SIS

The fundamental observers are assumed to be comov-
ing with cosmological matter, which is modeled by dust
with mass-energy density p, and which is noninteracting
with radiation (as we are considering the epoch after last
scattering). The physically preferred four-velocity u of
this matter is a suitable average over peculiar velocities
(which are small). The matter How is characterized by
u and its rate of expansion 0 (= 3H = 3S/S ) 0, where
H is the Hubble parameter and S the scale factor), shear
o p, and vorticity u p are all nonzero in general; however,
the How lines are geodesic: u = 0 (consequent on the
vanishing of the matter pressure).

The kame defined by u defines an invariant 3+1 split-
ting of tensors [23]. In particular, for a photon four-
momentum,

p =E(u ge ), eu =0, ee =1, (1)

Energy integrals of the first three harmonics define
the radiation energy density, energy Bux, and anisotropic
stress [15]:

E'F'dE = 3p = O[0],
0

(4)

q = — E F dE=O[1],
3 0

E E gdE = O[1]
8'

(6)15

(in [6] we used p, R for p). We will also need the integral
of the third harmonic:

E F g,dE = O[l]. (7)35 0

Note that the total energy-momentum tensor is made up
of matter and radiation contributions:

Tag = (p + p) uaus + s phag + map + 2u(age) .

where E is the photon energy and e the direction of
photon momentum, relative to fundamental observers.
Then the CBR distribution function may be expanded
as [15]

f(x, E, e") = F(x', E) + F (x', E)e + F g(x', E)e e

+ ~ ~ ~ (2)

where the covariant harmonics (multipole moments)
F, ... ~ (x, E) for L ) 1 are symmetric trace-free tensors
orthogonal to u that provide a measure of the devia-
tion of f from exact isotropy (as measured by u ). If
the CBR is almost isotropic after last scattering for all
fundamental observers, then [6]

F, F = O[0], Fo, ... ~, VgFo, ... , = O[1], L & 1.
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A. Covariant linearized harmonics
of the Boltzmann equation

2- 1
&ab + 3 estab + Eab 2&ab —0

& (16)

The Boltzmann equation in curved spacetime, &ab + 30&ab 0,

(c), b81
& ~ ~ .—I' -»'q . I

f(~" p ) = (-"[f]
g c)2:a c)pc ) E b+. OE b+ V'"H( 'sb), d + (2p+ 2p)cr b

may be decomposed into covariant harmonic equations
via (1) and (2). The full (exact and nonlinear) results
are given in [16, p. 501]. For the collision-&ee and zero
acceleration case, the linearized zero, first, and second
harmonic equations are

1E20 + 1EV Fa ~ 0

+ xkab+ xevrab+ XV(aqb) —Xh bV, q' = 0~ (18)

H b+ HH b
—V' E( 'sb) d, + 2V' 7r( sb) g

- 0. (19)

(d) Einstein, Ricci, and Bianchi constraint equations:

q —
s V 0+ V' (orb + ~b ) = 0, (20)

EF- 31E20 + EV F+ 52EVbFb —0
Vast) = 0 )

OF b 2 OFEFb——E 0 —E o. b +EV'( Fb)

—3habV'~F + qEV'~F ab 0. (10)

Hab+ V [0(a + ~(a ]&b)cd —0
~

These are the fundamental (covariant) equations gov-
erning the dynamics of radiation at a microscopic level.

V'bE —sV (p+ p) + 2Vb~ + sOq 0,

VbH —(p+ s)tx)(u + 2s b, V' q 0,

(23)

(24)
B. Covariant linearized evolution

and constraint equations

If (8)—(10) are multiplied by E2 and integrated over
all photon energies, then they produce the radiation con-
servation equations governing p and q, as well as the
crucial evolution equation for vr b (given for the first time
in [6], in full nonlinear form). These equations and the
remaining (linearized) conservation, Einstein, Ricci, and
Bianchi equations are as follows, obtained from [6] and
the general exact equations of [23] (with u = 0 but al-
lowing for an imperfect energy-momentum tensor).

(a) Matter and radiation energy and momentum con-
servation:

@, @=0[0], V @=0[1], 0=p) ei p)

(25a)

rTab ~ (dab ~ Eab I Hab —0[1] ~ (25b)

These qualitative results &om [6] will be xnade more
quantitative in Sec. IV.

where E b and H b are the electric and magnetic parts
of the Weyl tensor, respectively, and c b

= g b,pu", with

g b g the spacetime permutation tensor.
It follows [6] &om these equations and (3)—(7) that

p+ep=0) u =0,
C. Integrability conditions
and conserved quantities

p+ 38p+ V'
q 0,

qa+ 30qa+ 3Vap+ Vb7l a 0.

In the case of zero acceleration, the linearized form of
the identity [11]governing the commutation of time and
spatial derivatives is

(b) Evolution of radiation anisotropic stress tensor:

7rab + s HXrab + x5 P'+ab + 2V(aqb) s habVcq + Vc( ab
4 8 2

=0. (14)

(c) Einstein, Ricci, and Bianchi propagation equations:

V' 4 = (V 4)'+ —,
'OV' 4,

where @ is any O[1] spatial tensor or any scalar with
O[1] gradient. The comxnutation of spatial derivatives
themselves is given by the projected Ricci identities [ll],
which imply the exact identity

0+ 30 +@+2P —0& V( Vb)g = v)~ b, —
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where @ is any scalar, and for a nearly FRW spacetime,
the linearized conditions

V 0 (E + -~ ) + -OV' q —-& (p+ p) —0. (32)

+[a+b] 4'c —S2 hc [a0b] ) (28)
Finally, we note the existence of various quantities that

are conserved to first order along the matter How. For
example, (17) immediately shows that

where @ is any O[l] spatial vector and k = 0, 1, —1 is
the spatial curvature index of the limiting (background)
spacetime, and

(S (u b)'=0,

while (26), (19), and (16) imply that

k
+[a+b] 0« — Sz (he[a'4]d 0c[ahb]d) ~ (29) H*b + OH*b 0, H'b = Hab + V"o(a'eb)cg. (33)

where @ b is any O[1] spatial tensor. These identities
could be overlooked in an approach that starts &om a
FRW background solution and perturbs away &om it.
The integrability conditions implicit in (27)—(29) lead to
the following new results.

(I) If the covariant vector perturbations are spatially
homogeneous to first order, then the vorticity vanishes to
first order (i.e., nonzero terms are at most second order),
and either all vector perturbations vanish to first order,
or the spacetime has a flat FRW background.

(II) If the covariant tensor perturbations are spatially
homogeneous to first order, then the spacetime is either
FRW to first order, or it has a fiat FRW background.

The first result follows &om (27), which shows that
0 since V' @ is a vector perturbation for Q = p, p,

and &om (28), which implies kS g 0 for g = q or
any other vector perturbation. The second result follows
&om (28) and (29), which imply

kS vP 0 kS

for any vector perturbation g (since V' @b is a tensor)
or tensor perturbation @ b Thus. either k/S 0 (the
background FRW model is Hat to the accuracy we are
working), or

Vp 0 V'p, q 0, orb 0, b-0.

VbH 0. (30)

Similarly, using the contraction of (29) for vP g = tu«, the
gradient of (20) gives

V' V'bo +V' q ——V' 0 0, (31)

while (23) yields

In the latter case, (27) implies u b 0, (14) implies

o b 0, and then. (20) gives V 0 0, while (16) and
(22) give E b 0 H b. Thus the spacetime is FRW to
first order (i.e., it differs &om FRW at most by second
order-terms). CI

%e can derive further linearized integrability results
that hold in general (i.e., without assuming homogeneity
of vector or tensor perturbations), by covariant differen-
tiation of the dynamical equations. For example, taking
the gradient of (24), and using (21) and V'[ V'bq

] 0
[which follows from (28)], we get

Then (33) and (11) give

(Hab + 7 0 (a eb)c(g ) 0.

It therefore follows that if either the vorticity or H'b/p
are negligible (i.e., O[2]) at last scattering, they remain
so at all subsequent times.

III. TEMPERATURE ANISOTROPY
OF THE CBR

It is important to realize that the covariant dipole mo-
ment F of the CBR distribution [see (2)], although de-
pendent upon the choice of u, cannot be set to zero
by this choice, since it is &equency dependent and its
vanishing implies special conditions on the anisotropy
of f Since th. e u frame is physically defined by mat-
ter, and is already assumed to have been corrected for
local peculiar velocities, E represents a possible resid-
ual intrinsic &equency-dependent dipole moment of the
CBR distribution relative to matter, with invariant sig-
nificance. This distributional dipole, however, contains
much more information than the dipole of CBR temper-
ature anisotropy, which is in fact proportional to the en-
ergy flux q given by (5) [see (41) below].

Even for the temperature dipole, however, one cannot
separate the intrinsic dipole &om that induced by pecu-
liar velocity of the observer [19,24]. It is standard to as-
sume that the intrinsic temperature dipole is negligible
after correction for a peculiar velocity. This is equiva-
lent to the nontrivial assumption that the average four-
velocity of matter coincides with the energy-&arne [12]
four-velocity of radiation. Although it can be justified
for adiabatic perturbations within the standard model
[24], we will not make this special assumption, so that
we allow for an intrinsic dipole in the temperature (i.e. ,
nonzero q ) after correction for local peculiar velocities.
This approach accommodates future improvement of ob-
servational results for the peculiar velocity which are in-
dependent of the CBR observations, and which may re-
veal a nonnegligible residual temperature dipole. Prom
this point of view, the current limits on the intrinsic
dipole should be related to the current uncertainties in
the local peculiar velocity.

Another aspect of the dipole moment E which appears
not to have been previously recognized is its link to devi-
ations &om a thermal Planck spectrum in the monopole
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( EF(x,E) 2 exp
I „ I

—1 (34)

where k is Boltzmann's constant. Then (34) and the
Boltzmann monopole harmonic equation (8) imply

moment E. This aspect is hidden if one starts &om
a background FRW solution and then perturbs, rather
than considering the real non-FRW solution. The lat-
ter approach shows via the Boltzmann equation that
nontrivial constraints are imposed on the dipole if F is
Planckian to first order (as strongly indicated by obser-
vations [5]). For suppose that

These moments give a covariant and gauge-invariant de-
scription of the CBR temperature variation, with spec-
tral information integrated out. By (5)—(7), (40) gives
the dipole, quadrupole and octopole as

3/a
7 a )

4p

15m b7ab— )
8p,

(41)
8p

The wal g are a kame-independent alternative to
the usual multipole coefficients AI, M in an expansion
in spherical harmonics YgM. If we choose a stan-
dard triad. in the rest space of u such that e
(0, sin 8 cos P, sin 0 sin P, cos 0), then the two approaches
are linked (cf. [15]) by

~T S) 3E/kT
T S 1 —cosh(E/kT)

(35) r(x, e) = ) ) AI,~(x)Y~M(e, y)
L=l M= —L

Thus the dipole moment is subject to the restriction (35)
if the monopole moment is Planckian to O[l].

One consequence of (35) is
al. "ag & e ' ~ ~ ~ e

L=x

T S—= ——+ O[1].T S

The correlation function

C(cx) = (r(x, e)r(x, e')), e e' = cosa,

p(x ) = a[T(x )] = 4vr E F(x, E)dE
0

(37)

on using (4), where a is the Stefan-Boltzmann constant.
A directional temperature is determined by all the har-
monics (2) via the directional energy density per unit
solid angle that is defined by the integrated (bolometric)
brightness [25] (see also [26—28])

In contrast with many other treatments (where
TS = const), T is not a fictitious background temper-
ature, but is the gauge-invariant average temperature in
the actual spacetime. Now observations of the CBR mea-
sure temperatures in difFerent directions on the sky. The
full-sky average temperature T(x ) at event x is deter-
mined by the monopole harmonic of the photon distribu-
tion

where the angular brackets denote a statistical average,
is the key quantity in actual observations. In this pa-
per we will not consider the detailed statistical analysis
of the correlation function, which is given, for example,
in [19—21,24,26,29—31], where an infiationary model for
perturbations is assumed. Our concern here is with the
underlying principles of how to relate observational lim-
its to properties of the spacetime geometry in a model-
independent way.

Current CBR observations place limits on
r ..s(tp, yI~) wh. ere tp is the proper time along our world
line C since last scattering and yIc are comoving coor-
dinates of C. By (Al), these limits may be extended to
hold on each world line y at a proper time t0 along the
world line after last scattering:

I
r.. ..(to, y) 1«r (to) .

I(x, e ) = E f(x, E, e )dE
0

= —[T(x ) + hT(x, e~)], (38)

As in [6], we assume that anisotropies are O[1] back to
last scattering. Then we extend (42) to hold for all times
0 & t & tp, and obtain the assumption (Bl) there exist
O[1] constants eg such that el, (t) & eL, . Hence, for any
event x after last scattering,

which defines the gauge-invariant fiuctuation bT(x, e~).
The covariant multipole moments r, ... ~(x ) (L ) 1)

of temperature anisotropy are trace-&ee, symmetric ten-
sors orthogonal to u, de6ned by

=7 8 +7 bC 6 +7 b 1 t 8 +.. .a a b a b c
T (39)

14'
1l'

k4&)
(40)

By (38), (37), (2), and (4) they are given in general,
to a good approximation, as normalized integrals of the
covariant distribution harmonics:

I r-. -.(*') 1«1..

In principle (and possibly not too far oK in practice), ob-
servations place limits on the comoving time derivatives
of the multipoles, and as before we assume (B2) there
exist O[1] constants e& such that

I
r . " i (x')

I
& ''I, O(x ) i (44)

where we have normalized the derivatives relative to the
expansion of the Universe (recall that 0 ) 0 is O[0]).
Since it is effectively impossible for us to move cosmolog-
ical distances off C, there will not be direct observations
of the spatial derivatives of the multipoles. However, we
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will need limits on these quantities, and so assume also,
on general plausibility grounds (given the basic Coperni-
can assumption), that additionally (B3) there exist O[1]
constants e& such that

and inhomogeneity.
Using (12) and (37), (49) may be rewritten

is n261+361+ 562)
-.—(~')

I
«Ke(*') (45)

&om which it follows that
One should note that we expect all the quantities e

defined here to be very small: probably at most 10
The exact isotropic case considered by Ehlers, Geren,
and Sachs [32] corresponds to eL, = eL

——er' ——0, and is
a special case of what follows. where

dR &P tR (52)

IV. MODEL-INDEPENDENT LIMITS
ON SPACETIME ANISOTROPY

AND INHOMOGENEITY

I7r bI & —, pe2,8 I(.b I
& —,s, P., (46)

on the radiation anisotropy tensors. Di8'erentiating the
harmonics (41) and using radiation energy conservation
(12), (5)—(7), and (25a) we get, to O[1],

& —;~e(-'e + e', ) I~abI & ygpe(se2+ e2) (47)

IV'.(b..I
& —,', pOe,".

(48)

Now we can use radiation momentum conservation (13)
and the evolution equation (14) for m b, together with
(46)—(48), to derive the limits imposed directly by ob-
servations on the gradient of energy density [equivalently
average temperature, by (37)] and on the shear:

The observationally based limits (43)—(45) on temper-
ature anisotropy lead directly via (41) to the limits

TdR=
Iv' TI

TtR= (53)

are characteristic length and time scales defined by the
CBR.

Note that the only dynamical equation that has been
used to determine the bounds (49) and (50) is the Boltz-
mann equation [which implies the conservation equations
(12) and (13) as well as the evolution equation (14)]. An
inspection of the remaining dynamical equations (11) and
(15)—(24) shows that no further bounds, e.g. , on vorticity
and the Weyl tensor, can be deduced &om these equa-
tions, without making further assumptions. The problem
is that we are unable to deduce directly bounds on the
derivatives of the shear and other tensors.

There is another aspect of the results (47)—(50): In
practice eL and, especially eJ' are not known Rom obser-
vations. In order to produce more useful versions of the
results, we need a reasonable estimate of these quanti-
ties. First, we make the reasonable assumption (Cl) the
spatial gradients of the temperature harmonics are not
greater than their time derivatives: eL ( eL. Next, we
can estimate eL by invoking the characteristic time tR
defined by (53), leading to assumption (C2) the bounds
on the time derivatives of the temperature harmonics are
estimated by ee'L eL, /tR. Collecting the resulting es-
timates

I&-vI = 4 & H(8ey + 12m~ + s t2),I 7Q II

p

s I II 9 II
3E2 + 6'2 + 561 +

(49)

(50)

II 1
3EL )

where we have used (36) and (3). We can now use (54) to
recast (47)—(50) in terms of the observationally realistic

These equations show explicitly the role of the dipole,
quadrupole, and octopole: The gradient of radiation en-
ergy density or average temperature, which reflects inho-
mogeneous deviations &om FRW spacetime, is bounded
by the limits on both the dipole and quadrupole of tem-
perature anisotropy; the shear, which reflects anisotropic
deviations &om FRW spacetime, is bounded by the limits
on the dipole, quadrupole, and octopole.

Note that if we follow the usual assumption that the
CBR temperature dipole is negligible (after correction for
local peculiar velocities), then by (41) and (46)—(48) it
follows that

.o
9 @61 )

4( 9@61

7T~Q 8( 9@62 )

I& ~b. I s
45 @62 )

(55)

(56)

I II0 M q 0 M e1 ——e1 ——e1 ——0.
In this case, the bounds in (49) and (50) are reduced, so
that a negligible dipole reduces the limits on anisotropy

s 3( 361 + 362+

If the dipole is neglected, then by (51) we can set ez ——0
in (56) and (57). Note also that for the p and H on



51 LIMITS ON ANISOTROPY AND INHOMOGENEITY FROM THE. . . 1531

Iv' pl ( po( s eg + —'e2) + 9l7' Eb I, (58)

the right sides of (55) and (56), we may use the O[0]
values, i.e. , the values they take in the limiting (back-
ground) FRW spacetime, which has noninteracting dust
and isotropic radiation; exact solutions are given in [33].
In particular, if (46) and (55)—(57) are evaluated here and
now, then po

——aTo = 3Ho (O~)o, where To ——2.7 K, Ho
is the Hubble constant, and O~ = p/3H is the radia-
tion density parameter; the @L, follow from current CBR
observations.

The bounds (46) and (55)—(57) are the main results of
the quest for a direct link &om feasible observational lim-
its on the CBR to limits on the deviations of spacetime
&om FRW. However, they do not extend to the vorticity
and the all-important further issue of limiting the mat-
ter inhomogeneities &om the radiation anisotropy. To
attempt this, we use these bounds in the evolution and
constraint equations (16) and (23) to derive

ground.
Prom these limits we can obtain conservative estimates

of present-time bounds on the anisotropy and inhomo-
geneity of the Universe. Let

6=max 6y E2 E3

denote the upper limit of currently observed anisotropy in
the CBR temperature variation, and take a = P = 7 = l.
Then (56), (57), and (64) imply

t I&-vl 17H, & l~-bl
&I 6, & l~obl ( 5,

(65)

The remaining limits (62) and (63) depend on the cur-
rent values of the density parameters. Taking (O~)o && 1,
(62) gives

IE-bl «'('o'e~ + 2e2+ g") + —;~)e2+ I~-bl. (59)

In addition, the identity (27) for p together with (12)
implies

I

I -'I
I

(26H„,
)o

while (63) implies

(66)

o I
I& &b&l.

E4C O) (60) ~ I +apl l 688
C(O) = (67)

I& Eb.
l
( &OIE.bl .

(61)

In order to place bounds on the derivative terms on the
right hand sides of (58)—(60), we make a further assump-
tion motivated by (46), (54), (55), and (17). We postu-
late that (C3) there exist constants n, P, p of the order
of 1 such that

The latter is a relatively poor limit, although possibly
still significant in view of the small values expected for
the el, . If we are willing to assume that (OM)o 1 today,
we get a reasonably tight limit from (67). However, the
observational evidence points towards a range of values
between 0.1 and 0.3 as more plausible [34]. Including the
lowest limits implied by nucleosynthesis, we can represent
the full range of possibilities by a table of values:

Using (61) and (34) in (58)—(60) leads to the further
bounds

0.02 0.1 0.3

( H(2+ 3n)(sory + 3eg + &es) +»HO~ e2 & (62)5 34393 6880 2293 688

lv'. pl OR H(16', + 5 p~2) + p(2 + 3n)36

P ~M ~M
x (45eq + 81c2 + 7 es), (63)

As we go back in time towards last scattering, whatever
value it has today, OM will rapidly approach 1.

We note that if the dipole is neglected, then by (51)
we can set eq ——0 in (56), (57), and (62)—(64) to obtain
the revised "dipole-&ee" estimates:

6

0 ( p(3e~+ Ee2), (64)

where O~ = p/3H is the matter density parameter.
We thus obtain (46), (55)—(57), and (62)—(64) as plausi-
ble limits on the deviation &om a FRW model in the time
since last scattering (within our past light cone), based
on the reasonable assumptions (Bl)—(B3) and (Cl)—(C3).
These results give for the first time a direct relation be-
tween CBR observational limits and limits to anisotropy
and inhomogeneity, without assuming a specific evolu-
tionary model, or the curvature index k of the back-

(4e,
jo E O &o E O lo

(65 )

Ep),
which are considerably better. We recover the Ehlers-
Geren-Sachs (EGS) result [32] on setting e = 0 (exact
isotropy implies an exact FRW solution).
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V. ALMOST FLAT FRW SOLUTIONS Hb 0, V Eb 0.

As already pointed out, we are unlikely to have di-
rect observational information about the spatial gradi-
ents of the temperature harmonics, i.e., about the
bounds defined by (45). In Sec. IV we used the esti-
mate (Cl) that the spatial gradients are not greater than
the time derivatives [see (54)]. Here we consider a more
stringent, but apparently still reasonable, assumption on
the spatial gradients. In eKect we extend to the spatial
gradient bounds the assumption (C2) already made on
the time derivative bounds; i.e., we replace assumptions
(Cl)—(C3) by (D) the bounds on both tixne and spatial
derivatives of the temperature harmonics are determined
via the characteristic scales (53) of the CBR:

I EL
OCL —W CL 3EL, )tR

O~b + ~80 b + E b
—2&~b 0 ) (72)

4 8
7l~b + 307(~b + ~~ p0~b 0 ) (73)

E~x + OE~s+ (2p+ 5 p)o~g —28~~x - 0, (74)

and a subsystem for q, V' g (g = p, p, 0),

g~ + SO/~ + 3V~p 0)4 1

By (69)—(71), the system of dynamical equations (11)—
(24) closes at O[1] and reduces to a subsystexn for o. ~,
~ab) Eab)

O&L, w eL ( (ex + 5e2)ex, ,
R

(68)
2V 0 —3q 0 (76)

where we have used (36) and (56). It immediately follows
from (68) that eI& ——O[2], and hence, by (45) and (41),

V'
qb 0, V'

mb 0, V' (x„g - 0, . . . . (69)

V~VbP ~ 0 M ~~b —0 ) +~b~ —0 )

Thus, &om an apparently reasonable assumption on the
spatial gradients, we are led to the vanishing at first or-
der of vector and tensor inhomogeneities in the radiation.
The point is that the radiation time scale t~ is a zero-
order quantity (it exists for exactly isotropic CBR), while
the radiation length scale d~ is first order —it is only
finite when there are inhomogeneities in the CBR [see
also (52)]. If inhomogeneities in the temperature fiuc-
tuation v are determined by the characteristic inhomo-
geneity scale, then, as shown by (68), they are negligible
in comparison with anisotropies. This in turn leads to a
very restrictive condition: if the radiation energy flux and
anisotropic stress are homogeneous to first order, i.e. , if
(69) holds, which will follow if (D) is true, then either the
spacetime is FRW to first order, or the spatial curvature
vanishes to first order and so the background has a flat
I'RlV geometry.

This follows as a special case of the results (I) and (II)
derived in Sec. IIC. Note that it may also be derived
(but with greater efFort) by considering the integrability
conditions of the constraint equations (20)—(24) in the
case that (69) holds.

This result may be viewed as providing an alternative
motivation for the almost Hat FRW model of the Uni-
verse. Purthermore, we are able to reduce the system
of dynamical equations in this model to a pair of linear
evolution equations, for the shear and energy Bux. Using
the O[1] identity (26) with (69), the spatial gradients of
(13) and (14) imply

V' (p+ p) —Oq 0. (77)

These subsystems represent a decoupLing of the
anisotropy and inhomogeneity, since (72)—(74) contain
no spatial gradients. In the special case where we as-
sume that the temperature dipole is negligible, (41) and
(75)—(77) show

q 0 Vp Vp VO 0,

02 —3(p+ p) = 0. (78)

Before we consider the decoupling and solving of (72)—
(74) and (75)—(77), we give the limits that they imply,
using (46), (47), (68), and (69),

i@.Oi
& 20zH~g ) & 3~2.

(79)

which, together with (69)—(71), shows that the space-
time is homogeneous to first order. Thus, in the dipole-
free case when (D) is assuxned, the spacetime is Bianchi
type I to the accuracy of the calculation. Conversely, if
there is inhomogeneity in the radiation and matter, and if
the CBR characteristic length scale determines the CBR
temperature inhomogeneity fi.e., if (D) holds], then the
dipole cannot be negligible after correction for peculiar
velocities.

From now on we will assume that the dipole is not
negligible, i.e. , q g O[2]. In (72)—(77), the coefficients
p, p, and 0 may be given their FRW zero-order forms,
which are in fact the solutions of (ll), (12) [using (69)],
and (15). In particular, these equations imply the O[1]
Priedmann equation [6]

where we have used (27). Then (70) reduces (22) and the
spatial gradient of (16) to

Note that a bound on E b does not follow directly. These
results sharpen the bounds given by (56), (57), and (63)
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[recalling that (Cl)—(C3) have been replaced by (D)]. In
fact, the bound on the matter inhomogeneity is drasti-
cally sharpened at late times, when O~ && OM. The
source of this is the disappearance of the gradient of the
electric Weyl tensor f'rom (58) —the term which pro-
duced the weak bound of (63). This gradient, along with
all tensor gradients (i.e., gradients of vectors and ten-
sors), drops out by virtue of (D). In other words, if only
scalar inhomogeneities occur (i.e., all vectors are gra
dients of scalars), then the matter inhomogeneities are
rapidly suppressed at late times.

A potential problem arising &om (79) is that the limits
suggest that the matter inhomogeneity is much less than
the radiation inhomogeneity at late times. However, the
upper limits do not force this to occur; they simply allow
the possibility. Below we will give an example of a late-
time solution where the matter inhomogeneity is greater
than the radiation inhomogeneity.

By taking u V derivatives and using (15) and (78),
the subsystexns (69)—(71) and (72)—(74) may be decou-
pled:

(73) that

4(I) f SZ(I)
l[3( + S)l'~'&

(87)

C~s (I) /[3(r'+ mS)]
E~s — A s ~ Z(I)

+I
& 4r 5 ( SZ(x)

l [3(r+ mS)1'~'&
ds, (88)

V~@ ~ —[3(r+ mS)] ~ B( ) QI~) + —Q(~), (89)S

where C b 0.
Similarly, given the solution Q(S) of (86), we find from

(75)—(77) that

os+~'0 ( s e + )tx+ 2p)o'as + (ssp+ s p)o'as
V~8 2 B Q(g), (9o)

+0 (4s& + sp xsp 4~p s pp)

(8o)

V p —[3(r+mS)] B Q( ) + —Q(~) . (91)S

q + 30q- + (—", 0' —2p —-', p) q- = o. (81)

In principle we can obtain the O[1] solution for the
almost flat FRW model after last scattering as follows.
The solutions of (11), (12), and (78) imply

p - rS-4, p=mS 8 = S-'[3(r + mS)]i~',

(82)
r =0=m,

which allow us to reduce (80) and (81) to linear ODE's
in S. We write

Note that because two time derivatives were needed in
the decoupling that led to (80), there will be a consistency
condition imposed on the integration constants A b, C b

via (74).
Thus (78), (83),(87),(88), and (84),(89)—(91) represent

an exact solution of the linearized equations governing the
metric, CBR, and matter after last scattering in a uni-
verse subject to the observational assumption (D). The
explicit analytic form of the solutions depends on 6nding
explicitly the solutions to the ODE's [Eqs. (85) and (86)].
We can provide explicit solutions for late times (i.e., long
after last scattering) when

o s A s Z(x)(S),(I) I =1,2, 3,
P « P —3

o- « 1
(83)

using (78). By (92), (80) sixnplifies to

(92)

q. = B("Q(.) (S), A=1, 2, (84) ab + ia ab + 36
43 2. 5 3 (93)

with A b 0 B . Then Z(1) are linearly indepen-
.(I) (w)

dent solutions of

Writing o. s U sO, where U s 0, we find &oxn (93)
that n = i, s, 2. However, n = s violates (50) at late
times. Thus an acceptable solution to (93) is

2(8r + 9mS) „r(94r + 89mS)
S(r + mS) S2(r + mS)'

g r 0
(480r2 + 1006rmS + 525m2S2)

20S'(r + mS)'

and Q(A) are linearly independent solutions of

3(4r + 5mS), 2(5r + 7mS)+ 2S(r + mS) S2(r + mS)
+

(85)

o b UbO / +Vbe Uab —0 Vab . (94)

o b UbO/ &ab —6UabO 6OOab y

8/3

E b —-4UbO1 8/3 ~ 3

Using (92) and (94) in (72)—(74) we find that the con-
sistency condition on the constants of integration gives
V b 0 and the late-time solution is

Given the solution Z(S) of (85), we find &om (72) and Now we use (92) to simplify (81) to
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+30q + —0 q 0.

With q~ J~O, J~ 0, we get n = 3j 3$ neither of
which violates the limit (46). Thus a solution of (96) is

q JO~ +Me~
and this leads via (75)—(77) to

J.=0=K. , (97)

Vp, ——Je ~ Ve —q

V = -'J O"~ +Z.e"~'.
Thus we have presented an exact and explicit late-time

solution [Eqs. (94), (95), (97), and (98)], which in partic-
ular provides a quantitative measure for the rate of ap-
proach towards the limiting background solution. This
solution also allows us to tighten the lixnit in (79) on
shear at late times, and to give a late-time limit on the
Weyl tensor: By (46) and (95) we have

e2,0 (15AM )
4( 5ORHe2. (99)

I"urthermore, the solution contains spacetimes in which
the late-time radiation inhomogeneity is negligible in
comparison with the matter inhomogeneity. This arises
when J and K in (98) are chosen to ensure that

I&-~l (( I&-s I (, (100a)

where the final inequality follows from (79), consistently
with (97) and (98). The particular choice of J 0, i.e.,
radiation inhomogeneity vanishing to first order at late
tixnes, will achieve (100a), with

V p 0, IO.pI (n(4 Hex,
&OM )

(100b)

by (97), (98), and (46).

VI. CONCLUSION

We have seen how a series of assumptions of increasing
sharpness (incorporating the inevitable Copernican sup-
position) leads to increasingly powerful deductions &om
the CBR anisotropy. As emphasized before, these limits
are independent of detailed assumptions about the dy-
namical history of matter in the Universe, and provide
an alternative mode of analysis to the usual approaches.
This analysis has the advantage of being both covariant
and gauge invariant [11,12]. It gives somewhat less infor-
mation than the usual approaches based on the Sachs-
Wolfe eKect and its generalizations, precisely because it is
more model independent; however, this also means that
its conclusions are more robust, than those more stan-

dard analyses, as they do not depend so much on the
assumptions of particular evolutionary models. In par-
ticular they are not dependent on whether or not inBation
took place, and whether or not the density parameter 0
is near the critical value.

The analysis proceeds through a series of increasingly
restrictive Copernican assumptions about the nature of
CBR anisotropies in an open neighborhood about our
world line, which is envisaged as including the observable
region of the Universe. Such assumptions are inevitable
if we wish to justify the assumption of an almost-FRW
model [7,8]. The qualitative assumption (Al) (Sec. I)
is sharpened to the quantitative assumptions (Bl)—(B3)
(Sec. II) leading to the limits (46)—(50), which can be
sharpened a little if we assume that matter and radia-
tion frames coincide [i.e., if there is no CBR temperature
dipole; see (51)]. These restrictions are relatively weak;
in particular, they do not bound the matter inhomogene-
ity or vorticity. Somewhat sharper assumptions (Cl)—
(C3) (Sec. IV) give better lixnits, leading to our estimates
(65)—(67), which are further sharpened if the dipole can
be neglected to give (65') and (66'). These equations
make quantitative the results of [6] [the Universe is al-
most FRW; see (A2)] and include as a special case the
Ehlers-Geren-Sachs exact theorem [32]. They confirm
previous estimates based on the CBR anisotropies that
the shear and vorticity are at most about 10 3 of the
expansion (on choosing e = 10, to concur with recent
CBR anisotropy xneasurements) .

We regard these assumptions and limits as highly plau-
sible, and believe they are useful not only in terms of the
limits obtained, but also in making quite explicit the kind
of Copernican assumptions one has to make in order to
extract information &om the CBR anisotropies [such as-
sumptions necessarily underlie the standard Sachs-Wolfe
type analyses, because these analyses assume (A2) as
their starting point, but they do so in a somewhat hid-
den way]. More debatable are the stronger assumption
(D) of Sec. V, which seems on the face of it quite plausi-
ble but then. leads to very restrictive conclusions: Either
the Universe is FRW to first order (that is, its difFerence
&om a FRW geometry is at most second order) or it has
a fiat background FRW geometry (to the accuracy of our
first-order calculation). When this is true we can get
explicit solutions of the equations representing the com-
bined matter and radiation system, but they only allow
spatial inhomogeneity when the dipole term cannot be
neglected.

Thus some may wish to adopt these stronger assump-
tions, while others may feel the conclusions are too strong
and therefore the assumptions should be questioned. We
are open minded in this matter; the main point is that
the analysis presented here makes quite clear the range
of possible assumptions, and their consequences when
we take the Einstein-Liouville equations (and consequent
propagation and conservation equations) into account.

Finally we believe this paper shows well the utility of
the covariant harmonic approach to both perturbations
and to kinetic theory. In particular, in examining kinetic
effects, it makes quite clear how only the 6rst three har-
monic terms in the distribution function explicitly en-
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ter the 6eld equations; the anisotropies represented by
higher harmonics can affect the geometry only by cascad-
ing [15]: that is, by inducing anisotropies in the lower-
order harmonics through divergence or gradient terms,
as in Eq. (10), or through collisions [16,35].

Note added in proof Sin. ce this paper was completed,
we have been able to improve the argument by intro-
ducing sharpened assumptions, leading to more explicit

conclusions. A supplementary paper presenting these im-
provements is in preparation.
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