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We examine matter-enhanced neutrino Savor transformation (v ~„~
—v, ) in the region above

the neutrino sphere in type II supernovae. Our treatment explicitly includes contributions to the
neutrino-propagation Hamiltonian from neutrino-neutrino forward scattering. A proper inclusion of
these contributions shows that they have a completely negligible efFect on the range of the v, -v ~„~
vacuum mass-squared difFerence bm and vacuum mixing angle 8 or equivalently sin 28, required
for enhanced supernova shock reheating. When neutrino background efFects are included, we 6nd
that r-process nucleosynthesis from neutrino-heated supernova ejecta remains a sensitive probe of
the mixing between a light v and a v ~~~ with a cosmologically signi6cant mass. Neutrino-neutrino
scattering contributions are found to have a generally small efFect on the (bm, sin 28) parameter
region probed by r-process nucleosynthesis. We point out that the nonlinear efFects of the neutrino
background extend the range of sensitivity of r-process nucleosynthesis to smaller values of bm .

PACS number(s): 14.60.Pq, 12.15.Ff, 97.10.Cv, 97.60.Bw

I. INTRODUCTION v~) = —sin81») + cos81~2) ~ (1b)

l~.) = cos81») +»n81») (la)
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In this paper we investigate the problem of matter-
enhanced neutrino Bavor transformation in the region
above the neutrino sphere in type II supernovae. In
particular, we examine the role of contributions to
the neutrino-propagation Hamiltonian &om neutrino-
neutrino forward scattering. A general &amework
for treating these contributions in the context of the
Mikeheyev-Smirnov-Wolfenstein (MSW) neutrino fiavor
transformation process has been given in Ref. [1]. (See
Ref. [2] for a numerical study of the case of a pure neu-
trino gas. ) Although the role of neutrino-neutrino scat-
tering in the problem of matter-enhanced neutrino Qa-
vor conversion in supernovae has been treated previously
[3,4], the present paper gives the first complete treatment
utilizing the scheme of Ref. [1].

Recent studies have examined the MSW transforma-
tion of v~ or v& into v in the region above the neutrino
sphere in the post-core-bounce supernova environment

[5,6]. These studies suggest that if v or v„has a mass
in the cosmologically interesting range of 1—100 eV, then
the matter-enhanced transformation v ~&) +—v will be
possible in this region. Such a transformation can re-
sult in significant effects on supernova dynamics and/or
nucleosynthesis.

If we define, for example, lv, ) and lv ) to be fiavor
eigenstates of v and v, and l») and lv2) to be the as-
sociated mass eigenstates, then the vacuum mixing angle
0 is defjLned through

Reference [5] shows that v („) v, mixing with sin 28 &

10 7 in the region above the neutrino sphere at a few
hundred milliseconds after the bounce of the core can re-
sult in a 30—60%%uo increase in the supernova shock energy.
Reference [6] shows that the heavy element nucleosynthe-
sis &om the hot bubble region is sensitive to v ~„)

—v,
mixing at a level of sin 20 10 5. This hot bubble re-
gion forms above the neutrino sphere 3 sec after core
bounce. These efFects are sensitive to mixing angles far
sxnaller than those which can be probed in laboratory ex-
periments. These supernova efFects ultimately may rep-
resent our most sensitive probe of putative neutrino dark
matter.

However, studies [5] and [6] neglected the ofF-diagonal
contributions of neutrino-neutrino scattering to the
Qavor-basis neutrino-propagation Hamiltonian. In what
follows, we present a detailed study of neutrino Qavor
transformation in the post-core-bounce supernova envi-
ronment. Our calculations include all efFects of the neu-
trino background. We have adopted the overall principles
and techniques of Ref. [1] in our treatment of neutrino-
neutrino and neutrino-electron scattering contributions
to the neutrino-propagation Hamiltonian. We Qnd that
neutrino background contributions have a negligible ef-
fect on the range of the v -v ~„) vacuum mass-squared
difFerence hm and vacuum mixing angle 8 (or sin 28)
required for enhanced supernova shock reheating. A
proper treatment of the ensemble average over the neu-
trino background shows that r-process nucleosynthesis
&om neutrino-heated supernova ejecta remains a sensi-
tive probe of the mixing between a light v and a v (or
v„) with a cosmologically significant mass (m„&

&

—1—
100 eV).

In Sec. II we discuss a general framework for treating
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neutrino flavor transformation in the supernova environ-
ment. In Sec. III we compute neutrino flavor transforma-
tion probabilities as functions of hm and. sin 20 relevant
for the shock reheating and hot bubble r-process nucle-
osynthesis epochs of the supernova. We give conclusions
in Sec. IV.

i p = [H, p], (2)

where p = P.& p~q~j)(k~, p = dp/dt, and j and k refer
to all neutrino quantum numbers including momentum
(energy), flavor, helicity, charge conjugation eigenvalue,
etc. In Eq. (2), II is the full Schrodinger picture Hamil-
tonian including all neutrino self-interactions as well as
interactions with the e+ and nucleon backgrounds.

Without loss of generality we can follow a particular
momentum component of Eq. (2) (cf. Ref. [1]),or equiv-
alently, the associated Schrodinger equation for the time
evolution of neutrino 6eld amplitudes for a given momen-
tum. The Hamiltonian operator in this case would have
the dimensionality of the density matrix for the single
momentum state (e.g. , 12 x 12 for three Dirac neutrino
flavors, since each neutrino state has either right-handed
or left-handed helicity, and is either a neutrino or an an-
tineutrino) .

We argue that further simpli6cation of this problem
can be made through approximations motivated by the
particular distribution functions for v, v, v„, v~, v, and
v which obtain in the region above the neutrino sphere in
the post-core-bounce epoch of type II supernovae. Since
the distribution functions for v„,v„,v, and v are all ex-
pected. to be essentially identical, mixings between neu-
trinos in this sector will have no effect on any aspect of
supernova physics. In other words, we need only consider
mixings between v and either v„or v . If, as seems
likely, the vacuum mass heirarchy for neutrinos satis-
Ges m, ) m„, then we need only consider matter-
enhanced mixing among neutrinos, as antineutrino mix-
ing is suppressed by matter effects. On the other hand,
if m, & m„, then mixing in the neutrino sector is
suppressed, and mixing in the antineutrino sector can
be enhanced. In what follows, for illustrative purposes,
we will consider the case where v ~~~ is the heavier neu-
trino species. Our results can be generalized for the case
of matter-enhanced antineutrino flavor transformation in

II. THE NEUTRINO-PROPAGATION
HAMILTONIAN IN SUPERNOVAE

The general problem of the time evolution of the full
density matrix for an ensemble of three flavors of neutri-
nos and antineutrinos with electron and positron back-
grounds and a nucleon background is a daunting one.
Several formal approaches to this problem have been
made (cf. Ref. [1] and references therein). In the present
paper, we shall only summarize the salient features of
this previous work and tailor our subsequent discussion
to the particular problem of neutrino propagation and
flavor transformation in the region of the supernova en-
vironment above the neutrino sphere. Considerable sim-
pli6cation of the problem can be realized. in this case.

The general time evolution of the neutrino density ma-
trix p can be summarized as

obvious fashion.
The masses m, 1—100 eV of interest in the post-

core-bounce supernova environment are very small com-
pared to the typical neutrino energies (average neutrino
energy (E„) is about or greater than 10 MeV). In this
case we can neglect the population of right-handed Dirac
neutrinos and left-handed Dirac antineutrinos produced
by scattering processes. This is because helicity-flipping
rates are proportional to (m /E„)

Taking advantage of these features allows us to reduce
the dimensionality of the Hamiltonian in Eq. (2) to 2 x 2
for the Dirac neutrino case. If neutrinos are Majorana
particles, then we have only left-handed neutrinos and
right-handed antineutrinos, and again the Hamiltonian
of interest is 2 x 2.

In any case, the neutrinos of interest in supernovae will
be extremely relativistic, so that we can approximate
the neutrino energy as E„= gp2 + m2 p + m /2p.
The first term in this expression, p, the momentum, just
gives an overall phase to the coherent propagating neu-
trino state and can be ignored without loss of generality.
The second term m /2p is responsible for the relevant
neutrino mixing behavior. The part of the Hamiltonian
corresponding to the m /2p term in vacuum, H„, can be
written in the flavor basis (e.g. , ~

v, ), ~v )) as

—cos20 sin28 'l

sin28 cos28 )
where 8 is the vacuum mixing angle as in Eq. (1),
b, = b'm /2E„, and 8m = m2 —mi, with mi and m2
the vacuum mass eigenvalues corresponding to the mass
eigenstates ~vi) and ~v2), respectively.

In matter the relation between the flavor basis and the
mass basis can be written as in Eq. (1), but with the
vacuum mixing angle replaced by an appropriate matter
mixing angle 0„. For illustrative purposes consider the
case where the only contribution to the effective mass
difference between neutrino flavors comes from charged-
current exchange scattering on electrons. We take the
net number density of electrons to be

(4a)

n, = p~YN~. (4b)

The contribution to the Hamiltonian Rom neutrino-
electron exchange scattering is

A = V2Gyn, ,

where G~ is the Fermi constant. In Fig. 1 we show a
generic Feynman graph for v, -e scattering. To obtain
the result in Eq. (5) one must sum graphs for v, -e
and v —e+ scattering over the appropriate e+ distribu-
tion functions. In this case the neutrino-propagation
Hamiltonian H, can be written as

where n, (n,+) is the t—otal proper number density of
negatrons (positrons). The electron fraction Y, is defined
in terms of the total baryon rest mass density p~ and
Avogardro's number N~ by
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FIG. 1. A generic Feynman graph for v -e scattering.

4,g / —cos28 sin28
sin28„cos28

1 f —Acos28 + A b,sin28
Asin28 b,cos28 —A

where L,g —— Lcos28 —A 2+ 42sin 20. In these ex-

pressions the matter mixing angle 0 is related to the
vacuum mixing angle 8 and the local net electron num-
ber density through

(6)

sin20

cos20

Lsin20

(Acos28 —A) 2 + b,2sin 28

Lcos28 —A

(Ecos28 —A) 2 + 42sin 28

(7a)

sin20
Lsin20

)

(b.cos28 + A) 2 + A~sin 28
(»)

Lcos28+ A
cos28„ =

(b,cos28 + A) 2 + A2sin 28

We note that the vacuum mixing angles for the neutrino

The amplitudes for antineutrino-electron (v, -e) for-
ward exchange scattering and neutrino-electron (v, -e)
forward exchange scattering have opposite signs. This
implies that v, -e exchange scattering gives a contribu-
tion —A to the Bavor-basis interaction Hamiltonian for
v . In this case the matter mixing angle for antineutrinos,
0„, satisfies

and antineutrino sectors are the same.
On the assumption that m2 ) mq and 8 ( a/4 (i.e. ,

v ~~l is the heavier neutrino species), it is evident from
Eqs. (7a) and (7b) that matter efFects can give enhance-
ment of Havor mixing in the neutrino sector. Mixing is
maximal at a mass level crossing, or resonance, where
b,cos28 = A [7]. On the other hand, Eqs. (8a) and (8b)
show that matter effects give a suppression of Bavor mix-
ing in the antineutrino sector. However, if v ~„~ is lighter
than v, (e.g. , m2 ) mj but vr/4 ( 8 ( vr/2), the situation
is reversed. In that case, mixing in the neutrino sector is
suppressed, while mixing in the antineutrino sector can
be enhanced.

In the supernova environment, however, the neutrino
background and the resultant neutrino-neutrino forward
exchange-scattering effects necessitate some modification
of the above treatment of neutrino Havor transformation.
In the region above the neutrino sphere in post-core-
bounce type II supernovae the neutrino Huxes can be
sizable (see, for example, the discussion in Ref. [6]). In-
dividual neutrinos emitted Rom the neutrino sphere can
be described as coherent states. However, each emitted
neutrino is related to every other emitted neutrino in an
incoherent fashion. In other words, these different indi-
vidual (or single) neutrino states have random relative
phases, as is characteristic of a thermal emission process.
The total neutrino field is properly a mixed ensemble of
individual neutrino states. It is not a coherent many-
body state. Accordingly, the total neutrino density ma-
trix is an incoherent sum over each 8ingle neutrino density
matrix.

For a single neutrino emitted at the neutrino sphere as
a v~ (e.g. , in flavor state a = e, w for the case of two-
neutrino mixing) we can represent its state at some point
above the neutrino sphere as

) = ax (t) I » (t) ) + a2 (t) I» (t) )

where I»(t)) and I»(t)) are the instantaneous physical
mass eigenstates of the full neutrino-propagation Hamil-
tonian, and aq~(t) and a2~(t) are the corresponding com-
plex amplitudes. Normalization requires that we take
Iaq~(t)I2 + la2 (t)I2 = 1. In these expressions the time
t could be any evolutionary parameter (e.g. , density, ra-
dius, etc.) along the neutrino's path &om its creation
position at the neutrino sphere to a point at radius r.
The single neutrino density matrix is then given by

I@ .)(@-.I = la~-(t)l'l»(t))(»(t)l+ la2 (t)l'l»(t))(»(t)l+ ai. (t)a2 (t)l»(t))(»(t)l+ a~-(t)a2. (t)l»(t))(»(t)l .

(10)

The density matrix representing the mixed ensemble
of single neutrino states all with momentum p can be
written as the incoherent sum

= ).dn-. IW-. )(@-.I
. (11)

CX

In this expression the sum runs over, for example, o. =
e, v, while dn„ is the local di8'erential number density

I

of v neutrinos with momentum p in interval d p. The
local differential v neutrino number density at a point
at radius r above a neutrino sphere with radius B„is

dn„. —n„ f„.(@„.)dE .', (12a)
g

4m

where dQ~ is the difFerential solid angle (pencil of direc-
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tions) along the neutrino momentuxn p (lpl = E„),n„
is the v neutrino number density at the neutrino sphere,
and 1'„(E„)is the normalized v energy distribution
function. We can show [6] that a good approximation for

ls

of other neutrinos in the ensemble with momentum q.
We can generalize the expression for H„„ in Eq. (13b)
for nonradially propagating neutrinos by replacing cos0&
with q p/Clqllpl).

It is convenient to recast Eq. (13b) in the form

L„10 ~ ~cs

(E„)vrR2c ' (12b)

where L„ is the luminosity in v neutrinos, (E„)is the
average v neutrino energy, and c is the speed of light.
The normalized v neutrino energy distribution function
can be well approximated by

1 1

E2(0) Ts exp(E„ /T„) + 1 ' (12c)

H=H +H„„,
where H„„represents the ensemble average over
neutrino-neutrino interactions using the density matrix
in Eq. (11). For a neutrino with energy E„and momen-
tum p propagating radially outside the neutrino sphere
we can write

B = o2Go f(1 —coops)(ps —ps)d q, (13b)

where pz is the density matrix for antineutrinos with mo-
mentum q [defined in obvious analogy to p~ in Eq. (11)]
and 8& is the angle between the direction of the prop-
agating neutrino with momentum p and the directions

where the rank 2 Fermi integral with argument zero is
Fq(0) = 1.803, and where T„ is the v neutrino sphere
temperature. The average v neutrino energy is re-
lated to the appropriate neutrino sphere temperature by
(E„.) = 3.15T„..

In the region of the supernova above the neutrino
sphere, the range of the solid angle contribution allowed
in Eq. (12a) is restricted to be within the solid angle
subtended by the neutrino sphere as seen Rom a point
at radius r. The geometrical arrangement of a neutrino
sphere with radius R„,a point above the neutrino sphere
at radius r, and various neutrino paths are depicted in
Fig. 2. We can now write the full Bavor-basis neutrino-
propagation Hamiltonian as a sum of vacuum mass and
electron background contributions H and neutrino back-
ground contributions H„„:

2 t Bqe B)—

+ G~ (1 —cos8~)Tr(p~ —pz) d q .
2

(14)

Note that the second term in this equation is simply pro-
portional to the identity matrix, implying that it provides
only an overall phase in the propagating neutrino state
and can be ignored.

In the first terxn in Eq. (14) there are two contribu-
tions to the neutrino-propagation Hamiltonian, B and
B, (B,), where

B = s 2Go f (1 —coops)((Ps —P,)..—(p, —Ps)..)d'q,

(15a)

B = 2v 2Gs f (1 —cosdo)(po —Ps) d q, (15b)

B = 2P2Go f (1 coops)(ps ps) d q (15c)

where, for example, by (p~), we mean the matrix ele-
ment of the density matrix operator, (v, l p~ lv ), while by
(p~), we mean (v, lp~lv ).

Here B corresponds to the forward neutrino-neutrino
exchange-scattering contributions to the neutrino eKec-
tive mass. These contributions are the analogues of
the v, -e exchange-scattering term A in Eqs. (5) and
(6). Generic Feynman graphs for these neutrino-neutrino
exchange processes are shown in Fig. 3(a) for v, -v,
scattering and in Fig. 3(b) for v -v scattering. We
will later refer to B as the "diagonal" contribution of
the neutrino background to the Bavor-basis neutrino-
propagation Hamiltonian.

The neutrino background also provides "oE-diagonal"
terms in the Qavor-basis neutrino-propagation Hamilto-
nian. These are, for example, the B, and B, terms
above. They arise because the background neutrinos are
not in flavor eigenstates [1]. We show graphically these
contributions for v, and v neutrinos with momenta p
and q in Fig. 4. The corresponding diagonal and oK-
diagonal contributions to the Qavor-basis antineutrino-

v i 'L iI v,

v, i)( i'i v,' v, iI i)( v,'

FIG. 2. The geometrical arrangement of a neutrino sphere
with radius R„, a point above the neutrino sphere at radius
r, and various neutrino paths. The dashed line in this figure
represents the resonance sphere for neutrinos with a specific
energy E„.

FIG. 3. Generic Feynman graphs for neutrino-neutrino ex-
change-scattering processes. (a) is for v -v, scattering and
(b) is for v -v scattering.
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(p)

FIG. 4. Graphic representation for ofF-diagonal contribu-
tions from the neutrino background.

propagation Hamiltonian &om the neutrino background
are Band—B(——B ), respectively.

The evaluation of B and B, (B,) is quite straightfor-
ward in the case where neutrino flavor evolution is adi-
abatic. This is because the cross terms in the neutrino
density matrices can be taken to vanish in this case. For
example, if we are interested in the flavor evolution his-
tory of an adiabatically evolving "test" neutrino which is
resonant at energy ER, then due to the nature of the den-
sity gradient in the post-core-bounce supernova environ-
ment, all background neutrinos with energies E & ER
encountered by this test neutrino will evolve through
their resonances adiabatically. The resonance positions
for these background neutrinos will lie below that for the
test neutrino with energy ER. All neutrinos which have
a specific energy E will go through resonance on what
we term their "resonance sphere. " We show an exam-
ple of a resonance sphere as a dashed line in Fig. 2.
Background neutrinos with energies E & ER will not
have gone through their resonances prior to reaching the
resonance position for the test neutrino, so that we can
regard their evolution as adiabatic in (and through) the
resonance region for the test neutrino. Since the elec-
tron number density always dominates the effective neu-
trino number density in determining the weak potential
near the neutrino sphere, and since the electron num-
ber density is always very large there (n, 10s5 cm
cf. Refs. [5,6]), neutrinos leaving the neutrino sphere
are well approximated as being in mass eigenstates. If,
subsequently, their evolution is adiabatic, then we see
immediately that the cross terms in the single neutrino
density matrices [the last two terms in Eq. (10)] always
vanish. Since antineutrinos do not go through resonance
in supernovae, their evolution is always adiabatic, and
the cross terms in the single antineutrino density matri-
ces vanish accordingly.

The situation for nonadiabatic flavor evolution is more
complex. Clearly, background neutrinos with energiesE„)ER can still be regarded as evolving adiabatically
in the region below the resonance position corresponding
to a neutrino with energy ER. For this case, we can safely
set the cross terms in the single neutrino density matrices
to zero.

It is obvious, however, that background neutrinos with
energies E„&ER generally cannot be regarded as evolv-
ing adiabatically if the test neutrino with energy ER
evolves nonadiabatically through its resonance. Each

background neutrino can be regarded as evolving adi-
abatically only in the region below its own resonance
sphere. Once a neutrino propagates through its reso-
nance position, both mass eigenstates are essentially "re-
generated, " and the ket for the neutrino state above this
position is, in general, a linear combination of both mass
eigenstates, as in Eq. (9). The relative phase between
the two amplitudes in this linear combination begins de-
veloping (evolving) above the resonance sphere.

Adroit attention to the phases of the background neu-
trinos shows that phase averaging (in the ensemble aver-
age) results in vanishingly small cross terms in the corre-
sponding single neutrino density matrices whenever the
energies of the background neutrinos are sufficiently less
than ER. This phase-averaging reduction in the cross
terms comes about from two mechanisms: (1) difFerences
in the path lengths for background neutrinos of a given
energy propagating &om different positions on their res-
onance sphere to a point on the resonance sphere for
the test neutrino with energy E~, and (2) the fact that
the background neutrinos contributing to the ensemble
averages have a range of energies [cf. the distribution
functions in Eqs. (12a)—(12c)].

Let us erst consider the phase-averaging reduction in
the cross terms in the single neutrino density matrix re-
sulting &om path length differences for background neu-
trinos of a given energy.

The last two terms in Eq. (10) are the cross terms.
They have coefficients a~(t)a2(t) and uq(t)az(t), respec-
tively. Each cross term is proportional to a factor
exp[i f ~~2(t)dt], with ~» the difFerence in the local neu-
trino flavor-oscillation &equencies of the two mass eigen-
states ~vq(&)) and ~v2(t)). These oscillation frequencies
are, in turn, dependent on the local density. In both
the early post-core-bounce shock reheating epoch (time
post-core-bounce tpn 0.1—1s) and in the hot bubble r
process nucleosynthesis epoch (tpB 3—15 s) the electron
number density predominantly determines the neutrino
flavor-oscillation frequency in the region just above the
neutrino sphere [5,6]. This is because the net neutrino
number densities are negligible compared to the electron
number densities in this region [5,6]. The Hamiltonian
H, in Eq. (6) is by itself sufficient to determine the neu-
trino flavor-oscillation frequencies in this region. The lo-
cal neutrino flavor-oscillation &equency difference in this

case is ~q2 -- A,~ = (Acos20 —A) + A sin 20.
For regions further from the neutrino sphere the elec-

tron number density may not completely dominate the
weak potential, but it certainly provides a major com-
ponent (cf. Ref. [6]). In any case, the neutrino-neutrino
forward scattering contribution to the weak potential is
clearly also radius and position dependent. The cross
terms in Eq. (10) will have position-varying oscillation
&equencies resulting &om both of these components of
the weak potential.

However, for neutrinos propagating through regions
above their resonance spheres, and considering just the
electron contribution to the weak potential, we can ap-
proximate the local neutrino flavor-oscillation &equency
as being close to its vacuum value ~~2 L. Of course,
this is only strictly true for positions well away &om res-
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bm2
bP= Ebr = br =

2E„
&bm2~ &25 MeV~ f
~eV2~ I E„~ ~10s cm)

(16a)

onance. For a background neutrino with energy E„ this
condition will be met over most of the path length &om
its resonance sphere to the point where it encounters a
resonant test neutrino of energy E~, so long as E„ is suf-
ficiently less than E~. Clearly, this condition will break
down when the resonance sphere for the background neu-
trino lies within the resonance width for the neutrino
with energy E~. In turn, this will occur when the back-
ground neutrino has an energy which lies in the range
EIx(1 —tan28) to Exx [cf. Eq. (7a)]. Let us begin by con-
sidering the eKect of phase averaging on the contribution
of background neutrinos to ensemble averages when they
have energies which lie outside (below) this range.

When taking the ensemble average over the neutrino
background we necessarily integrate pz over neutrino mo-
mentum directions to a point; at radius r. We thereby
also average over the oscillating cross terms in Eq. (10).
In addition, neutrinos with different momentum direc-
tions travel on paths with diferent lengths &om the res-
onance sphere to arrive at a point at radius r. These
difFerent path lengths &om the resonance sphere then
give rise to different phases for the oscillating factor

exp[i j~x2(t)dt] in the cross terms in Eq. (10). In
fact, it is clear &om Fig. 2 that each neutrino path from
a resonance sphere to a point at radius r will have a
path length which depends on the polar angle. For neu-
trinos with momentuxn magnitude lql (and energy E„)
each path with a difFerent polar angle will have a dif-
ferent phase entering into the cross term coefIicients of
Eq. (10). The phase difference bg corresponding to a
path length difFerence br between two difFerent neutrino
propagation directions is then

km) for efFective phase-averaging reduction of the cross
terms would require that r —R & 3 km. Background
neutrinos of a given energy which had a resonance sphere
closer to position r than about 3 km would not have the
cross terxns in their density matrices significantly reduced
by direction averaging. It turns out, however, that in
this case we will find that the averaging over the energy
distributions of neutrinos with a given direction is far
more e8'ective at reducing the cross term contributions
to ensemble averages.

In the ensemble average for B,B,and B implicit in
Eqs. (15a)—(15c) it is evident that, for a given neutrino
propagation direction, we will integrate the cross terms in
Eq. (10) over the neutrino energy distribution functions
[Eqs. (12a)—(12c)]. Consider the efFect of integrating the
cross terms over an interval in energy Exx —bE to EIx
where, as above, E~ represents the energy of a fiducial
test neutrino. The position of the resonance sphere for a
background neutrino of energy ER is coincident with that
for the test neutrino, whereas, a background neutrino
with energy E~—bE will have a resonance position which
lies below that for the test neutrino. If we designate the
difI'erence of the densities between the positions of the
resonance spheres for these neutrinos of difI'ering energy
as bn, then the difference of the radii of the resonance
spheres is roughly br = 'Rlbn/nl. Here 'R is the density
scale height (cf. Refs. [5,6]), which at tpB ) 1s ranges
from about 0.5 km near the neutrino sphere to about 10
km near the resonance position for a 25 MeV neutrino
with bm 1 eV . Because the resonance density is
inversely proportional to neutrino energy for a given bm,
we can conclude that br = mlbn/nl = &bE/Exx.

In this example, neutrinos with energy close to ER will
not have built up any phase at the resonance position
for Exx, which we designate t„,(Exx). In contrast, those
neutrinos in the distribution with energies close to ER—
bE will have built up a phase of order

br = Qr2 —R2 —QR2 —R2 —(r —R)

= (R2/2rR)(r —R) . (16b)

Path length differences of order 0.1 km give rise to phase
difFerences of &) 2m'. In this case, when averaged over
all neutrino momentum directions, it is obvious that the
contributions of the cross terms in the single neutrino
density matrix in Eq. (10) to ensemble averages of quan-
tities would vanish. When this regime obtains, we could
set the cross terms t;o zero with no appreciable loss of
accuracy in the ensemble averages.

Note, however, that the largest path length difference
will arise between a neutrino propagating radially to a
point at radius r and one which propagates &om the
limb of the neutrino sphere to this point. If the resonance
sphere for these neutrinos has radius R (where R ( r),
then the path length difI'erence between these neutrinos
would be

(16c)

by the time they get to t„,(Exx). In this expression
t„,(ER —bE) denotes the resonance sphere position for a
background neutrino with energy ER —bE, and we have
assuxned this position is well separated from t„,(ER).
This is true when bE )) ERtan28. In this case we can
approximate 4 g as the vacuum value, 4, over most of
the path length of this neutrino &om its resonance sphere
to t„,(Exx). The characteristic spread in the phases of the
cross terms entering into ensemble averages at t„,(Exx)
will be bP = P, and thus we can conclude that

~bm ) ~ bE l (25 MeV~ ~ 'R
b$=80

MeV)
~

EIx ) I
10k

(16d)

Here, as above, R„ is the radius of the neutrino sphere.
The resonance positions lie in the region where r & 40
kxxl af 'tpB )1s [6]. This implies that R„/r ) 1/4 [6], so
that getting the requisite path length difFerence (br ) 0.1

It is clear from Eq. (16d) and the relevant supernova
model parameters that averaging over a portion bE & 0.1
MeV of the distribution function for background neutri-
nos will produce bP ) 2vr and, thus, result in negligible
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net cross term effects in ensemble averages. Of course,
a characteristic spread in neutrino energies encountered
in averaging over the neutrino distribution functions will
be of order the appropriate neutrino sphere temperature,
bE T & 4 MeV. This characteristic energy spread is
much greater than E~tan20 for the vacuum mixing an-
gles we will consider.

However, one might question the effectiveness of phase
averaging, since as we increase the spread in energies, bE,
in the average, the neutrino occupation numbers at those
energies vary. Note, however, that they vary relatively
slowly, since the neutrino energies important for chang-
ing the electron fraction and affecting nucleosynthesis
generally satisfy E„& 25 MeV. Further ameliorating
the deleterious effects of changing occupation numbers
on the effectiveness of phase averaging is the fact that
the ensemble averages also include a sum over neutrino
Bavors. DifFerent neutrino Bavors have different char-
acteristic neutrino sphere temperatures (T„4MeV,
T„&

&

8 MeV), so that a small increxnent b'E around
ER —25 MeV sometimes produces small compensating
changes in the neutrino occupation numbers. In fact,
when all the above efFects are taken into account, a typi-
cal energy spread of order bE 0.1 MeV centered around
E~ 25 MeV will give very good phase-averaging re-
duction in the contributions &om the cross terms in the
single neutrino density matrix.

The above arguments lead us to conclude that one can
neglect the cross terms in Eq. (10) for all background
neutrino energies except for those in the narrow range
ER(1 —tan20) to E~(1 + tan20) around the resonance
position (defined by ER) for our test neutrino. Back-
ground neutrinos with energies above this range can be
regarded as evolving adiabatically and thus have zero
cross terms, while those with energies below this range
will have their cross terms effectively "reduced" by phase
averaging. It is obvious &om the neutrino distribution
functions presented in Eqs. (12a)—(12c) that the number
of neutrinos contained in the energy range ER(1—tan20)
to ER(1+tan20) will be very small for the vacuum mixing
angles for which nonadiabatic neutrino Qavor transforma-
tion has important effects on supernova nucleosynthesis
(sin 20 & 10 4).

To put this in perspective, a test neutrino at resonance
encounters a neutrino background in its resonance region
in which only of order one neutrino in a thousand brings
appreciable cross terms into ensemble averages for B and
B, (B,). Most of the values of B and B, (B,) at
this position will be determined by neutrinos for which
we can safely set the cross terms in Eq. (10) to zero.
We argue below that the efFects of retention of the cross
term phases of this very small number of neutrinos on
neutrino Bavor evolution are negligible.

Based on these arguments, in what follows we will
make an approximation and consider only the first two
terms of Eq. (10) in evaluating matrix elexnents of the
density matrices p~ and p~ [cf. Eq. (11)]. This will al-
low considerable simplification in computation of B and
B, (B,) from Eqs. (15a)—(15c). This is, obviously,
an excellent approximation for adiabatic neutrino Bavor
evolution. We must keep in mind, however, that our

H =H. +H„„
1 —Acos20 + A + B Asin20 + B,

Lsin20 + B Lcos28 —A —B (17a)

In analogy to the discussion preceding Eq. (6) we can
rewrite this Hamiltonian as

H= —cos20~ sin20~ ~

sin20~ cos20~
~

(17b)

In this expression we have defined a full effective mixing
angle 00 which, in analogy to Eq. (1), gives the relations
between the Qavor basis and the instantaneous mass basis
including the effects of both the electron and neutrino
backgrounds:

v ) = cos0a (t) I » (t) ) + sin0a (t) I
V2 (t)), (18a)

I~-) = —»n0~(t) l»(t)) + cos0~(t) l»(t)) (18b)

We have defined LH as

treatment of nonadiabatic neutrino Bavor evolution will
be approximate and will not account for the very small
number of neutrinos for which cross term phases cannot
be neglected. in the computation of neutrino Qavor trans-
formation at resonance. Though we feel that such an ap-
proximation is reasonable, at least in so far as expected
effects on supernova nucleosynthesis are concerned, we
note that only a detailed numerical calculation in which
the phases of neutrinos are followed through resonance
regions will show the range of validity of our approxi-
mation for the nonadiabatic case. The purpose of this
paper is to map out the expected effects of the neutrino
background on neutrino Qavor transformation in various
venues in supernovae, and so we will leave the small ef-
fects of resonant background neutrinos to a later work.

Failure to account properly for phase averaging in the
ensemble averages for B and B, (B,) would result in
unphysical effects &om the cross terms in the neutrino
density matrix elements, Eqs. (15a)—(15c). This would
introduce a spurious, and unphysical, "coherence" &om
the neutrino background in any treatment of nonadia-
batic neutrino Qavor evolution. We contend that phase-
averaging reduction of the cross term effects in the en-
semble average over the neutrino background is a key
point in determining nonadiabatic neutrino Qavor evolu-
tion in the region above the neutrino sphere in super-
novae. This point has not been previously emphasized.
Of course, these cross terms rigorously vanish in the case
of adiabatic neutrino Qavor evolution.

Note that B = B since the terms in the ensemble
averages, Eqs. (15a)—(15c), are all real and the Hamilto-
nian must be Hermitian. We note, however, that these
terms [Eqs. (15a)—(15c)] are, in general, always real
only when the cross terms in the single neutrino den-
sity matrix elements are neglected. This is the approxi-
mation made in this work. The full Bavor-basis Hamilto-
nian which includes both the electron and neutrino back-
grounds is now
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b,~ = g(Ecos28 —A —B)2 + (Asin28+ B, )2 . (19)
The full effective mixing angle satisfies

Lsin20 + B
sln200 =

g(b, cos28 —A —B) + (Asin28 + B, )

(20a)
Lcos20 —A —B

cos28~ =
Q(Ecos28 —A —B)2 + (Asin28 + B, ) 2

(20b)

Note that in the absence of a neutrino background DH ——

L,~ and 88 ——0 . The corresponding expressions for the
full effective mixing angle 00 in the antineutrino sector
are obtained by replacing A, B, and B with —A, —B,
and —B, respectively.

As discussed above, the cross terms in the single neu-
trino density matrix will be approximated here as giving
no contribution to the ensemble averages. With this ap-
proximation, we can write a reduced expression for the
single neutrino density matrix in terms of Bavor-basis
eigenbras and eigenkets:

(]I@--)(@-.1)-s-.s =
( 2

—
2

—Iar-(')I* cos28a(t) Io.)(o.
]l
+ -+ ——Iar-(1) I' cos28a(t)

) lo-)(o-]i

+ ——lai-(t) I' »n28~(t)(l&. )(~-l+ I~-)(~.l) . (21)

We should note that without the approximation that the cross terms vanish, it would not be possible to write simple
analytic expressions for the full effective mixing angle [Eqs. (20a) and (20b)] which would be valid everywhere.

With this form for the single neutrino density matrix, it is straightforward to evaluate Bavor-basis matrix elements
of the density matrix operator. For example, the expressions in Eqs. (15a)—(15c) become

B = —st2Gn ) f (1 —cosda){]1 —2]at (t)] ]cos28tt(t)dn —]1 —2]at (t)] ]cos28n(t)dn
CX

(22a)

tt, = s 2Gn) f (1 —cos8s){]1—2]ar (t)] ]sio28tt(t)dn —]1 —2]ar (t)] ]sio28tt(t)dn- ) . (22b)

In these expressions ai (t) is the amplitude to be in the
instantaneous mass eigenstate lvi(t)) for an individual
neutrino of momentum q which was created at the neu-
trino sphere (t = 0) in flavor eigenstate lv ). Likewise,
ai (t) is the amplitude to be in the instantaneous mass
eigenstate lvi(t)) for an antineutrino of momentum q cre-
ated at the neutrino sphere in Havor eigenstate lv ). The
expressions dn„and dn„are as giv-en in Eq. (12a), e.g. ,
dn„= no f (E„.)dE„.(dA~/42r).

It remains to evaluate these expressions for the particu-
lar conditions (electron number density run and neutrino
distribution functions) which obtain for the shock reheat-
ing and hot bubble r-process nucleosynthesis epochs.

nova is quite different &om the solar case, where the neu-
trino source is distributed throughout the core.

Bearing these points in mind, we can formally trans-
form the full flavor-basis Hamiltonian in Eqs. (17a) and
(17b) to the basis of the instantaneous mass eigenstates
lvi(t)) and lv2(t)). The Schrodinger equation for the time
evolution of the amplitudes ar (t) and a2 (t) [see Eq.
(9)] in this basis is then

. & ai (t) 'l & —a~(t)/2 —i8H(t) & & a (t) ~

(&) ) ~
i8H(t) AH(t)/2 ) ( a2 (t) )

III. NEUTRINO FLAVOR TRANSFORMATION
IN THE SUPERNOVA ENVIRONMENT

In this section we examine neutrino Qavor transforma-
tion in the region above the neutrino sphere in models of
post-core-bounce type II supernovae. There are several
aspects of the problem of neutrino Bavor transformation
in supernovae which are significantly different Rom con-
ventional computations of the MSW fIavor conversion in
the sun. Foremost among these is the necessity of treat-
ing the neutrino background. In addition, the geometry
of neutrino emission &om a neutrino sphere in a super-

where ai~(t) = dai~(t)/dt, a2~(t) = da2~(t)/dt, and
8H (t) = d8~(t) /dt. In this expression we follow the treat-
ment of neutrino propagation and fIavor transformation
in Ref. [8]. Equation (23) represents a set of nonlinear
first-order difFerential equations for the amplitudes ai (t)
and ag (t). The nonlinearity arises since, in general, A~
and the full effective mixing angle 0~ each depend on
the neutrino background contributions B and B, [Eqs.
(19), (20a), and (20b)]. In turn, B and B, depend on
the amplitudes az (t) as in Eqs. (22a) and (22b).

The time evolution of the full effective mixing angle
can be found &om Eqs. (20a) and (20b) to be
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B, (Acos28 —A —B) + (Asin28 + B, ) (A + B)
2[(Dcos28 —A —B)z + (b,sin28 + B ) ]

(24)

where A = dA/dt, B = dB/dt, and B = dB, /dt.
We can define an "adiabaticity parameter" p(t):

AIi (t)
218 (&)I

(25)

Lcos28 = A+ B . (26)

We denote the position of this level-crossing point, or
resonance, by t„,. At resonance,

(b,sin28 + B, )'7 'Les
lA+ Bl

(Asin28+ B ) din(A+ B)
Lcos20 dt

Caleb

(27)

So long as the approximation that the cross terms in
the single neutrino density matrix are negligible is valid,
the evolution of the mass eigenstates through the res-
onance region for a test neutrino can be described by
the Landau-Zener formalism (cf. Ref. [8]). The Landau-
Zener probability for the neutrino to jump from one mass
eigenstate to the other in the course of transversing a res-
onance region is [8]

&Lz = exp ——p(t„,)2
(28)

Unlike the case for solar neutrinos, this expression is
almost always sufficient for calculating neutrino Havor
transformation in supernovae [5,6]. In fact, it is suffi-
cient so long as we neglect the effects of the very small
number of background neutrinos in the resonance region
with nonzero density matrix element cross terms. The
Landau-Zener formula Eq. (28) is inapplicable for solar
neutrino Havor conversion when, for example, neutrinos
are created close to their resonance positions. This never
occurs in supernovae, where neutrinos originate on the
neutrino sphere. The neutrino sphere is always well away

Clearly, the neutrino mass eigenstate evolution is well
approximated as being adiabatic when 7(t) &) l. Of
course, if 8~ ——0, the neutrino mass eigenstate evolution
is completely adiabatic, as can be seen directly &om Eq.
(23).

The adiabaticity parameter generally satisfies p(t) )) 1
well away from resonance regions (neutrino mass-level-
crossing regions). However, neutrino fiavor conversion
probabilities depend crucially on p(t) at resonance. We
shall denote the value of the adiabaticity parameter at
resonance as p(t„,). Resonance occurs when

&om the resonance region for the cases we will consider.
In addition, solar neutrinos can experience double level
crossings when they are created at densities below their
resonance density. This does not occur in the post-core-
bounce supernova environment.

The very small vacuum mixing angles we shall consider
for neutrino fIavor conversion in supernovae imply narrow
resonance regions. Narrow resonance regions, together
with the generally large density scale heights (0.5—50 km)
characteristic of the region above the neutrino sphere
[5,6], imply that the first-order Landau-Zener jump prob-
ability expression in Eq. (28) is always adequate [5,6].
By "first-order" jump probability here, we mean that we
approximate the density profile as linear across the reso-
nance region.

It is obvious in Eqs. (24)—(27) that we recover the pure
electron-driven neutrino Havor conversion case when the
neutrino background disappears (i.e. , B and B, vanish
everywhere). The neutrino background infiuences neu-
trino Havor evolution through resonances in two ways.

First, the diagonal contribution of the neutrino back-
ground, B, essentially shifts the position of the resonance
from the case where only the electron contribution A is
present. This is evident from Eq. (26). The diagonal
contribution of the neutrino background also alters the
density scale height of weak interaction scattering targets
at resonance. The density scale height of weakly inter-
acting targets [ldlnn/drl following Eq. (7) in Ref. [6]]
is the ldln(A+ B)/dtl i term in Eq. (27).

The off-diagonal contribution of the neutrino back-
ground, B, , has the effect of altering the adiabaticity of
the neutrino Havor evolution at resonance. This is clear
from Eq. (27), where B, appears in the expression for
p(t, ,). If Asin28 » lB l

then the off-diagonal neutrino
background contribution will have little inHuence on the
adiabaticity of neutrino Havor evolution.

However, the diagonal and off-diagonal contributions
of the neutrino background inHuence neutrino Havor evo-
lution in a nonlinear manner, as outlined above. Not
only are B and B, determined by the local neutrino
distribution functions, but the local neutrino distribution
functions are also dependent, in general, on the detailed
history of neutrino Havor transformation.

The crux of the problem of treating the nonlinear ef-
fects of the neutrino background is the computation of
B and B, for the particular local neutrino distribution
functions which obtain in the supernova environment.
This will be evident if we discuss a simple iterative pro-
cedure for computing neutrino Havor transformation at
resonance in the presence of a neutrino background.

We can employ the Landau-Zener transformation
probability in Eq. (28) to estimate the neutrino fia-
vor conversion probability for a neutrino propagating
through a resonance with the following simple procedure.
We choose a vacuum mass-squared difference bm and a
vacuum mixing angle 8 (equivalently, sin 28) for a prop-
agating neutrino of energy E~.

(1) To begin with, we assume that B, = 0. We use
bm2 and sin 28, along with B, = 0, in Eqs. (20a) and
(20b) to get a zero-order estimate for cos28~, sin28H,
cos280, and sin26H. Note that the value of A and
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tan28
sin28.H ——

Q(1 —E„/E~)2 + tan228
(29a)

1 —E„/E~cos280 =
Q(1 —E„/ER)2+ tan228

(29b)

tan28
sln28H =

g(l+ E„/E~)2+ tan'28
(29c)

B which enter into the expressions for cos208, sin20H,
cos280, and sin28H are their values at the resonance po-
sition, A(t„,) and B(t„,). In this case we can replace
A+B by (bm2/2ER)cos28 wherever it occurs. Eqs. (20a)
and (20b) with B = 0 can then be written as

1+E /ERcos20~ =
Q(1 ~ E„/ER) 2 + tan228

(29d)

(2) We employ these approximations for the full effec-
tive mixing angle to obtain estimates for B in Eq. (22a).

(3) So far we have not specified the resonance position.
We now use A and the estimate of B from step (2) to esti-
mate the resonance position through (bm /2E~)cos28 =
A + B. Note that A and B are position dependent.

(4) With the resonance position &om step (3) we use
Eq. (22b) to estimate B,

(5) With this estimate for B, we now can reestimate
the full e6'ective mixing angle using

(hm /2E„)sin28+ B,
sin280 =

g[(hm /2E ) —(hm2/2Ez)] cos 28+ [(hm2/2E„)sin28+ B ]
(30a)

[(bm /2E„) —(hm /2ER)]cos28
cos28~ =

g[(hm2/2E ) —(hm /2E~)] cos228+ [(hm /2E„)sin28+ B, ]2
(30b)

(hm2/2E„) sin28 —B,
sln20H =

g[(bm /2E„) + (hm /2E~)] cos 28+ [(hm /2E„)sin28 —B, ]
(30c)

[(hm2/2E„) + (hm2/2E~)]cos28
cos28H ——

g[(hm /2E„) + (hm2/2E~)]2cos228 + [(h'm2/2E„)sin28 —B, ]2
(30d)

(6) We iterate by returning to step (2) and reevaluating
B.

This procedure must be continued until B,B, , HH,
and the resonance position (t„,) converge. Because of
the dependence of B and B on the Bavor evolution his-
tories of all neutrinos in the ensemble, convergence of this
procedure is, in general, problematic. However, if neu-
trino Havor evolution is adiabatic then the complication
of prior histories is eliminated, and the above procedure
converges rapidly for the conditions which obtain in the
region above the neutrino sphere in type II supernovae.
For nonadiabatic neutrino Bavor evolution the above pro-
cedure, though more laborious, still gives good estimates
of the effects of the neutrino background. We shall be-
gin by discussing the case of' adiabatic neutrino Qavor
evolution.

tive mass-squared difference for two antineutrino mass
eigenstates always increases with density, and there is no
mass level crossing. The adiabatic approximation for the
evolution of the antineutrino mass eigenstates is always
good.

The situation is more complicated for neutrinos. How-
ever, the approximation of adiabatic evolution of the neu-
trino mass eigenstates is a particularly simple case to
treat in the supernova. A neutrino created in a Qavor
eigenstate ~v ) at the neutrino sphere is very nearly in
a mass eigenstate because of the large electron number
density there. Subsequent adiabatic evolution then im-
plies that, for example, ~ai, (t)( = 0 and ~ai~(t)( = 1 for
all t (likewise, ~a2, (t)~ = 1 and ~a2~(t)~ = 0 for all t).
In this case the expressions for the neutrino background
contributions, Eqs. (22a) and (22b) become

A. Adiabatic neutrino Savor evolution

Consider the Havor evolution of antineutrinos. It is
generally true everywhere above the neutrino sphere that
the contributions of the electrons and neutrinos satisfy
A+ B & 0. This is true because n is everywhere greater
than the net neutrino number densities for any neutrino
flavor [5,6]. For an antineutrino emitted from the neu-
trino sphere in the ~v ) flavor eigenstate, it is evident
that ~ai, (t)~ 1 and ~ai~(t)~ 0 for all t. The effec-

tt 82Gn /(1 c os)d[csos28(tst)(d n dn )

+cos28~(t)(dn„-. —dn- )], (3la)

td, = o 2Gn f (1 —cosds) i (so(2t8)s(td—n dn, ).
+sin28~(t)(dn„-. —dn„-. )] . (31b)

The evaluation of Eqs. (3la) and (3lb) for particular
neutrino distribution functions is straightforward so long
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as the adiabatic approximation obtains. To begin with,
consider the computation of B from Eq. (31a) in the
limit where B, = 0. The result so obtained will be valid
if we can later show that ~B,

~
)) (bm /2ER)sin28.

With the approximation that B is small the integrals
over the neutrino distribution functions dn„. , dn„, dn„-. ,
and dn„- can be separated into an angular part and an
energy part. This is due to the fact that when B, is
small 8R and 8R essentially become functions of energy
alone. For a radially propagating neutrino, the angular
part of the integral in Eq. (Sla) then becomes

dO~ 1
(1 —cos8~) ~ = — (1 —cos8&)sin8&d8~

4m 2

1= —[1 —Ql —(R~/ ) ]4

the radial neutrino path to the point at radius r is a good
representation of all neutrino paths to that point, and we
can approximate

f dO~ 1 R4
(1 —cos8&) 4' 16 r4

It is obvious &om this expression that the diagonal con-
tribution of the neutrino background is sensitive to posi-
tion.

The integration of the remaining energy dependent
terms in Eq. (31a) is simple if we employ the approx-
imate energy spectra in Eq. (12c). The energy part of
Eq. (31a) is then

(33a)

In this equation r is the radius of the point at which
we evaluate B and 80 is the polar angle of the limb of
the neutrino sphere as seen &om this point. Prequently
we are interested in regions sufficiently distant from the
neutrino sphere that we can take r )) B„.In this limit,

I

where we de6ne the neutrino spectral integrals as

(33b)

OO 1 —x x x
F„(8,xR)—: dx,

F2(0) p g(1 —x/xR) + tan 28 exp(x) + 1
(34a)

1 1+x/xR 8x
F2(0) p g(1+ xjxR) + tan 28 exP(x) + 1

(34b)

Clearly, for tan28 « 1, F„-(8,xR) = 1. Here ER is the energy corresponding to a neutrino at resonance at radius r
With these definitions, and for small B,we can reduce Eq. (31a) for B to

B = —V2GR [n„F„(8,ER/T„. ) —n„F„(8,ER/T„) + n„F„-(8,ER-/T„. ) —n„FO(8-, ER/T-„)], -[1 gl R2/r2]2

(35)

where n„,n„,n„-, and n„- are the appropriate neutrino or antineutrino number densities at the neutrino sphere as
in Eq. (12b). This zero-order expression for B is to be used in step (2) in the iterative procedure outlined above. To
proceed further requires that we estimate B, .

The angular integration for Eq. (Slb) is the same as for Eq. (Sla). In performing the angular integration in Eq.
(Slb) we will again assume that B, is small. The energy dependent integrals in Eq. (31b) can be written as

sin28~ f„(E„)dE„G„(8,ER/T„), (36a)

In like manner to Eqs. (34a) and (34b) we define

G„(8, )
1 tan28 x

d
F2(0) p g(1 —xjxR)2 + tan 28 exP(x) + 1

(37a)

G„-(8,xR)—: tan28 x
F2(0) p g(1 + xjxR) + tan228 exp(x) + 1

(37b)

where the notation is as in Eqs. (34a) and (34b).
Finally, we can utilize Eqs. (36a)—(37b) to give an approximate expression for B, :
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a..=~2G [' ~'„G„(e,E~/T„. ) —n' G—n G (8, E~ T„ + n„G„-(8,-E~/T„. -—n—n„G (0-, E~/T„)]-.
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FIG. 6. Contour lines for p = 3 on the (bm, sin228) plot
for the shock reheating epoch. The solid contour line is calcu-
lated for the bare electron number density. The dotted line,
which cannot be distinguished from the solid line in this case,
is calculated with the neutrino background contributions.

not have gone through resonances and therefore evolve
adiabatically prior to arriving at the resonance position
for a neutrino with energy ER. We conclude that the
expressions for B and B, in Eqs. (3la) and (31b) are
appropriate for the example under consideration.

Using the iterative procedure outlined above we can
calculate the true adiabatic parameter, p(t„,), including
the neutrino background contributions. We show the new
contour lines for p = 3 as dotted lines in Figs. 6 and
7 for the respective epochs. We can easily see that the

:~T T l~ t M1 T1 I I I I I I&
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FIG. 7. As in Fig. 6, but for the hot bubble r-process
nucleosynthesis epoch.

neutrino background has a completely negligible effect on
adiabaticity at resonance along the solid p = 3 contour
line in Fig. 6. The new contour line for p = 3 in Fig. 6
is indistinguishable &om the one calculated for the bare
electron number density. The new contour line for p = 3
in Fig. 7 moves a little bit to the right of the solid line,
but the neutrino background effects are also evidently
small.

Any neutrino mixing parameters bm and sin 20 which
are to the right of the p = 3 contour lines in Figs. 6 and
7 correspond to larger values of p for the speci6c example
neutrino energies under discussion. For a given bm2 the
ratio ~B, [/(bm j2ER)sin28 will decrease as sin 28 and,
hence, p increases. The ofF-diagonal neutrino background
contribution will have a negligible effect on neutrino Ba-
vor conversion everywhere to the right of the contour
lines in Figs. 6 and 7. Likewise, B is roughly constant for
a given bm as sin 28 and, hence, p is increased. The di-
agonal contribution of the neutrino background produces
a negligible alteration in the computed Bavor conversion
eKciencies everywhere to the right of the contour lines in
Figs. 6 and 7.

We have also examined adiabatic neutrino Bavor con-
version in supernovae for a range of neutrino energies.
We can conclude that the neutrino background, specif-
ically B and B, , will not result in any modification of
the results of Refs. [5] and [6] whenever adiabatic neutrino
Bavor evolution is at issue.

B. Nonadiabatic neutrino flavor evolution

The effects of the neutrino background on nonadiabatic
neutrino Bavor evolution in the region above the neutrino
sphere are potentially more signi6cant than are the neu-
trino background effects on adiabatic neutrino Bavor evo-
lution. In general, the evaluation of B and B, from Eqs.
(22a) and (22b) is considerably more complicated when
neutrino Bavor evolution is nonadiabatic than it is when
the adiabatic limit for neutrino Bavor evolution obtains.

A neutrino of energy ER, nonadiabatically going
through a resonance at a point above the neutrino sphere,
experiences a neutrino background effect which depends
on the prior histories of all the neutrinos in the ensem-
ble which are passing through the resonance region. As
discussed above for this case, we cannot argue that back-
ground neutrinos with E & ER go through resonances
adiabatically. The Bavor evolution for background neu-
trinos with E„&ER can still be considered adiabatic for
the purposes of calculating B and B', since these neu-
trinos will not yet have gone through resonances when
they are in the resonance region for energy ER.

In Fig. 8 we graphically illustrate the diKculties in-
herent in computing B and B, from Eqs. (22a) and
(22b) for nonadiabatic neutrino Havor evolution. In this
6gure we show the radial path of a neutrino with en-
ergy ER. The resonance position for this neutrino is the
point labeled RES(E~). The path for a neutrino of en-
ergy E~ representative of the neutrino background at the
point RES(E~) is labeled by E~. If E~ ( E~ then the
neutrino on the path labeled by E~ presumably propa-
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FIG. 8. Illustration of the difBculties inherent in coxnputing
the neutrino background contributions B and B, for the case
of nonadiabatic neutrino Gavor evolution. The radial path of
a neutrino with energy E& and resonance position RES(ER)
is shown. The path for a neutrino of energy E& representative
of the neutrino background at position RES(ER) is shown to-
gether with its resonance position RES(E~). Paths for back-
ground neutrinos at position RES(Es) are also shown.

gated. through a resonance of its own prior to reaching
position RES(E~). The resonance position for the back-
ground neutrino is labeled RES(E~). Whether or not
this background neutrino experiences Havor conversion at
RES(E~) depends, in turn, on the Savor evolution histo-
ries of the background neutrinos which pass through this
point. The paths for some of these "secondary" back-
ground neutrinos are shown in Fig. 8.

As we can see &om Fig. 8, an exact calculation of the
neutrino background contributions requires us to follow
simultaneously the Qavor evolution histories of neutri-
nos with di6'erent energies on all possible neutrino paths
above the neutrino sphere. This could be done in a Monte
Carlo calculation. However, there is a simpler alternative
if we make note of the following two facts. First, we are
most interested in regions which are far away &om the
neutrino sphere. The region for r-process nucleosynthe-
sis in the hot bubble is located at radii r & 4R„. So the
polar angles for neutrino paths to a point in this region
lie in a narrow range around 8~ = 0. In addition, at a
point close to the neutrino sphere where the polar angles
for the relevant neutrino paths can be significantly dif-
ferent &om zero, the electron number density is so high
that neutrino background efFects can be safely ignored.
Therefore, we can make an approximation and take the
Qavor evolution history of a radially propagating neutrino
(8~ = 0) as representative of the flavor evolution histories
of all neutrinos with the same energy.

The Havor evolution history of radially propagating
neutrinos for a given set of bm2 and sin 28 can then be
calculated with the following procedure:

(1') We numerically represent the neutrino energy
spectrum with a grid of energy bins. These energy
bins cover a neutrino energy range of 1—100 MeV. Typ-
ically our numerical calculations exnploy 200 energy
bins. Since neutrinos with lower energies go through res-
onances first, we start the calculations at the lower end
of the energy grid.

(2') For the particular grid point (neutrino energy bin)
at neutrino energy E„, we use the iterative procedure
outlined at the beginning of this section to locate the
resonance position, t„,(E„),for this particular neutrino
energy E„.As a byproduct of this iterative procedure, we
will obtain the corresponding neutrino background con-

0 if t & t...(E„),
PL2; (E„) otherwise

Likewise, the Qavor evolution history of v neutrinos with
energy E„ is approximated as

1 if t & t„,(E„),
1 —PLg (E"„') otherwise . (40)

In the above two equations, the evolutionary parame-
ter t increases away &om the neutrino sphere. These
approximations for the neutrino Havor evolution history,
together with Eqs. (22a) and (22b), are then used in the
iterative procedure in step (2') to locate the resonance
position and calculate the corresponding neutrino back-
ground contributions for neutrinos with energies higher
than E„.

At the end of the above procedure, we will have ob-
tained the approximate Havor evolution histories for all
the neutrino energies on the energy grid. This informa-
tion then can be used to calculate the electron &action
Y, in the r-process nucleosynthesis region as described
in Ref. [6]. We present the new Y, = 0.5 line, includ-
ing the neutrino background e8'ects, as a dotted contour
line on the (hm2, sin 28) plot in Fig. 9. The original
Y, = 0.5 line in Fig. 2 of Ref. [6] is shown as the solid
contour line in Fig. 9. To the right of the Y, = 0.5 line,
the material will be driven too proton rich for r-process
nucleosynthesis to occur in the hot bubble.

By examining the two contour lines in Fig. 9, we can
draw two conclusions. First, with a proper treatment of
the neutrino background eKects, we see that r-process
nucleosynthesis in the hot bubble remains a sensitive
probe of the Qavor-xnixing properties of neutrinos with

tributions B and B, at this position t, ,(E„).The eval-
uation of B and B, in this case is quite similar to that
for the case of adiabatic neutrino Qavor evolution, except
that here we must use Eqs. (22a) and (22b) together with
the Havor evolution histories of neutrinos with energies
lower than E„.

(3') Using the resonance position, t„,(E„), and the
corresponding neutrino background contributions B and
B, from step (2'), we can evaluate the Landau-Zener
probability Pi,z(E„) [Eq. (28)] for a neutrino with en-
ergy E„ to jump from one mass eigenstate to the other
in the course of transversing the resonance region. Now of
course, it is in the use of the Land. au-Zener jump proba-
bility for estimates of neutrino Qavor conversion efBciency
at resonance that we rely heavily on our approximation
regarding the phases of background neutrinos at reso-
nance. This approximation is that we can neglect the
density xnatrix cross terxn eKects of the very small num-
ber of background neutrinos in the resonant region de-
fined by E„(1—tan28) to E„(1+tan28). We are confident
from the arguments given above that this is a valid ap-
proximation for the supernova model parameters of Ref.
[6]. But we must bear in mind that it may not be gener-
ally valid for other supernova environments or models —it
must be checked on a case-by-case basis.

(4') The fiavor evolution history of v, neutrinos with
energy E„ is then approximated as
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resonances occur inside the weak &eeze-out radius. The
weak &eeze-out radius is the radius beyond which typ-
ical v and v, capture rates are small compared to the
material expansion rate. When B & 0, the resonance
positions for given bm are drawn in toward the neutrino
sphere. Hence, we find that the Y = 0.5 line drops to
lower values of bm in the presence of a neutrino back-
ground.

Clearly, these results depend on the assumption that
v ~~~ is the heavier neutrino species. Were this not the
case, then matter-enhanced flavor transformation only
occurs in the antineutrino sector. Conclusions regarding
the effects of neutrino background would be different in
that case.

IV. CONCLUSIONS
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FIG. 9. Contour lines for Y, = 0.5 are shown on the
(bm, sin 28) plot. The solid line is the same as the Y = 0.5
line in Fig. 2 of Ref. [6], whereas the dotted line is calculated
with the full neutrino background contributions.

cosmologically significant masses. In fact, inclusion of
the neutrino background contributions results in a small
modification of the original Ye = 0.5 line for bm = 4
eV to bm = 10 eV . Furthermore, after we take into
account the neutrino background contributions, it is ev-
ident that the range of neutrino vacuum mass-squared
difFerence bm~ probed by r-process nucleosynthesis is ex-
tended down to bm & 2 eV . The reason for this ex-
tension can be found in the nonlinear nature of neutrino
flavor transformation in the presence of a neutrino back-
ground.

Close to the neutrino sphere where little neutrino fla-
vor transformation has occurred, the number density of
v, neutrinos is larger than that of v neutrinos. This is
because the luminosities for v, and v are approximately
the same, but the average v neutrino energy is much
higher [cf. Eq. (12b)]. However, with neutrino flavor
transformation, more v neutrinos are transformed into
v neutrinos than v neutrinos are transformed into v,
neutrinos. This is because there are more low energy
v, neutrinos and only low energy neutrinos are very eK-
ciently transformed for the parameters along the dotted
contour line in Fig. 9. Because of the nonlinear evolution
of the neutrino background, the diagonal contribution B
evolves from a positive value for positions close to the
neutrino sphere to a negative value for positions far away
&om the neutrino sphere. Neutrinos with bm ( 2 eV
and energies over a broad range will tend to have res-
onances far enough out that the diagonal contributions
will satisfy B ( 0. For a given b'm2 and a given energy
E'„, the resonance position will lie closer to the neutrino
sphere for the case B ( 0 than it would for the case
where no neutrino background is present [cf. Eq. (26)].

As Ref. [6] discusses, Y and r-process nucleosynthe-
sis are sensitive to neutrino flavor conversion only when

We have calculated neutrino flavor transformation in
the region above the neutrino sphere in type II super-
novae including all contributions &om the neutrino back-
ground. In particular, we have examined the neutrino
background effects on both cases of adiabatic and nonadi-
abatic neutrino flavor evolution. In the case of adiabatic
neutrino flavor evolution, which is most relevant for su-
pernova shock reheating, we find that the neutrino back-
ground has a completely negligible effect on the range of
vacuum mass-squared difference bm and vacuum mix-
ing angle 0 or equivalently sin 20, required for enhanced
shock heating. In the case of nonadiabatic neutrino fla-
vor evolution relevant for r-process nucleosynthesis in
the hot bubble, we find that r-process nucleosynthesis
from neutrino-heated supernova ejecta remains a sensi-
tive probe of the mixing between a light v and a v C~~
with a cosmologically significant mass. The modifica-
tion of the (hm, sin 2|I) parameter region probed by r
process nucleosynthesis due to the neutrino background
effects is generally small. The nonlinear nature of neu-
trino flavor transformation in the presence of a neutrino
background actually extends the sensitivity of r-process
nucleosynthesis to smaller values of bm2.

In general, we find that a proper account of neutrino
background effects leads to no modification in the over-
all qualitative conclusions of Refs. [5] and [6]. At the
early epochs of the post-core-bounce supernova environ-
ment (tpB ( 1 s), we find that the characteristically large
electron number densities and large density scale heights
determine the phenomenon of neutrino flavor transfor-
mation.

Even at the later epochs associated with r-process nu-
cleosynthesis, the effects of the neutrino background on
neutrino flavor evolution are small. In fact, the neutrino
background does produce a decrease relative to Ref. [6] in
the sensitivity of r-process nucleosynthesis to the vacuum
mixing angle for v~~&~

—v, when bm ( 3000 eV . This
decrease in sensitivity, as measured by the position of the
Y = 0.5 line, is at most a factor of 3 in sin 20. Most of
the effect on Y near the Y = 0.5 line in this case, how-
ever, comes &om nonadiabatic neutrino flavor conversion,
v ~~~ v . Of course, we have presented only an approx-
imate treatment of the neutrino background for the case
of nonadiabatic neutrino flavor evolution, in that we have
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neglected the phase effects of the small number of back-
ground neutrinos in which path length differences from
the resonance sphere or energy distribution averaging are
not effective in reducing the cross terms in ensemble av-
erages. We have argued that the phase effects of these
background neutrinos are negligible simply because they
represent only a very small fraction of the total number
of background neutrinos at a given point.

In contrast, these phase issues are completely absent
and irrelevant for the case where neutrino Qavor evolution
is adiabatic. In this sense, the "adiabatic-limit" Y ) 0.5
line in Fig. 7 represents an overly conservative limit on
the effects of neutrino mixing on r-process nucleosynthe-
sis.

What about the effects of uncertainties in the super-
nova models on our conclusions? It is in general not
straightforward to answer this question, though our feel-
ing is that these uncertainties are relatively small, espe-
cially as regards the r-process nucleosynthesis epoch of
supernova evolution. Such uncertainties are addressed in
Refs. [5,6]. In this paper, we have presented neutrino Ha-

vor evolution calculations employing the parameters of
the best available supernova model for r-process nucle-
osynthesis [6].

Reference [6] discusses the uncertainties of these model
calculations and their impact on any conclusions regard-
ing neutrino fI.avor evolution. There it was emphasized
that r-process nucleosynthesis takes place long after the
chaotic and uncertain supernova-explosion epoch where
the shock is reenergized. As such, the r-process epoch is
characterized by quiescent neutrino-heated outfI. ow, and
there are three readily identifiable parameters: the en-
tropy, the outflow velocity, and the neutrino luminosity.
The latter two parameters essentially determine the po-

sition of the weak &eeze-out radius [6] and so determine
the position of the lower horizontal line in Figs. 7 and 9.
Increasing the neutrino luminosity would have the effect
of increasing all neutrino background effects at a given
radius.

For example, increasing the neutrino luminosity in the
context of the Ref. [6] model would have the effect of
pushing the horizontal Y, = 0.5 line (lowest bm sensitiv-
ity) to even lower values, while at the same time pushing
the diagonal part of this line to larger sin 20. However, it
is not at all obvious that such a sensitivity study makes
sense at this point. Increasing the neutrino luminosities
or the material outHow velocities, or otherwise changing
the model parameters of Ref. [6], would probably have
the effect of ruining the excellent agreement between the
computed r-process abundance yields and the observed
solar system distribution of the r-process elements [9,10].
Only time will tell if the hot bubble environment is truly
the site of r-process, though this seems highly likely given
the results of Ref. [10].
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