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This paper consists of four parts. Part one deals with an investigation of the properties of
P-equilibrated, electrically charged neutral quark-star matter at zero and finite temperatures, and
the determination of its equation of state. In part two, the properties of sequences of quark stars,
divided into strange- and charm-quark stars, depending on quark-Havor content, are investigated.
The strange stars are constructed for absolutely stable strange-quark matter, whose energy per
baryon number lies below the one in Fe. In part three, the electrostatic potential of electrons
inside and in the close vicinity outside of strange stars, which is of decisive importance for the
possible existence of nuclear crusts on the surfaces of such stars, is computed. It is found that finite
temperatures lead to a considerable reduction of the electrostatic electron potential at the surface of
a strange star, which is accompanied by a strong reduction of the Coulomb barrier associated with
the difference of the electrostatic potential at the surface of the star's strange-matter core and the
base of the crust. This finding is of great importance for the stable existence of crusts on strange
stars, since the Coulomb barrier plays the important role of preventing atomic nuclei bound in the
nuclear crust from coming into contact with the star's strange-matter core, where atomic matter
by hypothesis would be converted into strange matter. The structure and stability of quark stars
against radial oscillations is discussed in part four, where it is found that charm-quark stars are
unstable against radial oscillations. Thus no charm-quark stars (and, as is demonstrated too, no
quark-matter stars possessing still higher central mass densities) can exist in nature.

PACS number(s): 97.10.Cv, 97.10.Nf, 97.60.Gb, 97.60.Jd

I. INTRODUCTION

The hypothesis that strange quark matter may be the
absolute ground state of the strong interaction (i.e. , ab-
solutely stable with respect to s Fe) has been raised by
Bodmer [1] and Witten [2]. On theoretical scale argu-
ments, it is as plausible a ground state as the confined
state of hadrons [2—4]. Even to the present day there is
no sound scientific basis on which one can either confirm
or reject Witten s hypothesis, so that it remains a seri-
ous possibility of fundamental significance for rare but
exotic phenomena [5—12]. (For a review of recent work,
and a complete bibliography up to 1991, see Ref. [13].) If
the hypothesis is true, then the very intriguing possibility
of the existence of so-called strange-quark matter stars

'Also at Nuclear Science Division, Lawrence Berkeley Lab-
oratory, MS:70A-3307, Berkeley, CA 94720.

[2,4,11,14—17], made up of 3-flavor strange-quark matter
whose energy per baryon number lies below the one of

Fe, i.e. , 930 MeV, opens up. They form a distinct and
disconnected branch of compact stars, and are not part
of the continuum of equilibrium configurations that in-
clude white dwarfs and neutron stars [2,4,14,15]. More
than that, some (in the most extreme case all) neutron
stars could actually be strange stars. If so, pulsars are to
be interpreted as rotating strange stars (strange pulsars)
rather than rotating neutron stars [13]. Possible signa-
tures of such objects could be rotational pulsar periods
that lie significantly below one millisecond [9,18], since
the rotational periods of gravitationally bound neutron
stars, constructed for a broad collection of realistic mod-
els for the nuclear equation of state, seem to lie above
that limit [19—22].

This paper deals with an investigation of the prop-
erties of quark-star matter at zero as well as nonzero
temperatures, and the determination of the equation of
state (i.e. , pressure versus energy density relation) associ-
ated with it. The notion of quark-star matter comprises
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strange qu-ark star matter made up of u, d, and s quarks
[2,4,11,14—17] and charm-quark star matter [23], in which
charm-quark states are populated in addition. Subse-
quently, the properties of the families of strange- and
charm-matter stars, henceforth referred to, for brevity, as
strange and charms stars, constructed for these equations
of state are analyzed. There exist a few investigations
dealing with the properties of strange stars that have
been performed earlier than this one (for an overview,
see, for example, Ref. [13]). Some of the major new as-
pects treated in this work concern the investigation of the
structure and stability of strange and charm stars, being
at zero as well as nonzero temperatures, against radial
oscillations. Furthermore, the infIuence of temperature
on the electron chemical potential inside and outside of
bare strange stars, which is of decisive importance for
the possible existence of nuclear crusts on the surfaces of
strange stars, is explored and its implications for strange
pulsars are pointed out. The investigation is based on a
systematic determination of a model for the equation of
state of quark-star matter at finite temperature, whose
properties are studied in great detail.

Our investigation is organized as follows. In Sec. II
the description of quark-star matter, i.e., P-equi}ibrated
three- (u, d, s) and four-flavor (u, d, s, c) quark matter,
at zero as well as finite temperatures is introduced. For
the purpose of illustration, the special cases of cold quark
matter made up of massless as well as massive quarks are
discussed. A value for the bag constant of B / = 145
MeV, for which 3-fIavor strange-quark matter is stable,
has been chosen. For a strange quark mass of 150 MeV,
this bag constant corresponds to an equilibrium energy
per baryon number of strange matter of about 880 MeV.
In other words, this choice represents strange matter be-
ing absolutely bound, by about 50 MeV, with respect
to Fe. Sequences of strange- and charm-quark stars
are constructed in Sec. III. In particular, the impact of
temperature on the structure of such objects is investi-
gated. In Sec. IV the electrostatic potential of electrons
interior and exterior of strange stars is determined and
its temperature dependence studied. Most important for
the possible existence of a nuclear crust on the surface of
a strange star, the width of the gap that exists between
the surface and the base of the crust is determined for a
variety of representative temperatures and electrostatic
crust potentials. As a by-product, the possibility of the
conversion of hadroiiic matter (light atomic nuclei, such
as hydrogen and helium) that is accreted onto the surface
of a bare strange star into strange matter is considered.
Section V deals with an investigation of the stability of
such stars against radial oscillations (acoustical modes).
Our findings are summarized in Sec. VI. Mathematical
details concerning the determination of the equation of
state at finite temperature are given in the Appendix.

matter) at zero as well as finite external pressure and
non-zero temperature. By quark-star matter we mean
a Fermi gas of 3A quarks which together constitute a
single color-singlet baryon with baryon number A. The
dynamics of quark confinement is approximated by the
bag model [24]:

1='ll )8 ) C) 8 )e )P

a=u)d)c) 8;e )p

p&

ei+ B

(2.1)

(2.2)

where p, e, and B refer to external pressure, total inter-
nal energy density, and bag constant, respectively. The
condition of electric charge neutrality reads

0=
t=tt)d)C)8)e )P

qi ni (2.3)

The expressions for internal pressure, energy, and number
density of the quarks and leptons contained in the bag,
pi, ~i, and ni respectively, are determined by the thermo-
dynamic potentials, dO; = —S;dT —P,.dV —¹dp,, &om
which one obtains [contributions of antiparticles are ne-
glected; this is well justified for antiquarks since their
chemical potentials are much larger than the considered
temperatures (see also [25]); the situation is somewhat
more delicate for the positrons, which too were found to
contribute only very little]
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The phase space factor g, is equal to 2 (leptons) or 6
(quarks). The quantity f; denotes the Fermi-Dirac dis-
tribution function, f;(E) = 1/(1+exp[(E y,,)/T]). The-
baryon number density is given by

where E; (k) = k + m2. (For the evaluation of the ther-
modynamic potential of a quark gas of N colors and
Ny fIavors to fourth order in the quark-gluon coupling,
we refer to Refs. [26,27].) The quantity m; denotes the
quark's mass. The expression for the energy density of
the system reads

II. DESCRIPTION OF QUARK-STAR MATTER
1

nA
3 ) n, .

2='tl)d)S)C

(2.8)

In the following we present briefIy the description of
electrically charge neutral quark-star matter in equilib-
rium with respect to the weak interactions (i.e. , P-stable

Chemical equilibrium between the quark fIavors and
the leptons is maintained by the weak reactions (and
their inverse)
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The reactions

s+u i r d+u
c+d ' ' u+d

(2.12)
(2.13)

pd= pu+pe — ) pc= pu ) pg = p, . (2.14)

Finally, the conservation of electric charge implies that

pe- = pp. — (2.15)

The third. of Eq. (2.14) motivates defining

P = Pd = P8 (2.16)

For later purpose, we introduce the additional definitions

contribute to the equilibration of flavors. The loss of
neutrinos by the star implies that their chemical potential
is equal to zero. Hence, one gets from Eqs. (2.9)—(2.13)

2 1—n ——(nd+n) = 0
3 " 3 8 . ) (2.23)

(no leptons are necessary to make the system electrically
charge neutral). Finally, for zero external pressure, p =
0, one derives from Eq. (2.1) B = 3p /4vrR, and for the
energy per baryon number in strange matter [11],

AQ

4B

4B
(n„+ nd + n. )/3
4Bvr2

p3 (2.24)

Prom this relation one finds, for example, that bag con-
stants of B = 57.5 MeV/fm (B ~ = 145 MeV) and
B = 85.3 MeV/fm (B ~ = 160 MeV) place the energy
per baryon number of strange matter consisting of mass-
less u, d, and s quarks at 829 MeV and 915 MeV, respec-
tively. In other words, these values represent strongly
( 100 MeV) and weakly ( 15 MeV) bound strange
matter, at zero external pressure, and in all cases cor-
respond to strange matter being absolutely bound with
respect to Fe. (More details will be given in connection
with the discussion of Figs. 1 and 2.)

where

pi
ifi = u, c,
ifi = d, s,
ifi = e, p

(2.17) B. Cold matter consisting of massive quarks

In the case of massive quarks, Eqs. (2.5)—(2.7) lead to
(i = u, d, c, s;e, p )

and zi
mi
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A. Cold matter consisting of massless quarks

It is illustrative to apply, in a first step, the equations of
the previous section to quark matter at zero temperature,
assuming that all quark species are massless particles.
Zero temperature implies that
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and Eqs. (2.4)—(2.7) lead to (g, = 6)
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The condition of electric charge neutrality, Eq. (2.3),
reads now

(2.22)P 3
The condition of charge neutrality, Eq. (2.3), reads

One thus obtains &om Eqs. (2.1) and (2.2) for the sys-
tem's equation of state the well known expression

(2.28)

and Eq. (2.1) leads to

2 1
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FIG. 1. Contours of fixed energy per
baryon number (figures attached to these
curves) of strange quark matter at zero ex-
ternal pressure. The solid and dashed curves
refer to T = 0 and T = 30 MeV, respectively.
The strange quark mass is plotted on the y
axis and the bag constant B on the x axis.
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The expressions of energy and baryon number density
are given by

e=3p+4B+ ) e, —3 ) p; (2.30)

= 3@+4B
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1
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3
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(2.32)

The first two terms on the right-hand side of Eq. (2.31)

represent the equation of state of massless quarks, given
by Eq. (2.22). The third term accounts for the finite
masses of the muons, and the strange and charm quarks.

Figure 1 shows the energy per baryon number, E~ ——

e/n~, of strange matter at zero external pressure [3,25],
computed from Eq. (2.31). The influence of tempera-
ture is demonstrated for T = 30 MeV, which is typical
for a newly formed neutron star in a supernova explosion
[28—30]. (The equation of state of quark-star matter at fi-
nite temperature will be discussed in detail in Sec. II C.)
The energy per baryon number of cold matter ranges
&om 830 to 950 MeV. For the purpose of comparison,
we recall that the energy per baryon in Fe amounts
M(ssFe)c2/56 = 930.4 MeV, where M(ssFe) is the mass
of the Fe atom. Thus, with exception of the 950 MeV
contour, all these curves correspond to strange matter
that is absolutely stable, at zero external pressure, with
respect to Fe. For a representative mass of the strange
quark, m, = 150 MeV, which was used in this work to-
gether with m, = 0, this is the case for bag constants
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FIG. 2. Same as Fig. 1, but for a finite
external bag pressure of 50 MeV jfm .
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smaller than 75 MeV/fm (Bx/'4 = 155 MeV). The lower
bound on B, given by 57 MeV/fm (Bi~4 = 145 MeV), is
determined by the fact that the energy per baryon num-
ber of 2-Bavor quark matter must be higher than the one
of Fe. Otherwise, Fe would be made up of u and
d quarks rather than nucleons. This condition also de-
termines the termination points of these contours, which
are located at those points where the contours cross the
vertical line at B = 57 MeV/fm [3]. Finite temper-
atures [like finite quark masses, or external pressures,
cf. Eq. (2.31)] increase both the energy density e of the
bag as well as the baryon number density n~. The im-
pact of these increases is such that the energy contours
are shifted toward smaller bag constants. This shift in
B, as can be seen in Figs. 1 and 2, is quite large and
amounts 20'%%, depending on the mass of the strange-
quark. The impact of finite external bag pressures, p,
on the energy contours is illustrated in Fig. 2. A com-
parison with Fig. 1 shows that the energy contours are
shifted toward smaller B values, too, which can be under-
stood mathematically by means of combining Eqs. (2.22)
and (2.24) to B = (n/xE~ —3p)/4. [In the case of fi-
nite temperatures, or masses, the corresponding relation
is obtained &om Eq. (2.36).] Prom the physical point of
view, this becomes clear by remembering that finite p val-
ues increase the pressure which acts on the bag &om the
outside, Eq. (2.1). So B can be reduced on the account
of p.

The relative quark and lepton composition of quark-
star matter at zero temperature is shown in Fig. 3. All
quark Qavor states that become populated in such mat-
ter up to densities of 10 g/cm are taken into account.
Since the Coulomb interaction is so much stronger than
the gravitational, quark-star matter must be charge neu-
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. I

10 10
e [g/cm ]

10 10

FIG. 4. Enlargement of the upper portion of Fig. 3.

tral to very high precision [8]. Therefore, any net pos-
itive quark charge must be balanced by a sufBciently
large number of negatively charged quarks and leptons
present in the system, as shown in Fig. 3. An enlarge-
ment of the upper portion of this figure is exhibited in
Fig. 4. One sees that at lower densities the number of
d quarks is somewhat larger than that of s quarks, due
to the finite mass of the strange quarks. The behavior
of nd/n and n, /n can be understood qualitatively Rom
Eq. (2.25), which reveals that ng/n, = (1 —m, /p, )
Since m, /p, ( 1 it follows that nd ) n, at all densities,

6—+OO e 6~OO
and, secondly, nd, ', n, froxn above since m, /p, ', 0
(cf. Fig. 9). (Strange and charm quark masses of respec-
tively 0.15 GeV and 1.2 GeV are assumed. ) In contrast
with the sensitive density dependence of lepton number,
the abundances of u, d, and 8 quarks in strange matter
vary only rather weakly with density. The situation is
diferent for the c quarks whose concentration increases
at threshold density extremely rapidly. At still higher
densities it tends against the concentration of u quarks,
and charge neutrality is nearly achieved by appropriate
concentrations of quarks of both charge states only. The
slight deficit of negative quark charge is delivered to the
system by electrons and muons, whose concentrations
increase monotonically for all densities larger than the
threshold density of the positively charged c quarks.

10 C. Quark matter at finite temperature

10 I

10
~ I

10
I I

10
e [gicm ]

I

10
I

10

FIG. 3. Relative densities of quarks (q = u, d, c, s) and
leptons (I = e, y, ), n;/n, where n = g. n, , in cold,
P-stable, electrically charge neutral quark-star matter as a
function of energy density. (Here and in all subsequent calcu-
lations a bag constant of B = 145 MeV has been chosen. )

To derive the equation of state of quark-star mat-
ter at finite temperature, up to about T 50 MeV,
we perform a perturbation expansion of pressure p,.

p;(p, x, T) and baryon density n, = n, (p, x, T) about
their zero-temperature values, p; p = p;(pp, zp, Tp) and
nx, p = n/(pp, xp, Tp), where Tp = 0 [25]. By xneans
of writing these functions in the form y, (p, x, T)
g (pp —Ap, xp + Ax, Tp + b.T), where y; stands for p;
and n;, expanding them in a Taylor series and keeping
only the lowest order terms, one obtains
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sons p =with g p = g' pp, xp, Tp). Above, the definitions b,

pp = p(Tp) and xp = x(Tp). The major problem encoun-
tered now consists in calcul t tha ing e expansion coeK-
cients occurring in Eq. (2.33), By;/B(E / ) B

&,,~ «pp, . Their determination is outlined in
detail in the Append. ix. It should be noticed that since

By;/B(T/Ij, p) = 0, which is shown in Ref. [31],both pres-
sure and particle density depend in lowest-order only

er const erable alge-qua ratically on temperature. Aft 'd b
ra one arrives for pressure parti ' d t,cue ense y, an total

energy density at the relations (the quantities a and 6
are defined in the Appendix)
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with the definition
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The co
ones obt

comparison of these relations with thi e corresponding
ones o taine for zero-temperature and 1n mass ess quarks,

enve in ec. II A, immediately reveals the
ni e emperatures and masses on the equation of state.

Notice that in the limit of T ~ 0 th e zero-temperature
equation of state (2.31) is obtained from E . (2.36). Fur-
thermore, as outlined just abov th te, e emperature depen-

p3 Q3
A~ — = +T pp [

—Qxp+bxp+ — ] (2.38)

ica y in T.
dence zn e lowest-order expansion enters only quadrat-

The equation of state of strange matter at nonzero
temperature, computed for E . 2.36 '

h
ere is a noticeable inQuence of temperature on the

4B, as can be seen &om Fig. 6.
ensi y an pressure ofT e expressions for particle d 't d

e ectrons are given by [recall that x(T) = p, -(T)/p T,
which reads at zero teinperatura urexp = p~- p pp
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FIG. 5. Pressure '

call c
isot erm versus mass density f l t'y o eecri-

y charged neutral quark-star matter. The im act
peratures T & o Ms 50 MeV) which is significant at low nuclear
densities only, is exhibited in Fig. 6.

FIG. 6. Ennlargement of the left portion of Fig. 5. The num-
bers associated to these pressur thbe ' e iso erms re er to tempera-

other calculations) is B = 1 x 10 g/cm (= 57 MeV/fm
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FIG. 7. Density isobars of electrons, n, , versus tempera-
ture for difFerent external pressure values,
p/(10 g/cm ) = 0, 0.1, 1, 10, which are constant along each
curve. (Dividing the pressure expressed in units of g/cm by
1.78 x 10 leads to pressure in units of MeV/fm .)

300 0
30
50

200 I

10
I

l0
~ [g/cm ]

FIG. 9. Same as Fig. 8, but for the chemical potential, p,

(= ys = y,,), of d and s quarks [cf. Eq. (2.16)].

the increase of n, — with temperature. The variation of
electron chemical potential, p —,along the n — isotherms
is shown in Fig. 8. One sees that p — deviates for tem-
peratures T & 50 MeV &om its zero-temperature value
by at most 1 MeV (e 4B) The .decrease of p, — with
density reBects the fact that fewer electrons are needed
in strange-quark matter at higher densities (cf. Fig. 3).
Furthermore, we notice the downward shift of the p, —

isotherms, for a 6xed density, with increasing tempera-
ture, which is due to the momentum tail of the Fermi-
Dirac distribution function for T ) 0.

The density and temperature dependence of the chem-
ical potential of d and s quarks, p, is graphically de-
picted in Fig. 9. The density dependence can be in-
ferred qualitatively from Eq. (2.25), &om which one gets
p = m, (1—n, /n~) 2/s. Slightly below the threshold den-
sity of s quarks one has n, = 0, and therefore p„= m,
there. The other extreme, high 8 quark densities, is
characterized by n, —+ nd, as is known &om Figs. 3
and 4. This implies that p becoxnes very large in the
high-density regime. In Sec. III it will be shown that
stable strange stars possess central densities of at most

2 x 10~ g/cm . Therefore, from Fig. 9, y, never ex-
ceeds 500 MeV in such stars. This value is considerably
smaller than the mass of the charm quark. Concerning
the impact of temperature on p, , it is most significant at
densities e 4B for the same reasons as already out-
lined in connection with the discussion of Figs. 5 and
6. Finally, 6nite temperatures reduce p, below its zero-
temperature value. The reason is, again, the occurrence
of the Fermi-Dirac function in Eq. (2.6) instead of the
step function, leading to sxnaller chemical potentials for
a 6xed density. For the selected texnperatures, this re-
duction amounts at most 100 MeV.

4 4

12m 3+ —T /J, [—ax +bx + —x] (2.39)

20.0

0
30
5018.0

0
Q)

16.0

I

14.0

which follow Rom Eqs. (2.34) and (2.35) applied to
(massless) electrons, rather than massive quarks [r/, — =
xo, z — = 0, e — = 1, according to Eqs. (2.17), (2.18),
and (2.37)]. The temperature dependence of n for zero-
and 6nite external bag pressures, p, is exhibited in Fig.
7. Because finite p values increase the system's total
energy density [cf. Eq. (2.36)], fewer electrons are nec-
essary in order to achieve electric charge neutrality and
therefore the n — isobars move downward with increasing
pressures. Temperatures, typical for newly formed mas-
sive stars, increase n, — by roughly two orders of mag-
nitude, depending on external pressure. The quadratic
dependence of n, — on T, Eq. (2.38), is significant at lower
temperatures. For larger T, the implicit temperature de-
pendence of the expression in square brackets weakens

12.0 I I

8 10
10' s [g/cm ]

20

FIG. 8. Chemical potential of electrons, p, —,versus energy
density in electrically charged neutral quark-star matter at
temperatures T = 0, 30, and 50 MeV, which are constant
along these curves.

IIX. HY'DROSTATIC EQUILIBRIUM SEQUENCES
OF QUARK MATTER STARS

The masses of the two families of quark-matter stars,
strange and charm ones, as a function of central density,
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are shown in Fig. 10. The family of charm stars begins at
a density of about 10i g/cm and ends at 4 x 10is g/cm .
It should be noticed that such dense hydrostatic equi-
librium configurations also exist in the neutron star se-
quence at densities above that of the maximum-mass
neutron star [32,33]. One of the most significant dif-
ferences between both species of stars concerns the ex-
istence of a minimum-mass con6guration in the neutron
star sequence, 0.1MO [34]. In sharp contrast to this,
the sequence of bare strange stars (no nuclear crusts),
being bound primarily by the strong interaction rather
than the gravitational force (gravity makes them only
denser), does not possess a minimum-mass star. In fact,
strange-matter objects can exist with baryon numbers in
the enormous range of 10 +A+10 [3,35]. The lower
bound is determined by 6nite size effects, and the upper
one is set by the gravitational interaction, which increases
with A, and therefore makes strange stars possessing too
large central densities unstable against gravitational col-
lapse (cf. Sec. V). (The situation is the saine as for the
purely gravitationally bound neutron stars. )

Temperatures typical for newly formed pulsars inQu-
ence the bulk properties of quark stars, such as mass
and radius, only rather weakly, as can be seen from Figs.
10 and 11. Shown are star sequences that are obtained
as solutions of the Oppenheimer-Volkoff equations [36],
thus being in hydrostatic equilibrium. As is well known
[32], hydrostatic equilibrium alone does not guarantee
stability of a compact star. The still missing ingredient
is a stability analysis against radial oscillations (acous-
tical modes), which will be performed in Sec. V. There
it will turn out that the charm-star sequence is unsta-
ble against radial oscillations. Thus we are left with the
possible existence of strange-quark stars only.

The mass-radius relationship of the quark stars of Fig.

2.0
S

1.0 0

0.5

0.0
0.0 2.0 4.0 6.0 8.0

Radius [km]
10.0 12.0

10 is shown in Fig. 11. For masses larger than 0.5 Mo
it too bears a strong similarity with the one of neutron
stars. Temperatures T+50 MeV modify the properties
of the more massive stars of the sequence only slightly.
According to above, all stars possessing central densi-
ties larger than model S are unstable against radial os-
cillations. The same inwardly directed spiraling behav-
ior was also obtained for stars constructed for baryon
matter equations of state that were extrapolated to the
super-high density regime [32], which shows again that
this behavior is not speci6c to self-bound stars but rather
manifests the dominant role of gravity at such high den-
sities.

FIG. 11. Gravitational mass (in units of solar mass) ver-
sus radius of the strange- and charm-quark star sequences
exhibited in Fig. 10. The symbols S and C again denote the
maximum-mass model of each sequence.

2.0
IV. ELECTRONS IN STRANGE STARS

1.8

1.4

1.2

1.0

10 10
. I

10
I

10
I

10

FIG. 10. Gravitational mass of quark stars (in units of so-
lar mass) at zero and finite temperature (T = 30 MeV) ver-
sus central energy density. The two mass peaks labeled S
and C denote the maximum-mass star of the strange- and
charm-quark star sequence, respectively.

As shown in Sec. II, because the strange-quark mass
is larger than that of the u and d quarks, equilibrium
strange matter contains an approximately equal mixture
of all three, with a slight de6cit of 8 quarks. A relatively
small number of electrons is necessary to make the system
electrically charge neutral. The electrons, being bound
to the system by the electromagnetic interaction and not
by the strong force, extend several hundred fermis be-
yond the boundary of the strange star [14], which itself
has a surface thickness of the order of the strong inter-
action range. Associated with this electron layer at the
surface of hypothetical strange stars is a strong electric
field, which is radially outwardly directed. Most impor-
tantly for the glitch behavior and probably the cooling
of strange pulsars (pulsars interpreted according to Wit-
ten's hypothesis as rotating strange-matter stars) [4,17],
this layer can carry a solid nuclear crust suspended out
of contact with the pulsar's strange-matter core [14],
which prevents the ion-quark matter reactions by which
(atomic) crust matter would be converted into the true
ground-state, strange matter. In the following, the be-
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havior of the electrostatic potential of the electrons in-
side and in the close vicinity outside of strange stars is
determined and, specifically, its temperature dependence
studied. This analysis serves also to investigate, as a by-
product, the temperature dependence of the Coulomb
barrier, associated with the difference of the electrostatic
potential at the surface of the strange core and the base
of the inner nuclear crust. (This constitutes an extension
to finite temperatures of the zero-temperature analysis
perforxned in Ref. [14].)

A. Impact of Bnite temperatures on the electrostatic
potential of electrons

Inside strange star s

Firstly, the electrostatic potential of electrons V(r) in-
side a bare strange star is determined. For this purpose
we recall that locally the energy of an electron sitting
at the ferxni surface is given by E(r) = p, -(r) —eV(r)
[14,25], where p, (r) denotes the electron's radially de-
pendent chemical potential. In equilibrium, dE'(r)/dr =
0. From the boundary conditions V(r) '; 0 and

p„-(r): 0 [14] it follows that eV(r) = p, (r) [25].
The density dependence of p, —(r) has already been de-
termined in Sec. II. Plotting p,,—(r) as a function of ra-
dial distance, from the star's origin to the surface, leads
to Fig. 12, which exhibits the behavior of V(r) inside
of strange stars with representative gravitational masses
and temperatures. Since p, — decreases with density, Fig.
8, the electrostatic potential of electrons increases mono-

tonically &om the center toward the surface of strange
stars. Finite temperatures inHuence the eV(r) isotherms
more significantly in the vicinity of the surface of strange
stars than at their centers because the density is smallest
there. For the heavier stars, which possess larger central
densities, the isotherms are shifted downward, which is a
consequence of the decreasing behavior of p,,— with den-
sity (Fig. 8). Another noteworthy feature is that inde-
pendent of star mass (and thus, central star density), all
isotherms referring to the same temperature terminate
at the same value of eV(R). This is indicated by the
solid dots, which possess the same height for the same
temperature. This independence of mass, or in other
words, of central star density, becomes clear &om Fig. 8,
which shows that the value of p, — at the star's surface is
determined only by the values of bag constant and tem-
perature. It also explains the shifts of the termination
points for increasing temperatures toward larger radii.

g. Sar face region

In the second step, the behavior of V(r) several hun-
dred fermi inside and outside of the surface of a strange
star is determined. For this purpose we recall that due
to the rearrangement of electron charge there, the net
positive charge of the quarks will be balanced locally by
electrons only up to radial distances r ( R (star's bulk
matter part), where R is only slightly smaller than
the star's radius, R +R. Beyond R, in the region
B & r & oo, the condition of electric charge neutrality
is a global (rather than a local) one. In order to deter-
mine R, we note that &om Poisson's equation for radii
in the range R ( r ( oo,

20.0

d2eV
4vre [n, (r) —n~(r)] 0(r —R ) (4.1)

19.0

18.0-
4)

17.0

O
16.0

15.0

14.0
0.0

I

2.0
I I I

4.0 6.0 8.0
Radial distance [km]

I

10.0 12.0

(the dV/dr terxn can be neglected here; 3n~—:2n„—n~-
n„nz —n, = 0 for r ( R ) it follows that

R OO

dr nv(r) = dr n, (r)
R R

(4.2)

since dV(R )/dr = dV(oo)/dr = 0. The first relation
follows from the fact that V(r) attains a maximum at
B . The upper boundary in the second integral reHects
the circumstance that the electrons extend beyond the
surface of the strange star. Equation (4.2) can be trans-
formed to

FIG. 12. Electrostatic potential, eV(r), of electrons inside
(r ( R) strange stars of masses M/Mo ——1 (dotted curves),
1.4 (dashed), and 1.6 (solid). The temperatures in each case
are T = 0, 30, and 50 MeV. Notice that the termination
points of these curves, marked with solid dots, actually lie
several hundred fermi inside of R (see Fig. 13).

v(R) OC)

dV nq dVn—
V(R ) V(R )

Using edV = dp, and n, = et@, /Bp„[cf. Eq. (2.6)],
Eq. (4.3) can be written as
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f
V(R) ~( )

dV nq dre-
e „(R ) p, —

[p, (oo) —p, —(R )] (4.4)

eV(R, T) = p, —(R,T)
p, —(R,T) —p, —(y„- = 0, T)

n, (R— , T)
(4.5)

Because R and R difFer only by a few hundred fermi
[14], the density n~(r) in that range can be treated as
being independent of r. Its value is therefore given, to
a very good approximation, by no(r) n, (R ).— One
thus obtains, &om Eq. (4.4),

By means of the approximation )(J,„-(R,T) p, —(R, T)
and substituting p, - /n, w—ith Eqs. (2.38) and (2.39),
one obtains, for Eq. (4.5) (recall that the zero-
temperature chemical potential of electrons, p, —(T = 0),
is abbreviated p, —o),

)((4 o(R) + 4vr T po(R)[—axo(R) + bxo(R) + 2xo(R)]
eV(R, T) p,, (R, T)—

4)((s (R) + 12m'2T2)((o2(R) [—axso(R) + bxo2(R) + sxo(R)]
(4 6)

where, according to Eq. (2.18) and Eq. (A21) of the Ap-
pendix, the electron chemical potential at finite temper-
ature is given by

p, —(R, T)—:y, (R, T) x(R, T) (4.7)
2T'')( T2)=

~
po(R) —a~'

~ ~
*o(R) + b~'») &o)

(4.8)
In the special case of T = 0 one immediately obtains
&om Eq. (4.6) the simple relation [14]

3
e V(R, T) = —p,,—()(R) (4 9)

&om which it follows that the electrostatic potential of
electrons at the surface of the star's strange-matter core
is reduced relative to its value obtained by imposing the
condition of local (instead of global) charge neutrality
[14], which, due to the rearrangement of electron charge,
holds only for radii r & R (cf. beginning of this section).
As will be shown below (cf. Fig. 15), finite temperatures
lead to an even stronger reduction of the electrostatic

I

electron potential, which amounts at most 50% for T &
50 MeV. From Eq. (4.6) one sees that this decrease has
its origin in the reduction of p,,—with T (exhibited in Fig.
8), which is additionally strengthened by the second term
on the right-hand side of this equation. As an example,
the values of p, -(R, T = 0) and eV(R, T = 0), 18.8
and 14.1 MeV, respectively, reduce to 18.7'MeV and 9.5
MeV at T = 30 MeV, which shows that the temperature
dependence of the second term in Eq. (4.6) prevails over
the one of the first term.

Lastly, we determine V(r) in the regions R & r & R
and R & r & R„„,t. The second region corresponds
to distances that lie outside of the star's strange-matter
core. Two regions there are to be distinguished. The
first one extends &om the core's surface, at r = R, to
that radial distance where the inner nuclear crust (re-
ferred to henceforth as the crust's base) begins, denoted
r = R„„,t. The associated width, Rg p: R & R is
referred to henceforth as gap. The second region begins
at R„„,t, and extends in the radial outward direction to-
ward infinity. The behavior of the electrostatic potential
in the surface region is determined by Poisson's equation

d eV 2 deV 4vre 1+ — = —[(eV) —(eV(R )) ] + T [eV —eV(R )] 8(r —R )O(R —r)3 2

dT p dr 3
—e(eV) + T eV 8(r —R)8(R„„„—r)) .
7r

(4.10)

Notice that in the first term on the right-hand side
(R & r & R) the net charge density of electrons and
quarks, n, (r) —nz(r), enters, where nz(r) n, (R )=-
[eV(R )] /3m2. By definition, the quark density is zero
in the second region, R & r & R„„,t. The expression of
n, (r), —

is computed exactly &om Eq. (2.6), treating the electrons
(and positrons) as massless particles. i An analytical rep-
resentation of V (r) in the gap region can be obtained at
zero temperature if the dV/dr term in Eq. (4.10) is ig-

n, (r) =, )(Js (r) + —p, —(T) T'

1 1
[eV(r)] + —eV(T) T (4.11)

The pressure of electrons and positrons can be calculated
exactly also in this limit. One obtains, from Eq. (2.5),

P. T= » ~ )M, (T) + 8 -V,, (T) T + iso T
leading for. Eq. (4.5) to

eV(R, T) = p, (R,T), ,], '

)
.

C
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nored (a good approximation), i.e., 20.0

d eV
dr2 [e V(r)] 8(r —R) 8(R.,„„—r) . (4.12)

18.0

16.0

Its solution reads

C
—R+C/[ V(R)]

'

(4.13)

14.0—I
12.0)

g) 10.0

with C—:+3m/2/e = 5.013 x 10s MeV fm. It leads for
a given crust potential, V(r) = V„„,t, to

8.0

6.0

Bgap = Bcrus%

(e Vcrust e V (R) )
(4.14)

4.0
-500.0

I

-300.0

30
II I

-100.0 100.0 300.0
Radial distance [fm]

I

500.0 700.0

Notice that a given value of V„„,q determines B„„,q, and
thus Rg p It is obvious that the gap disappears if the
crust potential coincides with V(R), the potential's value
at the surface of the strange core. In this case &ee ions
would reach the star's strange-matter core without re-
straint.

FIG. 13. Electrostatic potential of electrons in the close
vicinity inside and outside of the surface of a strange star. The
location of its surface is indicated by the vertical line. The
figures assigned to these curves refer to temperature (in MeV).
A representative value for the electrostatic crust potential,
eV„„,~ ——5 MeV (horizontal line), which is constant (see text),
has been chosen. The gap width extends from 40 fm to
about 800 fm, depending on temperature.

8. Crust region

The electrostatic potential in the nuclear crust regime,
r & B„„,q, is constant. This follows &om the fact that
the forces acting on the ions there, gravitational and
electric, must counterbalance each other at equilibrium.
Since the gravitational force is tiny compared to the elec-
tric force in the gap, one obtains dV/dr = 0 which implies
that the electrostatic potential is constant there, that is,
V(r) = V„„,t (=const). For what follows, representa-
tive values of V„„,q ——5 and 10 MeV have been chosen,
together with zero external potential [14].

typical for newly formed strange pulsars in supernovae.
In Ref. [14], a minimum value of 200 fm was estab-

lished as the lower bound on Rg z necessary to guarantee
the crust's security against strong interactions with the
star's strange-matter core. Via Fig. 16 we find that a
hot strange pulsar with T = 30 MeV cannot carry a nu-
clear crust whose electrostatic potential at the base is
larger than eV„„,q 0.1 MeV. A somewhat cooler star
of T 10 MeV can carry only crusts with eV„„,&+4
MeV. Finally, crust potentials in the range 8—12 MeV

B. Gap width at finite temperature

Figures 13—15 exhibit the behavior of eV(r) in the close
vicinity inside and outside of B. The curves differ with
respect to the temperature of the strange star and the
chosen value of V„„,q. For very low temperatures and
an electrostatic crust potential of 5 MeV, as chosen here,
a large gap of Bg p 800 fm results. Larger values of
V„„,q reduce the difference of the potential at the star's
surface and the inner crust, which narrows the gap. For
example, a value of eV„„,g ——10 MeV reduces Bg~& to
about 300 fm, as can be seen &om Fig. 14. This is con-
sistent with the finding in Ref. [14]. Most interestingly is
the impact of finite temperatures on the gap. From Eq.
(4.6) it is already known that the potential's value at the
star's surface, V(R), is reduced in this case. Figures 13—
16 exhibit that this reduction amounts up to 50% for
the temperatures under consideration. The associated
reduction of Rg ~ with temperature is rather strong. In
fact, we find that the gap even shrinks to zero for plausi-
ble values of both V„„,q and temperature that would be

20.0

18.0

16.0

) 140

12.0)I 10.0 10

8.0

6.0

4.0
-500.0

I

-300.0
I I

-100.0 100.0
Radial distance [fm]

I

300.0 500.0

FIG. 14. Same as Pig. 13, but for a electrostatic crust po-
tential of 10 MeV.
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20.0
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TABLE I. Kinetic energy, E„,acquired by p'red b a roton falling
toward the sur ace o a are sf f b trange star for a few selected
strange star masses.

14.0
M/Mo

E„[MeV]
0.1
36

0.5
95

1.0
187

1.4
252

1.85
350

+ 120-
CD

10.0

8.0
CD

6.0

4.0

2.0

40
-500.0 -300.0 -100.0 100.0 300.0 500.0 700.0 900.0
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FIG. 15. Same as cg. , uF 13 b t for zero external electrostatic
potential. The labels refer to temperature (in MeV).

are possible for stars with temperatures T 5 MeV.
this connection it is interesting to recall that the upper
limit on the density of the inner crust is determine
neutron drip, which occurs at about . x g,~c

where &ee neutrons begin to drip out of the most stable
nucleus Kr (Z = 36), at that density [14]. Being elec-
trically c arge neu ra,ll h t 1 the neutrons can gravitate toward
the star's strange-matter core where they are converted
into strange matter. The electrostatic potential in matter
a suc et h d nsities lies right in the above given range, 10

+10MeV. Hence, we conclude that the constraint V„„,t
MeV established here provides another independent limit
(in addition to the one set by neutron drip) on the maxi-
mum density of the nuclear crust that can be carried by a
strange star. Accidentally, both sources lead to the same
density xmI . pp iel t. A l' d to the formation of a crust on the

Ep
138 M/Mo

1 —0.295M/(Mo Bs)
MeV, (4.15)

where Rs ——R/10 cm and M/Mo is the star's mass
in units of solar mass. Via Eq. (4.15) we estimate om
our results (Fig. 11) that E~+250 MeV for a strange star

surface of a bare strange pulsar formed in a supernova ex-
plosion, we are left with the important conclusion that its
crust must be at rather low density in order to ensure a
suKciently large enough gap. In terms of mass, the crust
will be much lighter than 10 Mo established or a
strange pulsar possessing a nuclear crust whose density
at the base is equal to neutron drip [14,37].

A f ther interesting aspect, the Gndings presentedsa ur
a ove permi a ewt few simple considerations concerning e
accretion of matter onto the surface of a bare strange star
being bound in a binary system, whose companion star
is made up of ordinary matter. Furthermore, since the
universe is a rather dirty environment, it seems plausib e
to assume that there might be strange stars that accrete
some ambient (interstellar) material [14]. The idealized
case of spherical accretion of a plasma, which consists of

nonmagnetized strange star (assuming no dissipation in
the radiation flow of the infalling matter) has been con-
sidered in Ref. [16]. There, it was estimated that under
these circumstances, the kinetic energy of protons hitting
the surface of a bare strange star is given yb

1000.0

800.0

600.0

~
a

400.0
g5

FIG. 16. Gap width Rg p versus electro-
static crust potential, eV,„,t, . The labels re-
fer to temperature (in MeV).
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V. STABILITY AGAINST RADIAL
OSCILLATIONS
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TABLE II. Periods of radial oscillation, v, of a few selected strange-star models.

M/Mo
7p ms
Ty XIls

7-g ms

10
0.0123

6 165 x 10
4.11 x 10

10
0.0270
0.0134

0.895 x 10

0.1
0.0614
0.0301
0.0200

0.5
0.125
0.0581
0.0382

1.0
0.197
0.084
0.055

1.4
0.279
0.106
0.068

1.6
0.353
0.121
0.0769

1.85

0.160
0.0974

neutron star.
Finally, we point out that the instability of the charm

stars is already indicated by the small values of the adi-
abatic index I', defined in Eq. (5.7), of a ultrarelativistic
quark gas [15]. By xneans of Eq. (2.22) and Figs. 5 and 10
one sees that I' = 4/3 at charm-star densities. Stability
of a stellar model with respect to small radial perturba-
tions in the post-¹mtonian approximation requires that
I' ) 4/3+2M+/R, where K 1 [39]. For typical masses
and radii of charm stars, 1.3Mo and 8 km respec-
tively (see Figs. 10 and 11),one finds 2M+/B 0.5, lead-

ing to I'+5/3 for such stars. Therefore, the less deeply
analysis of the adiabatic index, performed in the post-
Newtonian approximation, indicates that the family of
charm stars may be unstable against radial oscillations.
(Of course, from this sixnplified analysis alone one cannot
definitely conclude that charxn stars are unstable. )

Figure 18 exhibits the oscillation amplitudes of the first
few vibrational modes of a strange-quark star with mass
M 0.5Mo. One sees that the number of nodes as-
sociated with an oscillation is equal to its order, n, as
determined by the mathematical structure of the eigen-
value equation. Specifically, the n = 0 mode of oscillation
is free of nodes. The corresponding periods of radial os-
cillation, v„(—:2n/u ), whose values are listed in the
figure caption, lie in the millisecond range, which is con-
sistent with the findings of Ref. [40]. Table II shows that

the lighter the strange star, the smaller the oscillation
periods. Indeed, in the limit of vanishing star masses,
which are obtained for e ~ 4B, the periods of all modes
of strange stars go to zero, as shown in [41]. This be-
havior arises because I' ~ oo when e —+ 4B, that is,
p —+ 0, when the central density of the strange star tends
toward its smallest possible value [15]. As known from
Fig. 17, the frequency of the fundamental mode, up, of
the most massive strange star (labeled S in Fig. 10) is
zero. Therefore, 7p = oo for that star model. The higher
acoustical modes of vibration of the maximum-mass star
are nonzero. They pass through zero at higher densities
(Fig. 17).

The impact of finite temperatures on the periods of the
fundamental radial oscillation, 7 p, of light strange stars is
illustrated in Fig. 19. It is significant only for stars with
masses M+1 Mo (cf. Fig. 10), whose properties are most
sensitive against variations of temperature. It is interest-
ing to compare these periods with those of neutron stars,
which reveals that the oscillation periods of neutron stars,
constructed for a few selected nuclear equations of state
[41], attain a minimum value of 7p (0.3 —0.4) msec
at intermediate star masses. This is diferent for strange
stars, due to their di8'erent generic mass-radius relation-
ship, for which 7p is smaller, the lighter the star (cf. Table
II). Both types of stars with masses M+1MO seem to
possess periods of oscillation of the same magnitude.
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FIG. 18. Amplitudes of the three lowest-lying eigenmodes
of oscillation (n = 0, 1, 2) of a strange star possessing a rep-
resentative mass of M 1.5Mo. The associated periods
of radial oscillation are 7p = 0.334 ms, 7q ——0.117 ms, and
v2 ——0.075 ms.
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FIG. 19. Lowest-lying periods of radial oscillation, vp, of
strange stars versus central star density, for star temperatures
T = 0 and 50 MeV.
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VI. SUMMARY

The purpose of this work consists in a detailed investi-
gation of the structure and stability of strange and charm
stars at finite temperatures. It is found that tempera-
tures T & 50 MeV modify the equation of state signif-
icantly only at energy densities that are close to 4B,
i.e., at small external bag pressures. The situation is
diR'erent for the electrons since they are bound to the
system by the electromagnetic interaction rather than
the strong force, as is the case for the quarks. Corre-
spondingly, the electron density varies for temperatures
in the range 0 & T & 50 MeV between one and two or-
ders of magnitude. A change of the density of electrons
is accompanied by a change of their chemical potential,
which, however, is smaller than +1 MeV. As a conse-
quence of the weak temperature dependence of the equa-
tion of state, the bulk properties of sequences of strange
stars also exhibit only a weak dependence on tempera-
ture. The quark/lepton composition of quark-star matter
is determined up to those densities at which even charm-
quark states become populated. We find that this takes
place at densities slightly larger than 10~ g/cm . In or-
der to fulfill the condition of electric charge neutrality,
there is only a slight need for electrons. Muons are com-
pletely absent in strange-star matter, and become popu-
lated only at densities larger than the threshold density
of charm quarks.

Of crucial importance for the existence of nuclear
crusts on the surfaces of bare strange stars is the exis-
tence of a Coulomb barrier associated with the diAerence
of the electrostatic potential at the surface and the base
of the crust. It is found that finite temperatures lead to
a considerable reduction of the Coulomb barrier, which
favors the tunneling of ions (atomic nuclei) bound in the
nuclear crust toward the strange star surface. In fact, the
electrostatic potentials at the surface of a hot strange star
and at the base of its inner crust may even become equal
at temperatures that are typical for newly formed pul-
sars, T (30 —50) MeV. Thus, the Coulomb barrier,
which prevents the ions in the crust &om coming into
contact with the star's strange matter core, disappears
and consequently conversion of confined baryonic matter
into strange matter is not prohibited any longer. There-
fore, we conclude that hot strange stars are unlikely to
possess nuclear crusts as long as their temperatures are
larger than about 5 MeV, depending on the value of the
crust's electrostatic potential at its base.

Another important topic of this article consists in per-
forming a stability analysis of quark-matter stars against
radial oscillations. It is found that the fundamental
eigenmode passes through zero at the density of the most
massive strange star. It is positive at all densities smaller
than this one. Thus, strange stars are stable against ra-
dial oscillations. The situation is di8'erent for all quark
stars having central densities larger than the maximum-
mass strange star. For all such configurations the funda-
mental mode is found to be unstable. More than that,
going to higher and higher central star density leads to
the successive excitation of higher-lying eigenmodes. We
thus arrive at the very important conclusion that no

quark-matter stars can exist in nature other than the hy-
pothetical strange stars. Specifically, this rules out the
possible existence of charm-quark stars.
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APPENDIX: FINITE- TEMPERATURE
EXPANSION

The coefBcients occurring in the expansion of pressure,
Eq. (2.33), are obtained from Eqs. (2.5) and (2.6) as

pi
g Ap.

Po

dE E E2 —m2 f; (E), (Al)
27r2

pgi
gi PPgi dE E E2

27„2 (A2)

—((pg, ) —m, ) &
gippgi 1 2 2 s

27r2 3 (A3)

'
1 —(» —a~)
1
up+ AX

ifi = u, c,
ifi=d, 8,ifi=e, p

(A4)

All those quantities not defined here are explained in Sec.
II. From Eq. (A3) one gets, using Eq. (2.1S),

6m'2
', pe4n4 (1 —z,'):

p pp, mp, T=p
(A5)

The second coefFicient reads

Opi gi cip
BAx 2vr2

popsT~o gici pp
27r2

E2 —m2 f, (E) (A6)

dE E E —m,. (A7)

and thus

po&o&T=p

gici 4 p s

6vr22 po go (1 —z;) (AS)

The third coe%cient is obtained from

Notice that at finite temperatures the quantity qi is given
by (cf. Eq. (2.17) and Sec. IIC)
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where the transformation ( = (E —yrl;)/T has been in-
troduced. For the zero-temperature coefficient one gets

The coefficients occurring in the expansion of particle
density are obtained from Eq. (2.6), and are given by

t9Ai gi Pp'gi

2vr2
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~i
gb~

Po po, ~o,T=O

OOgigot . 2 m2 e
, ) og' (pq') —m,

gi
27r2 Ppgi 1 —z ~ (A14)

and
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which has the same mathematical structure as Eq. (A12). At zero temperature it reduces to
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(A16)

Finally, &om
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one gets

8~P p pp, ap, T=O

~ 2 2
gimp m' gi

2 poli —=
6 Ppgi ~ (A19)

The expansion coefficients of particle density enter in the condition of electric charge neutrality, Eq. (2.3), written
at finite temperature:

f On, bp, On, BAi T
ag. ~„o„T;&o

(A20)

Now, Eq. (A20) holds at all temperatures T ) 0. In
the special case of T = 0 one has Lp = Lx = 0, and
thus it follows that P,. ihn, o

——0, in agreement with Eq.
(2.3). Since the sum of the remaining three terms on the
right-hand side of Eq. (A20) must be equal to zero at any
temperature different Rom zero, all three must possess

the same functional temperature dependence. We thus
make the ansatz

b)(1, , (T i' , (T')
a7r

~

—
~

and Ex = bn
~

—
I

. (A21)
E&o) (, &o)
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Inserting Eq. (A21) in Eq. (A20) leads to an equation of
the form

2 ) 'BAx „

where

0 = Aa+Bb —Q (A22) = 2 —xp(4 —3xp) + 2(1 —xp) gl —z

+xp 1 z

(A24)
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3

To derive the pressure-energy density relation at Rnite
temperature, we start from Eq. (2.1), which reads now

(p denotes an external pressure acting on the quark bag)

I +B ) Pi,p+ ~~ +pi Ap Op;

po &&o &+o ~ po ~o ~TO

pi
(A26)

Since at zero temperature p+ B = g,. p, p, it follows that the expansion in curly brackets must vanish identically. By
means of Eq. (A21) one obtains, in analogy with Eq. (A22),
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where
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A = 1 —Ql —z, —3xp(xp —2xp + 2)

B = 2 —xp(4 —3xp)

Xp (A33)

Muons and c quarks occur in the system only at den-
sities larger that 3.8 x 10~ g/cm and 1.1 x 10~ g/cm,
respectively. Quark matter at lower densities consists of
only u, d, 8, quarks and electrons. For such matter the
above coefBcients, A through P, are given by the simpler
relations

D = (1 —xp) ——xp
3 1 33''

P = — (1 —x,) + 1+ (1 —-z )+ —x-=1 2 1 2 2

2 s 3 0

(A35)

(A36)

Equations (A22) and (A27) constitute two relations
for the two unknowns a and b. Solving for them and
inserting the results into Eqs. (2.33) and (A21) leads to
the expressions for p; and n; given by Eqs. (2.34) and
(2.35), respectively. Finally, the expression for the energy
density is obtained from Eqs. (2.1) and (2.2) which, for
this purpose, are combined to

t-" = (1 —xp)'+ —x,'+ 1+ (1 —z,') —: (A34) 3@+4B + ) (e; —3p;)
4=C) S~P

(A37)
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