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The difference between the timelike and spacelike meson form factors is analyzed in the framework
of perturbative +CD with Sudakov etfects included. It is found that integrable singularities appear
but that the asymptotic behavior is the same in the timelike and spacelike regions. The approach
to asymptotia is quite slow and a rather constant enhancement of the timelike value is expected at
a measurable large Q . This is in agreement with the trend shown by experimental data.
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I. INTRODUCTION

There is now a long history of continuous progress
in the understanding of electromagnetic form factors at
large momentuin transfer. After the pioneering works [1]
leading to the celebrated quark counting rules, the under-
standing of hard scattering exclusive processes has been
solidly founded [2].

A perturbative @CD subprocess scaling such as

in the simplest case of the meson form factor, is factorized
from a wave-function-like distribution amplitude

v'(~ Q ) = f @(»&r)&&r

(x being the light cone &action of momentum carried by
the valence quark), the Q dependence of which is ana-
lyzed in the renormalization group approach. Although
an asymptotic expression emerges from this analysis for
the x dependence of the distribution,

(p, oc x(l —x),

in the pion case, it was quickly understood that the evo-
lution to the asymptotic Q is very slow and that indeed
some nonpertubative input is required to get reliable es-
timates of this distribution amplitude at measurable Q .
Thanks to the @CD sum rule approach such a function
was proposed by Chernyak and Zhitnitsky [3, and was
followed by other model-dependent proposals [4,5].

These developments helped theoretical estimates to get
closer to real experimental data but a severe criticism [6]
remarked that most of the contributions to the form
factor were coming &om end-point regions in the x in-
tegration, especially when very asymmetric distribution
amplitudes such as those of [3] were used. This is not
welcome since one Inay doubt the validity of the pertur-
bative calculation in these regions. The recent work of

Li and Sterman [7] solves this problem by proposing a
modi6ed factorization formula which takes into account
Sudakov suppression of elastic scattering for soft gluon
exchange. This inclusion leads to an enlargement of the
domain of applicability of (improved) perturbative @CD
calculations of exclusive processes.

The case of timelike form factors has not been much
studied theoretically [8,9]. Experimental data on the pro-
ton magnetic form factor GM (Q ) [10]show a definite dif-
ference between the spacelike and timelike values at the
highest measured Q2. A recent analysis of the @ -+ 7rvr

decay [ll] leads to a similar problem for the pion form
factor at 10 GeV transfer. Note, however, that the
experimental extraction of the spacelike form factor has
been recently suspected to sufFer &om large uncertain-
ties [12].

In this paper, we carefully analyze in the Li-Sterman
framework [7] the ratio between high Q2 timelike and
spacelike meson form factors. Not surprisingly, we find
that this ratio goes asymptotically to 1, but we show that
this approach to asymptotia is slow and that factors of
the order of 2 follow at measurable Q2 from reasonable
assumptions on wave functions.

II. THE SPACEI IKE FORM FACTOR

In this section, we review the formalism as it has been
developed for the spacelike case.

A. Hard scattering picture

The spacelike form factor measures the ability of a pion
to absorb a virtual photon (carrying a momentum q with
q = —Q ( 0) while remaining intact. It is defined by
the formula

(2.1)
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I'(Q ) = g;„*T~* v)*„, (2.2)

and the graphical representation of Fig. 2.
The most important feature of this picture is that it

separates hard from soft dynamics. The amplitude TH,
the interaction, reIIIects the hard transformation due to
the absorption of the photon and is hopefully calculable
in perturbative @CD, because the efFective couplings are
small in this regime due to the asymptotic freedom. The
amplitude g, the urave function, which depends on low
energy dynamics is outside of the domain of applicability
of perturbative QCD and is, at present, far from being
fully understood &om the theory. It is however process
independent and contains much information on confine-
ment dynamics. Factorization proves this picture [2] le-
gitimate.

B. Infrared corrections

The need of a careful factorization is due to the in-
frared behavior of QCD: technically, large logarithms
[i.e. , In(Q/A)] appear in the renormalized one-loop cor-
rections to the naive "tree graph" (A is some infrared
cutofF needed to regularize soft and/or collinear diver-
gences). As in the renormalization procedure, if factor-
ization holds, these large corrections should be absorbed,

where e is the pion electric charge and momenta are
defined in Fig. 1.

In the hard scattering regime, that is, when Q is very
high with respect to the low energy scales of the theory
(the @CD scale A and the pion mass), Brodsky and I ep-
age have motivated the following three step picture for
the process, valid in the light-front formalism [2]: the
pion exhibits a valence quark-antiquark "soft" (see be-
low) state, which interacts with the hard photon leading
to another soft state, which forms the final pion.

This leads to the convolution formula

( 7H j I~*

FIG. 2. Factorization of the form factor.

here in the redefinition of the wave function. The proof of
factorization and its consequences upon the wave func-
tions are studied in the pattern of the renormalization
group. Without entering into a detailed discussion, let
us sketch the procedure (see [13] for more on this leading
logarithms calculation and also for the renormalization
group treatment).

The first step is to compute the naive hard amplitude,
that is, consider the tree graph of Fig. 3, and the three
other graphs related to it by C and T symmetries. One
finds, with the notation explained on Fig. 3,

xQ 1
Ta ——16~o.sC's

xQ2 + k2 —ie xyQ2 + (k —1)2 —ie '

(2.3)

where all quark momentum components are kept. Note
that we have done the usual projection onto the pion S
wave state: Q (p) oc ~ps' and used the C symmetry
of the wave function. C~ = 4/3 is the color factor, while
a~ is the QCD efFective coupling at the renormalization
point p.

To examine one loop corrections to TH, the relevant
graphs to consider in axial gauge are those of Fig. 4.

They directly lead to the wave function correction, in
the "double logarithms" or Sudakov region (namely, A «
~q~ && u~~ && x~~, u and q being, respectively, the light-

cone &action and transverse gluon momentum relative to
the pion):

q~'l(x k) =
2' 2 , ~s(q')

q
—(g~ l(x —u, k+q) —g~'l(x, k))

I~2/~ "
xg/~2 d2

+ , ~~(q')2+2
& q2

—(g~ l(x + u, k+ q) —g~ l(x, k)),
I~2/~

(2.4)

where x = 1 —x and the first term in the difference comes from vertexlike corrections and the second one from self-
energy ones; in the infrared region some partial cancellations occur between these corrections, but the cancellation is
not complete.

xp+k yp'+1

(1-y)p'-1

q=p p

FIG. 1. The pion form factor. FIG. 3. Tree graph for TH.
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To pursue this analysis, it is convenient to define the Fourier transform in the transverse plane:

@(x,b) = f d~ke'"' @jx,k),

and to separate transverse and longitudinal variations of the wave function. One finds, omitting for the moment the
second term in Eq. (2.4):

g(') (x, b) =

(2.6)

This equation contains the typical corrections one has to consider in a hard process when dealing with either a big
()) 1/Q) or a small (& 1/Q) neutral object.

C. Transverse behavior at large distance

The transverse behavior at large distance is driven by the first term of the previous equation, thanks to the vanishing
of the summation with the oscillating components. This occurs when b = ~b~ is greater than at least a few times the
inverse of the upper bound of the corresponding integral: xQ/~2. As a consequence, in the remaining expression,
the infrared cutofF A can be replaced by the natural one 1/b, above which the vextex and self-energy corrections do
not compensate one another. Thus we get

(i ) (p) Cp' xQ / lnxQ/~2 lnl/b—1+
2p ~2 ( lnl/b lnxQ/~2)

(2.7)

j,(x b Q) e ~(~,i,g) ~(z, b, Q) j—(o)(x b Q) (2.8)

Thus we get a strong suppression of the effective wave
function as b ~ 1/A, whatever the fraction x is, provided

with P = (ll — z~ )/4, nf being the number of quark
flavors. Here and in the following, it is understood that
the energies and inverse separations are in the natural
AqcD unit.

We have kept the single log term which occurs in the
integration, because it is the one necessary to express the
true dominant large 6 suppression, which one obtains in
a more complete treatment (that is leading and next-to-
leading one) [7].

After the resummation of the ladder structure to all
order, the above Sudakov factor exponentiates. Taking
into account the term obtained with the substitution x ~
x=1 —x, we get

i/b
vPP) (x, b) = g(x, k) dk = p(x; 1/b)

0
(2.9)

D. Transverse behavior at small distances

The first term in Eq. (2.6) is negligible when the oscil-
lating term remains close to 1 in the range of integration.
This happens for b a few times less than max (xQ, XQ).
In this case, soft divergences cancel one another and one
finds

that Q is reasonably large.
The remaining object vP( ) is a soft component to start

with. It is soft in the sense that it does not include
loop corrections harder than 1/b. One may modelize it
by including some 6 behavior or simply relate it to the
distribution amplitude [13] setting

2 0
xl x' —x

(2.10)

with the notation

1 & d2q 1 (lnQ) (2.»)
p (in&)

We displayed this equation in a slightly diferent form

than in the large b case to show explicitly that Eq. (2.4),
in the limit of small 6, is related to the distribution evo-

lution proposed in [2].
FIG. 4. Leading radiative corrections grouped in the wave

function.
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Let us shortly review how this comes about. In earlier
works, a simpler factorization formula was proposed for
exclusive processes [2]. It is easily derived &om the previ-
ous treatment if one assumes that neither the wave func-
tion nor the hard amplitude give an important contri-
bution to the form factor when the transverse momenta
are big. Neglecting all transverse momenta in TH leads
therefore to consider the k~-integrated quantity

(2.12) FIG. 5. The timelike hard amplitude.

This distribution amplitude related to the wave func-
tion at 6 = 0 has a dependence in Q associated with the
remaining collinear divergences in Eq. (2.10). Indeed, the
exponentiated form of this convolution equation, once it
is written for the distribution y and generalized to other
regions than the Sudakov one, leads to the celebrated ex-
pansion of Ip(x, Q)/xx in a linear combination of a run-
ning logarithm together with a Gegenbauer polynomial.
However, whereas this slow evolution is predictible, the
expansion at some finite Q is inaccessible Rom perturba-
tive reasoning.

III. THE TIMELIKE FOB.M FACTOR.

A. From spacelike to timelike observables

The form factor is an analytic function of the trans-
fer t, = q . In the convolution formula 2.2, the transfer
appears as an argument in several functions and we can
review individually their behavior under analytic contin-
uation.

We may distinguish the transfer dependence of the run-
ning coupling and effective wave function. This depen-
dence follows &om the improved perturbative treatment
reviewed in Sec. II. The analytical continuation in the
timelike region is, e.g. , o.s(g ) = (is(—

C ) [1 + &(o,s)]. It
introduces relative corrections to the spacelike values of
order o.g. such differences between timelike and space-
like forIn factors appear in the perturbative expansion
at order o.&, and a reliable prediction would require the
evaluation of all one-loop Feynman diagrams contribut-
ing to the hard amplitude. We will not pursue this issue.
Because of the exponentiation, the Sudakov suppression
may not follow the behavior of o.g, we will have a special
look to these factors.

The other origins of transfer dependence are quark and
gluon propagators. In the following, we keep the trans-
verse momenta in the propagators, that is we restore
some of the "higher twists" neglected in the conventional
approach. The twist expansion (small parameters M/Q
where M represents some hadroruc scales, e.g. , g(kT))
being distinct from perturbative one (small parameter
o.s), the separate study of their behavior under analytic
continuation is legitimate.

B. Quark and gluon poles

In the timelike region, the hard process ruling p* —+

sr+sr is drawn in Fig. 5, and the hard amplitude is simple

to deduce from the spacelike formula (2.3) changing p ~
—p" or Q ~ —W2, W2 = q . The new feature with
respect to the spacelike form factor is that the contour
of transverse momenta integration now goes near poles
located at either: k2 = xW +is or: (k —1) = xyW2+is.

These poles are automatically ignored in the pattern
of the Brodsky Lepage formalism as being too far from
the contributing region of integration. However, whereas
this argument is reasonable at asymptotic regime, we can
expect some consequences of the presence of these singu-
larities when the energy is not so high.

Technically, these poles are, except in the end point
regions (x, y -+ 0), far from the bounds of integration of
the two independant variables k = ~k~ and K = ~k —l~.

Therefore, we may evaluate the integral by deforming
the contour of integration in the complex plane of each
of these variables.

Another problem one may worry about is the physical
origin of these poles. A complete physical amplitude, for

example the form factor E(Q ), considered for a complex
Q, has poles and a cut along the real negative axis re-
flecting the existence of intermediate physical (on mass
shell) states. These interinediate states are hadronic ones
and therefore correspond to the "asymptotical" objects
of confined @CD. The poles we encounter in our present
computation, internal gluon or quark lines going on mass
shell, of course, do not correspond to observable states.
However they only appear in a differential amplitude
which itself is not observable. Provided this differen-
tial amplitude is integrable, the resulting form factor will
only contain, as a remainder of this kind of singularities,
real and imaginary parts which one would also expect in
a purely hadronic computation.

C. Hard scattering amplitude in 6 space

As we intend to implement the Sudakov suppression,
it is necessary to take the transverse Fourier transform
of the hard amplitude. Furthermore, whenever this is
possible, it is interesting to get an expression not only
for negative t or positive 8, but also for complex values of
the generalized transfer. I et us define z = g t, arg(z) C—
[——0], so that in the spacelike side of the complex plane
we get z = Q whereas in the tixnelike side z = —iW.

The expression of the form factor, with the Fourier
transform of Eq. (2.3) and the replacement of Q by z, is
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F = 16~Cz dxdy bqdbz@(x, b&)b2db24(y~ b2)chsT(bi, b2 x, y z)

T = Ke(gxyzb2)xz (8(bq —b2)IO(~xzb2)K0(~xzbq) + (b2 ++ bq)), (3 1)

where angular integrations have been done thanks to the
cylindrical symmetry of both the hard amplitude and S
wave wave function. b2 and ~bq

—b2~ are the transverse
distances of, respectively, the gluon vertex and the in-
ternal quark vertex. The functions Ko and Io are mod-
ified Bessel functions of order 0, the first appearing in
the equation comes from the gluon propagator, while the
remainder comes from the quark propagator.

D. Asymptotic behavior

which, with the above simplifications, is

IB(x,y) = 1 ~B+ f(x, y, zB),xyz' z3 (3.6)

with f a function that we refrain from quoting here due
to its lack of interest, except for its generic behavior for
large xylzlB: f e

As long as we avoid the timelike limit, we find the fol-
lowing leading behavior for the integration in the trans-
verse plane:

Bessel functions have different asymptotic behaviors
in various directions of the complex plane: for
oo, arg(() E —20 we have [14],

cosh (s + i —); (3.2)

XQZ
(3.7)

which displays the expected selection of small configura-
tion by the hard process.

In the timelike region, this is no more true, as we get
a modified power dependence:

F(z) oc [1+e(z)], (3.3)

with the limit e(z) ~ 0 as ~z~ ~ +oo and argz = 0,
our ignorance of the true form of c prevents us from con-
cluding when another direction is considered. However,
because one expects that the same kind of physics un-
derlies exclusive processes, we expect that, at least in
an asymptotic regime, we should fi.nd, for the leading be-
havior, the overlapping of exactly the same soft and hard
amplitudes.

As a first step in understanding the features of the
whole form factor, we may stress the different behaviors
of the differential amplitude T evaluating the b integrals
in an analytical way. To do this, we use an extreme toy
model for the b dependence of the wave function,

@(b) = 0(B —b), (3.4)

which automatically provides a cutoff to avoid ill-defined
integral. We also forget here the possible running of the
coupling with transverse distances (see Sec. III E) which
appears with Sudakov suppression, here ignored. We
compute the intermediate integral IB(x,y):

IB(*,y) = b, db, g(b, )b&db, @(b2)T(b„b„x,y, z),

we thus have to study how the asymptotic dependence
of the form factor is affected by this direction. In par-
ticular, in the timelike limit, the integrand is no more
exponentially suppressed.

There is, a priori, no general constraint to ensure that
the limit of some observable such as a form factor should
be the same in every directions in the complex plane.
Even though F(z) is analytic and

(3.8)

with the appearance of the size H, together with an os-
cillating factor. Of course, we find here essentially the
limit of our model object. Although the seeming R'
asymptotic behavior disappears, as we will shortly show,
for the form factor, we anticipate that some reminiscence
of the rather different behavior found with the toy model
will occur in the nonasymptotic regime.

A modification to the above result is provided with
a more reasonable choice for the transverse behavior of
the wave function. The rectangular form which we have
choosen above and its steep variation reduces the oc-
curence of cancellations expected with an oscillating in-
tegrand. If we were speaking of a Fourier transform we
would say that a rectangular function has relatively large
components at large momenta in comparison with any
similar but smoother function.

The Sudakov behavior reviewed in the second section
plays this role. However, because of the transfer depen-
dence of the Sudakov factor, we must first face the prob-
lem of its analytic continuation [15].

Before turning to this analytic continuation, we rewrite
the expression of s from Eq. (2.7) for spacelike transfer,
in the form

s(x, Q, b) = ln (U —1 —lnU), U =, (3.9)
Cy xQ —lnb

in*~ '

to see explicitly that s increases rapidly with U ( 1 at
large Q (remember that if x is small, we can always con-
sider the x-term in turn) so that the region of not too
large suppression is U & 1, where we have

(3.5)
s = ln (U —1)z.

4P 2
(3.10)
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For large timelike transfer, setting Q = —iW in
Eq. (3.9), we get

. CFvr CFvr
s(x, W, b) —ssL(x, W, b) = i lnU—

4P i6Pin*~ '

(3.ii)
with ssr, and U the spacelike expression of Eq. (3.9).
In the above equation, the real part is effectively small,
while the imaginary part remains close to 0 in the region
of intermediate suppression. We can therefore assume,
in the asymptotic regime, the same scale dependence for
the Sudakov factor and use the expression ssg for our
study.

To simplify our purpose, we will concentrate on the
simpler case one gets by considering only the transverse
behavior of the gluon propagator, that is setting the
transverse momentum to k = 0 in Eq. (2.3). As we
will show, this does not alter the naive behavior we pre-
viously get. However when taking the Fourier transform,
only one transverse distance remains, b = b~ ——b2 and
after angular integration we are led to replace the integral
I in Eq. (3.6) by the quantity I'.

I' = bdbKp —zb e (I I )
1

0
'2 (3.i2)

4
I

—i —zKg( —z)W2

W/2

uduKo (—zu) (3.i3)

which is to be compared with the expression without the
Sudakov correction:

4 ( .WI =
I

—i —z Kg( —zW/2)
I

.
)W'q 2

(3.i4)

We present in Fig. 6 the result of a numerical compu-
tation for both the real part (a) and the modulus (b) of
the quantity 4 which dictates the difference between the
timelike expression and the spacelike asymptotic result,

where we have limited our study to the x = y =
2 case.

Thanks to the Sudakov suppression, the upper bound of
the integral is naturally b = A

For the Sudakov exponent, we consider the approxi-
mate expression of Sec. II with the prescription of Li and
Sterman [7] which is to set the exponential to unity in
the region that should not be controlled by Sudakov evo-
lution, here for b & 1/Izl. With these simpli6cations, we
get:
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that the expression for the form factor is a superposi-
tion of amplitude with various &actions x, y weighted by
smooth distributions. This should also modify the inter-
mediate W / power law, and we examine this possibil-
ity in Appendix A.

We conclude that indeed the dimensional counting
rules are valid at timelike transfers and furthermore the
form factors are asymptotically the same. Recall, how-
ever, that we forgot consistently O(crt) corrections so

W. I' —(—i), (3.i5)

and compare it to the original quantity 4 I + 1. We
observe that after an intermediate regime (W & 20A),
the deviation L including Sudakov suppression slowly
decreases to 0 contrary to the case of the rectangular
wave function (where A grows like W~~2).

Another feature we have omitted until now is the fact

0
0 20 40 60 80 100

FIG. 6. The real part (a) and modulus (h) of the deviation
to spacelike scaling A. Solid (dashed) line is with (without)
the Sudakov suppression factor. W is in A units.
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that the logarithmic expansions should be asymptotically
diferent whereas leading logarithms are the same.

pFHg (x) = 0.6016 —4.659(1 —2x)

+15.52(1 —2x)4 y, (x). (3.20)

E. Comparison at intermediate energy

Let us now turn to the discussion of the ratio of time-
like over spacelike form factors in the intermediate range.
The complete integration formula is

E = d~dy b&db&b2db2 ~ ~ ~, b& ~ ~ y, b2 H~

(3.16)

with the hard scattering amplitude from Eq. (3.1): T~ =
16magT. The integration range for the longitudinal frac-
tion of momentum goes from 0 to 1, whereas transverse
distances go From 0 to 1/A thanks to the Sudakov sup-
pression at large b.

For the numerical study, we take into account the one-
loop running of the @CD coupling in the hard scattering:

o.s(t) = . . . t = max(V'xy~z~, b, ', b2 ') (3.17)
ln t2 A2

with the prescription for the renormalization point de-
scribed in [16] and A = 200 MeV. The Sudakov factor
e contains the corrections for the two wave functions
together with the anomalous running of the four quark
operator TH [16].

This Sudakov form factor should be analytically con-
tinued as discussed in Sec. IIID [15]. It turns out that
this procedure leads to quite model-dependent results at
non asymptotic transfers. This has to do with the trunca-
tion of the exponentiated expression and with the need to
suspect the validity of the approach when the (real part
of the) Sudakov exponent becomes positive, i.e. , when
Sudakov suppression turns to an enhancement. We leave
to Appendix B a somewhat detailed discussion of these
eKects, the conclusion being that an extra modification
of the timelike value may come from this continuated Su-
dakov exponential, but that it is quite difBcult to quan-
tify reliably this statement. In the following, we will thus
keep the Sudakov factor at its spacelike (real) value.

We used various forms for the soft wave function
@~el(x, b) to test the sensitivity of the result to this in-
put. One may consider wave functions without intrisic
transverse behavior [@~ i(x, b) = p(x)] and use either the
asymptotic form:

As mentioned in Sec. II, the two last distributions have
slow logarithmic evolution with Q. We ignore this evolu-
tion because it is quite insignificant in the range of energy
we consider here.

Following [8,17], one may also include some intrinsic
transverse behavior. We tried the diH'erent forms of wave
functions described in [17] and found only small differ-
ences for the behavior of the ratio. Therefore, we only
quote here the sample form for which we will show some
results in

(3.2i)

sic

iQ F„l

2

Spacelike:
with Sudakov

——-- with Sudakov and intrinsic

which is a simple way to modelize the transverse behavior
without a long set of parameters. 2bo related to the va-
lence state radius is proposed in [17]: b2o ——4.082 GeV

Figures 7 and 8 show our numerical results for the pion
form factors in the large but nonasymptotic Q = ~q2~

region. In Fig. 7, Q ~E (Q )~ is plotted against Q for
both timelike and spacelike regions up to Q = 50A. The
distribution considered is the asymptotic one, Eq. (3.18).
The slow convergence of the timelike and spacelike quan-
tities is manifest while the counting rule (I' oc 1/Q )
reasonably well describes the Q2 dependence down to a
few GeV in both cases. The inclusion of the intrinsic b

f x(1 —x), (3.is)
I

500
I

1000 1500 2000 2500

with f = 133 MeV the pion decay constant, the
Chernyak-Zhitnitsky (CZ) form

(3.19)

FIG. 7. Timelike and spacelike form factors: difFerent
transverse behaviors. The x dependence is the asymptotic
form of Eq. (3.18). Energies are in A units.

or other expansions in terms of Gegenbauer polynomials
such as those proposed in [4,5]. In the following, we will
show some results for one form [5]:

In this subsection, as there is no confusion, we do not dis-

tinguish the absolute value of spacelike and timelike transfers.
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1.00 — (a) ~ exp
———FHZ

CZ
as

dependence given by Eq. (3.21) (dashed lines) does not
significantly modify the results.

In Fig. 8(a), the modulus of the timelike form factor
(multiplied by Q2) is shown for the three choices of distri-
bution amplitudes: the CZ form (solid line), asymptotic
one (dashed line), and Farrar-Huleihel-Zhang (FHZ) one
(long-dashed line). The experimental data shown come
from @ decay [11]. Sudakov suppression has been in-
cluded but no intrinsic b dependence. Figure 8(b) shows

the ratio of the timelike to the spacelike form factors.
This ratio is rather wave function independent and de-
creases very slowly to 1 from a value of around 2 in most
of the experimentally accessible range.

Although this ratio turns out to be quite diKcult to ex-
tract reliably &om experimental data in the meson case,
it is quite straightforwardly measured in the proton case.
We will analyze the proton case in a forthcoming work. If
we restrict it to a simple quark-diquark picture, we would
get a timelike to spacelike ratio quite similar to the one
obtained here for the meson case, and thus understand
the experimental value.

IV. CONCLUSION
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In this paper, we showed that the difference between
spacelike and timelike form factors at large accessi-
ble transfer is predictible from an improved perturba-
tive QCD analysis. We understand at least qualita-
tively the enhancement of the timelike values at large
but nonasymptotic transfers as mostly due to the inte-
grable singularities of gluon and quark propagators. This
strengthens the faith in the applicability of perturbative
reasoning at intermediate energies (above a few GeV) at
least for semiquantitative understanding of the strong in-
teraction physics.

For the pion case, the uncertainties in the extraction of
the spacelike form factor [12] show the need for another
way to access this observable, the simplest one in exclu-
sive scattering. We demonstrated that the usual formal-
ism of Brodsky and Lepage has to be improved to account
for the differences between timelike and spacelike regions
in the energy range experimentally reachable. More ex-
perimental data are still needed to test our knowledge of
the pion wave function.

The proton case is more interesting since the extraction
of the spacelike form factor is without ambiguity. The
comparison of spacelike and timelike form factors thus
appears to be a good way to understand the hadronic
wave function.

Many other hard exclusive processes dwell on timelike
transfers. The pp ~ mar, pp reactions at fixed angle for
instance demand a more careful analysis than available
now, not to speak of the diKcult instances where pinch
singular diagrams mix up, as in the ratio of pp to pp elas-
tic scattering. More work needs to be done and exper-
imentally tested before we know for sure that exclusive
timelike reactions help us to understand confinement dy-
namics through the unraveling of hadron wave functions
in their lowest Fock state.
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FIG. 8. Timelike form factor (a) and timelike over spacelike
ratio (b): sensitivity to distribution. The CZ amplitude is
Eq. (3.19), FHZ (3.20), and asymptotic (3.18); experimental
data from [llj.

APPENDIX A

We give in this appendix some arguments for the power
suppression of the oscillating factor we get in Sec. IIID.
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Again we will concentrate on the simple case one has
when neglecting the transverse momentum in the quark
propagator (see Sec. III D) and consider the integral anal-
ogous to I in Eq. (3.6):

BI" = bdbKp(i/xyzb) =
0 XQZ

B
Ki(gxyzB).

gxyz

(Al)

As in Sec. III, we should worry about the behavior
of the Bessel function with large argument (Ki has the
same asymptotic behavior as Ko). We get

xyz
/7rB/2

(gxyz) ~
(A2)

1/2+a „( 1)J = dx&p(x)I"
i

x, y = —,
[

i/2 —a 2) (A3)

and replaces x = 1/2 everywhere in the integrand except
in the phase where we take the expansion of the square
root of x around 1/2 up to first order. With these sim-
plifications, we easily get

Ha 1~= —~(-) 1—
z2 2

~ slnh
2

za a (A4)

which with the replacement z = —iW has a modified
behavior compared to I", and the leading behavior is
now identical in the spacelike and timelike directions
of the complex plane. However, the previous equation,
even if approximatively, still indicates qualitatively that
this identical asymptotic behavior may be reached rather
slowly.

APPENDIX B

We discuss in this appendix the analytic continuation
of the Sudakov suppression factor.

In this explicit asymptotic form, one may guess that
because the phase varies rapidly with x or y due to the
presence of the large [z[ factor there may be some de-
structive interferences when integrating the second term
of I". The presence of any smooth distribution as weight
functions will not destroy this feature. To see this ex-
plicitely we can perform the integration over some finite
range for x to avoid the region where the asymptotic form
fails and also to allow further simplifications. Precisely,
we look at

In the complete expression for the form factor
Eq. (3.16), two factors TH and e are scale depen-
dent and must a priori be analytically continued. In
Sec. IIID, we give some arguments to show that the Su-
dakov factor has a leading behavior which is not afI'ected
by analytic continuation so that we can study the con-
tribution to timelike form factor ignoring this kind of
difIiculties. However, in the range of transfers we con-
sider in the numerical study of Sec. IIIE, these argu-
ments may not apply. In e, the scale always appears
in logarithms and after analytic continuation, one gets
a phase which is sublead. ing compared to the remaining
large logarithm. The Sudakov exponent is known [13] up
to next-to-leading logarithms, and we may keep the imag-
inary part which comes from the leading log [Eq. (3.11)]
as a next-to-leading component. In this kind. of analysis,
the additional real part due to the product of logarithms
(the ir factor), which may lead to an additional enhance-
ment [15], is automatically dropped. A further aiialysis of
the amount of correction which may be provided by such
terms gives an 10%%uo extra enhancement of the timelike
form factor.

The efFect of' the imaginary part in the Sudakov ex-
ponent appears to be more important. The ratio of the
timelike to spacelike factor is

~
—STI. —g [&(&)+&(&—&)+(++9) j

Ss I

P(x, W, b) = — ln
4P ln ~-

We must define a prescription to cutofI' the small 6
region. For the spacelike Sudakov suppression, Li and
Sterinan [7] choose to include the exponential factor only
in the region of large b defined by bxW & ~2 and further-
more only when the sum of all exponents is negative and
leads efFectively to a suppression. The first prescription is
associated with approximations discussed in Sec. II, and
we will not questioned it in the following. In the spacelike
case, it appears that the second constraint may be easily
relaxed in a numerical study, because only a very small
enhancement results when forgetting this constraint. We
have observed that this is not likely to be the case for the
timelike form factor.

A numerical study, in the range of transfer 10—30A,
with the consideration of the total gluon propagator alone
and the prescription: P &om Eq. (Bl) if Re(—S) & 0,
shows, for the asymptotic distribution, a 5—

10%%uo deple-
tion of the timelike form factor with respect to the value
without consideration of phase, whereas for the CZ dis-
tribution, the diminution is 20—30%%uo.
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