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Multiparticle data in high energy hadronic interaction mith nuclei
and Koba-Nielsen-Olesen-Golokhvastov scaling
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In this Brief Report, multiplicity data of 7r-nucleus interactions are studied in the light of the
newly proposed KNO-Golokhvastov scaling, the validity of which was previously reported only for
e+e and pp interactions. Furthermore, it is shown that the energy-independent scaling function
can be described well by the log normal distribution. A comparison of the scaling function of the
multiplicity distribution in vr-nucleus interaction data with the e+e and pp data is presented.
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A lot of what we know about the dynamics of multi-
particle production comes from the study of multiplicity
distributions [1]. Various methods have been suggested
by diferent authors for describing the multiplicity distri-
bution of the particles produced in high-energy interac-
tions at ultrarelativistic energies. They are multiplicity
scaling [2,3], the negative binomial distribution (NBD)
[4], the two sources model [5], partially coherent laser
distribution (PCI D) [6], the statistical boot strap model
[7], the three fireball znodel [8], the modified two sources
model [9], the sum of two NBD's [10],etc. In this connec-
tion, scaling properties of multiplicity distributions draw
a great deal of attention because here the distributions
of multiplicity data of various energies can be united in
the same framework. The multiplicity data of different
energies can be described by a single energy-independent
scaling function and the parameters for such a function
are fixed for all energies. Standard Koba-Nielsen-Olesen
(KNO) scaling was derived from Feynman scaling for
asymptotic energies [2]. Some experimental works re-
ported [11,12] the validity of KNO scaling even at fi-
nite energies. In contrast, violation of KNO scaling to
the UA5 data of pp collisions [13] at the CERN Collider
has provoked a great deal of discussion. Moreover, KNO
scaling is not self-consistent. This scaling has been re-
defined by Golokhvastov to remove the inconsistency in
its mathematical formulation [3]. After Golokhvastov,
a modified version of KNO scaling has been known as
KNOG scaling. The e+e and pp data have been re-
ported to obey this KNOG scaling [14—16]. For univer-
sality of the scaling law, it is necessary at this stage to
check the validity of the KNOG scaling for more complex
processes such as hadron-nucleus and nucleus-nucleus in-
teractions. Recently, a successful attempt was made to
describe the energy-independent scaling function in the
form af a log normal distributian [14,15,17,18), which is
the most fundamental distribution encountered in na-
ture. The KNOG scaling behavior and the log normal
form of the scaling function can be explained by assuming
a Polyakov scale-invariant branching process [19] as the
mechazusm af znultiparticle production [17]. It is interest-

ing to note that the intermittency phenomenon [20,21],
which has created much controversy in recent years, can
also be a manifestation of the same branching process.
This probable correlation between the intermittency and
log normal distribution prompts one to study this scaling
behavior of the multiplicity distributions.

In this paper we try to verify KNOG scaling with a
hadron probe. Our experimental data of the vr -Ag/Br
interaction at 200 and 350 GeV/c have been used for the
analysis. We have also tried to Gt our data sets in the log
normal form as in earlier ones. Details of the exposure
of the plates, the identification of the tracks, and their
angle measurement with respect to the beam axis have
been described in our earlier papers [22,23]. To minimize
the variation of the impact parameter, we selected those
Ag/Br events for which the number of heavy tracks, W,
lies within 10 & N & 14. With this selection criteria, a
sample of 484 and 457 events for 350 and 200 GeV/c zr

interactions was chosen for this present investigation.
According to KNO scaling, derived by Koba, Nielsen,

and Olesen [2], the probability P of n secondaries to be
produced in an interaction can be expressed in the form

P„= g(n/(n) ),
(n)

where (n) = g„onP„and v/i(n/(n)) is an energy-
independent scaling function normalized by the equation

@(z)dz = z@(z)dz = 1, z = n/(n) .
0 0

This scaling is not self-consistent at any scale (n). Only
for large (n) (i.e. , energy) can the following conditions be
written:

1 OD

1 = ) P = ) y(n/(n)) @(z)dz = 1 . (2), (n) o
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A successful generalization was introduced by Golokhvas-
tov to remove the mathematical inconsistency in KNO
scaling [3]. After this introduction, P can be redefined
as

n+1 (n+1) /(n)
P„= P(n)dn = @(z)dz .

n n/(n)

Here P(n) is the probability distribution of a continuous
parameter (multiplicity) n, which can be written in the
form
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P(n) = i/)(n/(n)) .
1
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i/i(z) is the energy-independent scaling function normal-
ized by the equation 0 00

0.00 3.00

f @(z)dz =
0

z@(z)dz = 1, z = n/(n) .

The continuous average multiplicity can be approximated
[16] as (n) = (n) + 0.5, for (n) ) 1.

Then the normalization condition (2) is true for
any scale (n). It was shown in Refs. [14,17] that if
KNOG scaling holds, the multiplicity data plotted as
S„(g,. „P;) versus reduced multiplicity n/(n) should
overlap as a single function. From the definition of S„,
it has been shown [14] that

~- = ) &* = f @(*)d = —4'(*)
1=n

where P(z) is a primitive function of @(z).
Now the probability can be calculated as

( +i)/(-)
@( )d =0[( +1)/( )] —&( /( )) .

n/& &

(6)

The above integral can be approximated [15] by the value
at the middle of the integral range as

(n+ X) /(n)
P„= @(z)dz

= I/(n)@[(n+ 0.5)/(n)]
= 1/((n) + o.5)@[(n + o 5) /((n) + o.5)] .

It is interesting to note that the scaling function @(z)
for the e+e and pp interactions was found to have a log
normal form [14,15,17,18]. In this form the function vP(z)
can be written as

@(.) =(~/~2 )[1/( + )]
x exp[ —(ln(z + c) —p)'/2o'] . (8)

The parameters N, p, c, and o are constrained by the
following two normalization conditions [18]:

(I) ) P„= P(n) dn
n=0 0

N= —erfc[(ln c —p)/~2cr] = 1,
2

where erfc stands for the complementary error function
[24] and

OO

erfc(2:) = exp( —t )dt .
7r x

(II) (z) = zQ(z)dz = B exp(p+ a /2) —c = 1,
0

n/' (n )
FIG. 1. Plot of 8 = g. P, against n/(n) for data of
-Ag/Br interactions at 200 and 350 GeV/c. The symbol

represents the experimental points and the solid line indicates
the theoretical curve.

TABLE I. Parameters c and D obtained by fitting the data of vr -Ag/Br interactions at 200 and
350 GeV/c in log normal form.

Data
7r

All

Momentum
(GeV/c)

200
350

C

0.87+0.80
0.75+0.62
0.87+0.15

D
0.47+0.01
0.40+0.03

0.465+0.005

x'
14.66
16.0

32.00

NDF
19
20
41

x /NDF
0.77
0.80
0.78
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Scaling
KNOG
KNO

NDF
41
38

x'
32.00
36.5

g /NDF
0.78
0.96

Confidence level
-85%
=60%

TABLE II. Comparative study of KNOG and KNO scaling
behaviors.
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where B = erfc(v —o /~2) /erfc(v) and v = (ln c-
p, ) /~2o.

For small values of o and c, the following approxima-
tions can be used [15]:

JV 1 and exp(p+ o /2) —c = 1 .
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ee
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The dispersion D of the scaling function @(z) is equal to

D = V/(z ) —(z) = exp[@+ o /2]/exp(o2) —1 . (10)

Thus, from the normalization conditions (I) and (II), it
is seen that the log normal function Q(z) has only two
&ee parameters. Since p and o. are strongly correlated, it
is therefore better to take the shift c and dispersion D of
the scaling function as &ee parameters to be fitted by y
minimization and then p and o may be calculated from
Eqs. (9) and (10). Hence

o. = Qln([D/(I + c)]2 + 1j and p = ln(c+ 1) —rr /2 .

(»)
Then values of c, p, and o can be substituted in Eq. (8)
to obtain g(z), and hence P can be calculated using
Eq. (7).

In the way described above, we have analyzed our
own data of the vr -Ag/Br interaction at 200 and 350
GeV/c. We have calculated the experimental value of
S = P, P; for the full phase space data at each en-
ergy separately. Figure 1 shows the plot of experimental
values of S„with reduced multiplicity n/(n) for the data
of each energy. The closed square and closed triangle
represent the experimental points of 200 and 350 GeV/c

initiated interactions, respectively. Typical statisti-
cal errors are shown at a few points. Prom Fig. 1 it is
observed that the plot of S versus n/(n) for different
energies, in general, speaks in favor of KNOG scaling.
We have fitted each of the data sets separately and also

FIG. 2. Parameters c and D of the log normal distribution
fitted to each of the data sets. The solid dots represent the
values at each energy of our vr-nucleus data and the horizon-
tal line represents the corresponding values for simultaneous
fitting of all data sets.

all data sets together in the form of a log normal distri-
bution using Eq. (7). The MINUIT program of CERN is
used for curve fitting. The resulting values of the param-
eters c, D, and also y are given in Table I. To get the
theoretical curve, we have used the parameters obtained
by simultaneous fitting of all the data sets. The solid line
in Fig. I represents the theoretical curve. We have also
tried to fit the multiplicity data in the KNO form using
the usual g(n/(n)) function:

Q(z) = (a,z+ a2z + asz + a4z )e ', z = n/(n) .

To have a comparative study between the KNO and
KNOG scaling behavior, we have presented the relevant
parameters in Table II. The table shows that the level
of confidence of fitting is about 85% for KNOG scaling
whereas the confidence level falls to only about 60% in
the case of KNO scaling. So the KNOG formulation pro-
vides us with a much better energy scaling law than KNO
scaling.

The values of the parameters c and D from our 7r-

nucleus data are plotted against ~s along with the pa-
rameter values of e+e and pp data [18] in Fig. 2. In

TABLE III. Value of the parameters c and D for data sets of 7r-nucleus, lepton-lepton (e+e ) [15], and hadron-hadron (pp)
[18] interactions.

Type of
interaction
vr-Nucleus

Lepton-Lepton

Data
-Ag/Br
-Ag/Br
e+e

Energy/momentum
200 GeV/c
350 GeV/c

~s = 7—91 GeV

c
0.87+0.15

0.56+0.03

D
0.465+0.005

0.277+0.001

x'
32.00

208.55

NDF
41

282

y /NDF
0.78

0.74

Hadron-Hadron vs = 3—62 GeV 4.25+0.20 0.629+0.003 458.49 1.45
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this figure the solid dots represent the values at each en-

ergy of our mA data whereas the horizontal line is drawn
through the value for all data sets. The figure suggests
that the data of different energies can be described by a
single log normal distribution with two fixed parameters.

The parameters obtained by simultaneous fitting of our
~-nucleus full phase space data of all energies as well as
the parameters of the lepton-lepton data (e+e ) [15] and
hadron-hadron data (pp) [18] are presented in Table III.
The shape of the scaling function for e+e, pp, and our
mA collisions are also compared in Fig. 3.

We end with the following conclusions.
(i) KNOG scaling is better supported by our multiplic-

ity data of vr-nucleus interactions at 200 and 350 GeV/c
than KNO scaling.

(ii) The energy-independent scaling function has the
log normal form, similar to the form obtained with e+e
and pp data. However, the values of the parameters are
diferent in different types of interactions.

1 0

0 5

10

10

N

10

10

10
0

FIG. 3. Comparison of the shapes of the scaling function
g(z) for 7r-nucleus, lepton-lepton, and hadron-hadron inter-
actions.
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