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‘We present a model in which supersymmetry is dynamically broken at comparatively low energies.
Previous efforts to construct simple models of this sort have been hampered by the presence of
axions. The present model, which exploits an observation of Bagger, Poppitz, and Randall to avoid
this problem, is far simpler than previous constructions. Models of this kind do not suffer from the
naturalness difficulties of conventional supergravity models, and make quite definite predictions for
physics over a range of scales from 100 of GeV to 1000’s of TeV. Thus “renormalizable visible sector
models” are a viable alternative to more conventional approaches. Our approach also yields a viable
example of hidden sector dynamical supersymmetry breaking.

PACS number(s): 12.10.Dm, 11.30.Pb, 11.30.Qc, 12.60.Jv

I. INTRODUCTION

If supersymmetry is truly to provide a resolution of
the hierarchy problem, it is necessary that it be dynami-
cally broken. Yet, while various mechanisms for dynami-
cal supersymmetry breaking (DSB) are known, there doe
snot yet exist any particularly compelling particle physics
model. Most models of supersymmetry breaking assume
breaking at a scale of order Mi,; = /m3/2Mp, with the
gravitino mass mg/; of order the weak scale, and sim-
ply put in soft supersymmetry-breaking parameters by
hand. Moreover, in these theories, the superpotential
and Kahler potential cannot be the most general com-
patible with symmetries. In the context of string theory,
a number of models have been constructed. However,
explicit models which actually do break supersymmetry
have other difficulties, such as a nonvanishing cosmolog-
ical constant and large flavor-changing neutral currents.

An alternative possibility is that supersymmetry is
broken at a low scale, within a few orders of magnitude of
the weak scale. In such a model, gauge interactions can
serve as the “messengers” of supersymmetry breaking,
giving rise to a high degree of degeneracy among squarks
and sleptons. However, past efforts to build such models
have met a number of obstacles. The general strategy
has been to take some model which exhibits DSB, and
to gauge some global symmetry, identifying this with a
subgroup of the standard model gauge group. However,
this typically leads to difficulties with asymptotic free-
dom. In [1], this problem was avoided by identifying
the global symmetry with a new gauge symmetry, car-
ried both by “supersymmetry-breaking sector” fields and
by “messenger sector” fields which also carry standard
model quantum numbers. A second problem is the ap-
pearance of axions associated with spontaneously broken
R symmetries. As explained in [2], the appearance of
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spontaneously broken R symmetries is generic to models
of dynamical supersymmetry breaking. The R axion in
these models is not seen in terrestrial experiments, due
to its large decay constant. However, it could be emit-
ted by red giants and supernovae, leading to unrealistic
cooling rates. To avoid this difficulty, it seemed neces-
sary to introduce additional gauge groups, whose sole
purpose was to give mass to the axion. The resulting
models were quite unwieldy, with extremely large groups
and representations, and suffered from several natural-
ness and fine-tuning difficulties.

Recently, however, Bagger, Poppitz, and Randall [3]
have pointed out that the R axion is never a problem
for astrophysics. They noted that in the framework of
a supergravity theory, the R symmetry is necessarily ex-
plicitly broken, and the R axion obtains a mass of order

PR Ll i
ms M, (1.1)

Here, F' is the Goldstino decay constant (the expectation
value of the F' component of some hidden sector field). In
models with radiative generation of squark and slepton
masses, this is typically of order (100 TeV)?Z, so the axion
mass if of order 10 MeV or larger. This term originates
from the expectation value of the superpotential required
to cancel the cosmological constant; such contributions
can also arise from other dimension-five R symmetry-
breaking operators [2]. This mass is large enough to sup-
press the production of these particles in red giants and
supernovae [4].

With the R axion problem disposed of, one may be
able to construct simpler and more compelling models
of dynamical supersymmetry breaking. This is the goal
of the present work. We will outline a general strategy
for model building, and apply it to some particular exam-
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ples. The models we will describe will suffer from none of
the fine-tuning problems of earlier work. We will require
that some parameters be small, but will argue that this
is technically natural. The phenomenology of the models
will be quite rich. At scales comparable to the weak scale,
one will have the spectrum of the minimal supersymmet-
ric standard model, with superpartner masses roughly
proportional to gauge couplings, and possibly with an
additional singlet and other fields. At higher scales, how-
ever, there will be additional fields, including a vectorlike
set of messenger quarks and leptons. Finally, at a still
higher scale, one will find the supersymmetry-breaking
sector itself.

Probably the simplest model of dynamical supersym-
metry breaking is that based on the group SU(3)xSU(2),
and we will illustrate our considerations with this theory.
In the next section, we will review some of the essential
features of this model. In Sec. III, we will gauge a U(1)
symmetry, and couple additional fields to the model, al-
lowing for feed down of supersymmetry breaking to or-
dinary fields. We will compute the leading contributions
to squark and slepton masses. We also discuss how this
model could be used in the hidden sector, giving small
but possibly adequate masses to the gauginos.

In Sec. IV, we will take up the problem of SU(2)xU(1)
breaking. We will show that this breaking will require the
introduction of additional fields into the model. Several
examples involving additional singlet fields and compati-
ble with all exisitng constraints will be worked out in de-
tail. All of these models will require that some couplings
be small [of order (az/7) or (az/m)?%]. Such numbers, of
course, are not unfamiliar in the framework of the stan-
dard model, and will be seen to be natural in the sense
of ’t Hooft [5].

In Sec. V, we will discuss some experimental signals
of low-energy supersymmetry breaking, such as terres-
trial gravitino production. Finally, in Sec. VI, we present
some final remarks and conclusions. We will argue that,
from perspectives such as naturalness, these models are
at least as successful as more conventional intermediate
scale theories. Indeed, they solve the problems of flavor-
changing neutral currents far more easily than such the-
ories. They thus represent, in our view, a viable alter-
native to conventional models, and should be taken seri-
ously.

II. REVIEW OF THE 3-2 MODEL

The minimal model with calculable dynamical super-
symmetry breaking is the 3-2 model, based on the gauge
group SU(3)xSU(2) [6]. It is natural, then, to use this
theory to construct a viable theory of DSB. Here we will
recall some of the basic features of this model. More de-
tail is presented in [6,3]. The chiral superfields of the
model are denoted by

Q=(3,2)13,
U= (37 1)—-4/3 )
(2.1)
D =(3,1)y,
L=1(1,2)—1

Here, the numbers in parentheses refer to the
SU(3)xSU(2) representation, while the subscript refers
to the quantum numbers under a global U(1) symmetry
of the model, which we will later wish to gauge. (This
will require at least one additional field to cancel the
anomaly.) We will refer to this symmetry as “messenger
hypercharge,” or simply as hypercharge, but it should not
be confused with the usual hypercharge of the standard
model.

The most general renormalizable superpotential con-
sistent with these symmetries is

W = AQLD . (2-2)

In addition to hypercharge, this model also has a
nonanomalous R symmetry. In the limit of vanishing
A, the theory has flat directions in which the gauge sym-
metry is completely broken. The spectrum consists of
massive vector multiplets, with mass of order g;v [here
g; denotes the SU(3) or SU(2) gauge coupling, and v de-
notes a generic expectation value], and three massless
chiral multiplets. These multiplets may be represented
by the gauge-invariant combinations

X, =DQL, X, =UQL, X;=detQQ, (2.3)
where, in the last expression
Q = (Ua D) (2'4)

and the determinant is in flavor space. The actual mass-
less states can be found by expanding these field about
their vacuum expectation values (VEV’s). Note that
X: and X3 are neutral under the U(1), while X, car-
ries charge —2. If the SU(3) coupling is larger than the
SU(2) coupling, this model reduces to supersymmetric
QCD with three colors and two flavors; in this theory, it
is well known that instantons generate a superpotential
(we follow the convention of [3])
2A3%

Wep et(QQ)

For small A, we expect that all of the VEV’s are large, so
that the gauge couplings are effectively weak. Thus one
can analyze the theory simply by minimizing the super-
potential and the D terms. By simple scaling arguments,
the VEV’s of the scalar fields all scale as v ~ A3//\1/7.
One finds that supersymmetry is broken. One can com-
pute the spectrum numerically [3], but it is not hard to
guess its main features. There are three massless states.
Apart from the Goldstino and the axion associated with
the breaking of R symmetry, the fermion in the charged
multiplet, X, remains massless—this is necessary to sat-
isfy anomaly constraints. The charged scalar and the
other three real scalars gain mass squared of order A\2v2.
The vector multiplets still have masses of order g;v, but
are slightly split.

Before closing this section, it is worthwhile to men-
tion some other reasonably simple models which exhibit
dynamical supersymmetry breaking, which we will use
to illustrate some aspects of model building. There are
two general criteria for a model to break supersymmetry

(2.5)
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dynamically. First, the classical theory should not pos-
sess any flat directions. Second, the model should con-
tain global symmetries which are expected to be sponta-
neously broken nonperturbatively. Another model which
satisfies these two criteria is a theory with gauge group
SU(5) with a single 5 and 10 [7]. It is easy to see that this
model possesses no flat directions. By an SU(5) trans-
formation, one can always take the 5 to have an entry
in only the first component. But there is no way that
one can cancel the resulting D term with the 10. This
theory also contains a global U(1) which can be gauged
by adding a single new field carrying the U(1) to cancel
the anomaly.

Unfortunately, in this model, there is no small parame-
ter which permits systematic computations. As a result,
one can only guess what happens. However, it is almost
certain that some of the global symmetry of the model is
spontaneously broken and that supersymmetry is broken.

This model admits a set of generalizations [6]. As an
example, consider a model with gauge group SU(7), an
antisymmetric tensor, A;;, and three 7’s. Before adding
a superpotential, this model possesses flat directions in
which SU(7) breaks to SU(5) with a 5 and 10. As a result
of supersymmetry breaking in this lower-energy theory,
the flat directions are lifted; this cannot, however, be
nicely described in terms of an effective superpotential.
One can add a tree-level potential which lifts the flat
directions:

W = A;Ti7 . (2.6)
The resulting theory is expected to have broken super-
symmetry with a good ground state. Note that the model
has an SU(2)xU(1)? global symmetry which may be of
use; for instance, a U(1) subgroup of the SU(2) may be
gauged without the need for additional fields to cancel
anomalies.

Still one other model of potential interest possesses
gauge group SU(5), two 10’s and two 5’s and the most
general superpotential allowed by the symmetries. Again
this model has no flat directions, and an SU(2)xU(1)?
global symmetry. Unlike the previous case, for small
value of the superpotential coupling, the ground state is
completely weakly coupled, and everything is calculable
in principle. However, actually minimizing the potential
is quite difficult.!

III. FEEDING DOWN DSB

Let us focus on the 3-2 model, and consider how super-
symmetry breaking might be fed down to ordinary fields.
No renormalizable couplings to ordinary fields can ap-
pear in the superpotential (this is true even if we add a
singlet), so we will try to take advantage of the hyper-
charge symmetry. We do not want to identify this sym-
metry with any conventional (global or local) symmetry

!We thank Poppitz and Randall for a discussion of their
efforts on this problem.

of the standard model. One reason for this is that at one
loop the D term for this U(1) receives a nonvanishing
conribution. We will estimate this D term shortly. But
there is another reason, which is more generic. It applies
even to models in which one does not generate a low-
order D term (examples of such models will be discussed
later). Consider some general model which breaks super-
symmetry, and identify a global U(1) symmetry of the
supersymmetry-breaking sector with a gauge symmetry
carried by ordinary quarks such as ordinary hypercharge
or (a now gauged) B — L. Squarks will then gain mass,
typically at one or two loops. In the hidden sector, R
symmetry is spontaneously broken, so gauginos can gain
mass. But gluinos, which do not carry the U(1) charge,
can gain mass at best a tone higher order in the loop
expansion than squarks. For example, if squark masses
squared arise at two loops, gluino masses arise at three
loops. As a result, gluino masses will probably be un-
acceptably small.? This argument does not apply if one
can gauge an SU(3) symmetry of the supersymmetry-
breaking sector and identify it with color. However, then
one must consider rather large gauge groups (which usu-
ally entails loss of asymptotic freedom) or consider com-
plicated structures such as that of [1].

Since we will focus here on simple supersymmetry-
breaking sectors, with only U(1)’s which can be gauged,
we will adopt a different strategy. We will communicate
supersymmetry breaking to the ordinary fields through
another set of “messenger” fields. The messengers will
include quarks and leptons (g and !) which are vectorlike
with respect to ordinary gauge interactions. These vec-
torlike quarks and leptons couple to gauge singlet chiral
fields whose scalar and auxiliary components gain expec-
tation values at the same order of perturbation theory,
as a result of their interactions with fields carrying mes-
senger hypercharge. (It is, of course, necessary to make
sure that messenger hypercharge is anomaly-free.) As a
result, ordinary squark, slepton, and gaugino masses will
be of the same order. (Another possibility, which we will
not explore further in this paper, occurs in models where
a D term for the messenger gauge group is not generated
at low order. Then the new vectorlike quarks and leptons
may be able to also carry the messenger gauge group.)
SU(2)xU(1) breaking will involve couplings to (possibly
additional) singlet fields, in conjunction with the usual
radiative mechanism for generating negative Higgs bo-
son mass via the top quark Yukawa coupling.

Before going on to construct models, it is helpful to
study the Fayet-Iliopoulos D term generated for messen-
ger hypercharge in this model. Its sign is relevant to
model building efforts. This D term is easily estimated
by considering in somewhat greater detail the form of the
spectrum. For zero A, the 3-2 model possesses flat direc-
tions. In these flat directions there is one massless chiral
field charged under the U(1). One can think of this in
terms of the gauge-invariant object

2The possibility that very light gluinos might still be allowed
has been much discussed in the recent literature, e.g., in [8].
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X, =UQL . (3.1)
It is the fermionic component of this field which is the
massless fermion in the true vacuum at nonzero A. The
complex scalar gains a mass squared of order A%2v2. Now
it is tempting to compute the Fayet-Iliopoulos term by
noting that the leading, quadratic divergence, is canceled
provided Tr(Y) = 0, and then assuming the first, sub-
leading term is dominated by the light charged scalar.
The result is logarithmically divergent. One might want
to identify the cutoff with the masses of the vector mul-
tiplets, some of which are charged under the U(1).

In fact, this estimate is correct. It follows from sum
rules for the spectrum in this model. One can derive the
sum rule relevant to the present circumstance by the fol-
lowing considerations. Work in terms of component fields
(rather than superfields) and choose ’t Hooft-Feynman
gauge. This has the advantage that the scalar fields ap-
pearing in the vector multiplets are then complex fields.
Expand the superpotential about the minimum in the
form

W =Wo +vijb; ¢7 +--- (3.2)
where Wy denotes the part of the superpotential involv-
ing the neutral fields, and we have exlicitly exhibited the
part contributing to the masses of charged fields. (There
are three fileds of charge +2 and four of charge —2. One
can, however, project these fields onto the zeroth-order
massive states.) The actual scalar mass matrix has two
pieces. There is a piece of the form mqub;-‘qﬁj. There is
also a piece of the form mfj(j),-d)j. This piece, however,
makes a contribution to the D term down by A2/g? com-
pared with that above. So we can take the mass matrix
to be

( M + 'y 0 ) (3.3)

0 M3Z +~*4T

Note that the upper block, which gives the masses of the
fields with charge +2, is 3 x 3, while the lower block,
which gives the masses of fields of charge —2, is 4 x 4.

Now let us examine the computation of the D term.
Starting with the expression

2\ 4 4
= (% [k
<D>_(21r) Z,- y’/k2+m?’

the leading divergence cancels. The subleading term is
given by

(3.4)

2
_ 9y
(D) = 1672

Zyim? In(A?/m}) . (3.5)

The divergent part is easily seen to cancel, in view of
the structure of the mass matrix described above. It is
proportional to

Tr(Mg +v'y) — Te(M +4*47) =0 .

In Eq. (3.5),
m? In(AZ/m2).

(3.6)

there is a piece proportional to
(Recall m? is the mass of the light

charged field, of order A%v2.) In view of the cancellation
of infinities we have just noted, A in this term must be
replaced by My, where My is some typical vector mass,3
of order g?v? [where g is the SU(3) or SU(2) gauge cou-
pling]. Putting this together, we have with logarithmic
accuracy that the coefficient of the D term is given by

2
¢ = 2 mi(g?/2?) .
Note that if we cancel the anomaly of this model by
adding a field E of charge +2, the sign here is such that
this field acquires a positive mass on account of the D
term, and the D term has a nonzero expectation value.

We can use this result to build models. As explained
earlier, we would like to have a gauge singlet field ob-
tain an expectation value. So we introduce the fol-
lowing fields, with their corresponding U(1) charges in
parentheses:*

E(+2),P(+1),N(-1),5(0) .

In addition, we include a set of vectorlike quarks
and leptons. @ We take these to have conventional
SU(3)xSU(2)xU(1) quantum numbers, e.g.,

(3.7)

(3.8)

11(3, 1)—2/35 6(37 1)2/3a l(lv 2)1, l(la 2)—1 . (39)
For the superpotential we take
W = A, PNS + %EN” + 1\3353 + k15qq + k2SIl .
(3.10)

What are the dynamics of this model? On account
of the D term, the field N obtains an expectation value.
This leads to a mass for several of the fields. In particular,
the S and P fields pair to gain mass. Note that the sign
of the D term is relevant here. Had the D term had
the opposite sign, some linear combination of the P and
E fields would have obtained a VEV. There would have
been a massless chiral field at lowest order. At next order,
if this field received a negative mass squared, it would
have gotten a VEV, inducing as well the VEV for the S
field which is needed to give the g and ! fermions mass.
With the given sign of the D term, it appears to be more
difficult to give the S field the necessary VEV. However,
suppose that the coupling A; is very small. In this case,
corrections to the S, P, and F masses from gauge field
exchanges (at two-loop order) can be important. These
corrections are easily estimated. Just as we have argued
that the light charged scalar makes the most important
contribution to the D term, so this field can be argued

%It is easy to check that there are no terms of order
MZ In(MZ) or M. This follows from the form of the mass
matrix in Eq. (3.3).

“An alternative charge assignment, which allows the new
SU(3)xSU(2)xU(1) gauge groups to be simply unified, is to
take the P and N fields to have charges +4. With a suit-
able superpotential and additional singlets this also leads to
a satisfactory model.
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to make the most important contribution here. In [1],
it was shown that the two-loop contribution of Fig. 1
to the mass of a field of charge y, to first order in the
supersymmetry-breaking mass shifts, can be written as
y2m?2, where

2 2
m? =8 (1“(’;2> D (-1)FyimZIn(A%/m}) . (3.11)

%

Here the sum is over the fields appearing in the diagram;
y; are their U(1) charges and m? their masses. Again,
we can consider the contributions of the different states.
The same sum rule we used before shows that the leading
divergent term cancels; the subleading terms give a result
equal to

2 9% ’ 2 9
m =—32(167r2) mj ln(:\—z—) ,

where m; is the mass of the light charged field of the 3-2
model, and A is the coupling appearing in the superpo-
tential of that model.

With this correction, the full potential of the model is

vy

+m?(4|E|* + |P|* + |N|?) .

(3.12)

awz 15 .2 2 2 2y2
—9i +—29Y(f + | | ‘H I “| |)

(3.13)

Now if A; is small enough, the negative mass term will
lead to VEV’s for P, N, and E; this in turn will drive
VEV’s for S and Fs. One might imagine that A; would
have to be quite small, of order g,/(47), but in practice,
it turns out that A; does not need to be especially small.
For example, taking

a) b)

49097

c) e d) ﬁ/,x\ﬁ
/(2,_(1,:4 // \\,
A \ J A A
¥

FIG. 1. Two-loop diagrams contributing to scalar masses
in various models. Dashed lines denote scalar fields; wavy
lines are gauge fields. In (a) and (b), the scalar emits a gauge
field which couples, in turn, to fields without a supersymmet-
ric spectrum; in (c) the scalar couples to other scalars through
the D term; in (d), it couples to its fermionic partner and a
gaugino. The labeling in the figure refers to the contributions
to masses of “ordinary” squarks and sleptons. For the P, N,
and E fields it is the hidden sector fields which run in the
loop.

gy=1, A1 =02, A, =03, A3=03, (3.14)
we find that the potential minimized at
n = —2.44€,
p = 1.40¢ ,
s =1.28¢, (3.15)
e =1.27¢ ,

Fg = —0.188¢2% .

It will be convenient to work in a range of parameters for
which Fs is relatively small (Fs < k(1,2)(S)?). This is
achieved, for example, if A3 is small.

Now that S and Fs have expectation values, the stage
is set to give masses to squarks, sleptons, and gauginos.
Gaugino masses will arise through the one-loop diagrams
of Fig. 2. To leading order in Fg, the resulting mass is

ma— 98 Fs
97 1672 S

(3.16)

Squark and slepton masses squared arise at two loops,
and thus the masses are of the same order as gaug-
ino masses. Their evaluation is somewhat more compli-
cated, involving the same set of diagrams as in Fig. 1,
where now the gauge field are those of conventional
SU(3)xSU(2)xU(1), rather than those of U(1l)y. We
can determine the mass again by repeating the compu-
tation of [1], working carefully to second order in the
supersymmetry-breaking mass shifts. In the present case,
the fields appearing in the loops are ¢ and ¢, or [ and I.
A straightforward computation gives

(@2\ 2 g2
-2 (@ (9 s

Here a denotes the gauge group [so, for example, quark
doublets obtain a contribution from SU(3), SU(2), and
U(1) gauge field exchange].

Note, in particular, that these contributions are pos-
itive and that they depend only on the gauge quantum
numbers of the fields. Note also that no Fayet-Iliopoulos
D term is generated for ordinary hypercharge at low or-
ders. This is because, before worrying about ordinary
squarks and sleptons, the model has a left-right symme-
try which exchanges ¢ and ¢ and [ and I. As a result,
the first potential contributions to the D term appear at
three-loop order, and are harmless. This is a significant
improvement over the model of [1], where equality of cer-
tain gauge coupings had to hold to a good approximation
to avoid such D terms.

The 3-2 model has particular appeal because of its sim-

(3.17)

L
,"*‘\
q q

FIG. 2. One-loop diagram contributing to gaugino masses.
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plicity. The approach which we have adopted here to
feeding down supersymmetry breaking to ordinary fields
is probably the simplest one available in this case. No
“unnatural acts” were required here. One coupling con-
stant had to be reasonably small, but this is perfectly
consistent with ’t Hooft’s notion of naturalness.

The most popular approach to communicating super-
symmetry breaking is to have supersymmetry broken at
a relatively high scale, around 10!! GeV, and then use
supergravitational and other Planck scale couplings to
feed supersymmetry breaking to the visible sector. An
early attempt to use the 3-2 model in this way [6] was
discarded because ordinary gaugino masses could only
arise through operators such as

/ 4?0 QLDW, W , (3.18)
mp
leading to gaugino masses suppressed by two powers of
mp relative to the weak scale. With gauged hypercharge
and the additional P, N, S, and FE fields however one
could have the operator

/dzeisWawa , (3.19)
mp

leading to gaugino mass terms of order ary /7 times the

squark and slepton masses. This could be acceptable

provided ay is not too small.’

Alternatively, the 3-2 model could serve as a hidden
sector with communication of supersymmetry breaking
done by ultraheavy grand unified theory (GUT) mass
fields which couple to the field S and carry ordinary
gauge quantum numbers. Such a model would be similar
to the minimal supersymmetric standard model (MSSM);
however, the squark, slepton, and gaugino masses would
arise from ordinary gauge interactions and be calcula-
ble as in the visible sector model. Degeneracy of the
squarks and sleptons could be upset by Planck scale
physics, leading to excessive flavor-changing neutral cur-
rents (FCNC’s) unless the ultraheavy masses are much
less than O[(ay /7)(agut/7™)Mp].

It is interesting to ask whether other supersymmetry-
breaking models might give different possibilities for com-
munication of supersymmetry breakdown. We have ex-
plained why it is probably necessary to insulate the
supersymmetry-breaking sector from the visible sector
(loss of asymptotic freedom and suitable gluino mass).
But, as we have already mentioned, there do exist mod-
els in which it is not necessary to introduce spectators to
cancel anomalies. Consider the SU(7) model. Here we
can gauge a U(1) which rotates the 7 and 7 appearing

51t is also necessary to understand the smallness of the p
parameter in this framework. SH,Hs must be forbidden in
the superpotential, perhaps by a discrete symmetry acting
on the Higgs boson. One probably wants this to be an R
symmetry so that the coupling S'Hy Hp will be allowed in
the Kahler potential, generating a 4 parameter of order ms 5.

in the superpotential of Eq. (2.6) by opposite phases. In
this model, rather than introducing three fields, E, P,
and N, we can simply introduce two fields of opposite
charge, ¢ and ¢, and a singlet, S, with couplings

A1SoT ™ + X283 4+ +k1SGq + koS . (3.20)
Here S, g, g, etc., will play a similar role in feeding down
supersymmetry breaking as the corresponding fields in
the 3-2 case. Now, however, the model has a discrete
symmetry which interchanges ¢+ and ¢, as well as 7,
and 7,. If this symmetry is not spontaneously broken,
then, because the D term for the U(1) is odd under this
symmetry, there can be no Fayet-Iliopoulos term. Be-
cause of the strongly coupled nature of the theory, we
cannot compute the masses generated at two loops for
¢+ and ¢~. However, as long as they are nonzero, we can
obtain an acceptable model. If the masses are negative,
the minimum of the potential, for a range of parameters,
has a nonvanishing (S) and (Fg). If the masses are pos-
itive, one-loop corrections induce a negative mass for S,
which in turn leads to nonzero (S) and (Fs). The rest
of the story of feed down and SU(2)xU(1) breaking then
proceeds as in the 3-2 case. This is, of course, not the
only alternative model, but we suspect that the strate-
gies we have used here are rather general. We favor the
3-2 model because of its simplicity.

IV. ORDINARY MATTER
AND SU(2)xU(1) BREAKING

The minimal “ordinary” sector consists of the usual
fields of the minimal supersymmetric standard model
(MSSM). The famous “u problem” of the MSSM, i.e.,
how to give the Higgs fields a weak scale supersymmetric
mass term, shows up here as well. We do not include
an H,Hy term in the superpotential, since our philoso-
phy is that all masses should arise through dimensional
transmutation. In [1], this problem was dealt with by
introducing a singlet, S’, with couplings to the Higgs
doublets, and to an additional pair of vectorlike quarks
and leptons. These extra fields were required in order to
generate sufficiently large negative mass for the singlet.
The model had several virtues: the superpotential could
be taken to be the most general compatible with certain
discrete symmetries; there were no new sources of CP vi-
olation beyond the Kobayashi-Maskawa (KM) phase, and
the model predicted an interesting set of states beyond
the MSSM at weak-scale energies.

In the present case, we might hope to break
SU(2)xU(1) in a simpler fashion, exploiting the singlet S
we have already introduced. With a coupling A\, HyH, S,
the VEV of S could provide a “u term” type mass for
the Higgs boson. However, unless there are delicate can-
cellations between different terms, one cannot obtain an
acceptable spectrum this way. In order that Higgsino
masses be comparable to the Z mass, we require

/\h(S’) ~mgz . (41)
In addition, there are terms in the Higgs potential of the
form
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An(Fs)H,Hy . (4.2)
These also should not be too much larger than m%. So
we require that

(Fs)/S% ~ A . (4.3)

On the other hand, the two-loop contribution to the
Higgs boson mass, Eq. (3.17), should not be much smaller
than m%, and this is incompatible with these two condi-
tions. At best, an acceptable spectrum can be obtained
only by appreciable fine-tuning.

While this simplest possibility seems not to work, we
have found several viable approaches to SU(2)xU(1)
breaking. One is to include another singlet field S’, and
to add to the superpotential

As!
AnH, HyS' + Tss"* + k3825 . (4.4)
Think of k3 as the small parameter in this Lagrangian,
while the other couplings are of order 1. For small k3
and real Fig, the imaginary part of S’ obtains a negative
mass squared, k3F;. So S’ obtains a VEV:

ksF,
~ AZ .

Note that in this estimate, we can neglect the term cubic
in §'; it is down by v/ks. Note also that Fs: ~ (k3/\)F,.
In particular, in terms of powers of k3, F's: is comparable
to S'2. Now if k3 ~ (aw/7)?%, the H,Hy term in the
Higgs potential is comparable to the terms coming from
top quark exchange and the Higgsino mass is comparable
to the Higgs boson mass.

The main problem with this idea is that k3, more or less
by accident, must be of the correct order of magnitude.
Note, however, that it is natural for k3 and the other
couplings we have omitted to be small. For example,
suppose we have an approximate symmetry under which

SI2

(4.5)

S — *™i/38' H,Hy;— e*™/*H,H;, S—S. (4.6)

This symmetry explains the smallness of the couplings
S$S5'2 and SH,H, which violate the symmetry by the
same amount, and $’S? which violates the symmetry by
a different amount.

Another fairly simple alternative, which does not re-
quire any small nonzero couplings, is to have k3 be zero
but include couplings

k4S'gq + ks S'II . (4.7)
Now a suitably small VEV for S’ will be induced ra-
diatively at one loop provided S gets a VEV and the
couplings k4 and ks are sufficiently small. This VEV is
easily computed; ignoring ks, one finds

g3 1 k4F2

= 3272 kS (4.8)

However, it is difficult to use symmetry arguments to
explain the omitted couplings such as S’S2, which would

lead to a large S’ VEV. At best, approximate symmetries
such as those we have described earlier tend to keep these
coupings naturally as small as k4 and ks, and this is
perhaps barely small enough.

A third approach, which does not require small param-
eters, repeats the construction of [1]. In addition to §’,
one includes a second set of vectorlike quarks and lep-
tons (beyond g, g, I, and I), ¢/, @, I/, and I'. One now
introduces couplings

S'H,Hy+ S'§q + ST + 8 + H;Q7 . (4.9)
(In this expression Q now denotes the conventional quark
doublets.) This structure can be enforced by a Z3 sym-
metry which rotates ordinary fields and primed fields by
€2™¥/3. There is a danger, here, of strangeness chang-
ing neutral currents if ¢’ is too strongly mixed with the
light down quarks. This can also be avoided by suitable
(approximate) discrete symmetries.

The primed quark and lepton fields obtain two-loop
masses just like the ordinary fields. These, in turn, lead
to negative masses at one loop for the field S’ and for Hy.
Note that, as in [1], these are comparable to the two-loop
masses for the weak doublets, because the fields in the
loop carry color, and because of color and logarithmic
factors in the diagrams. With all couplings of order 1, one
can readily obtain an acceptable spectrum [9]. Not only is
this model the most general consistent with symmetries,
but all of the phases in the superpotential, apart from
the KM phase, can be removed by field redefinitions, so
there are no new sources of C' P violation.

All of these approaches result in a low-energy the-
ory which is similar to the MSSM, with SU(2)xU(1)
breaking driven by the usual top quark radiative cor-
rection, and with an additional light singlet. There
are fewer potentially free parameters, however, associ-
ated with supersymmetry breaking. In the limit that
Fg is small compared with the masses in the messen-
ger sector, the squark, slepton, and gaugino masses de-
pend only on Fgs/S, gauge couplings, and the ordinary
SU(3)xSU(2)xU(1) quantum numbers of g and I, while
the Higgsino and Higgs boson masses depend also on
Ar(S’) and Ap Fs:. Thus with small Fs, once the top mass
and weak scale are fixed the superpartner and Higgs bo-
son masses depend only on two additional parameters.
For any value of Fg, in all versions of this model the
squark and slepton masses naturally come out degen-
erate, since the leading contributions come from gauge
couplings, and do not lead to new sources of FCNC’s. In
general the superpartner masses also depend on ); and
Ag-

Besides the superpartner masses, other supersym-
metry-breaking couplings are also nonzero. For instance,
there will be trilinear scalar couplings; these arise at
two loops. Supersymmetry-breaking dimension-four and
higher couplings also arise radiatively. We believe all
these supersymmetry-breaking couplings to be too small
to be phenomenologically interesting.

We have already noted that in the third model, the
only source of CP violation are the KM phase (apart
from the 6 parameter). In the first two models, all
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CP violation may be removed from the superpotential
couplings in the messenger and supersymmetry-breaking
sectors, except for the phase of k3 in the first ver-
sion, or k4 and ks in the second. Thus the low-energy
supersymmetry-breaking parameters will be C' P conserv-
ing, except for one phase in the Higgs sector. Fine-tuning
of this phase to 1072-10~3 is required to avaoid inducing
electric dipole moments for the neutron and for atoms.
The usual strong C P problem also still exists.

We have also noted that in the third version, where
the ¢’ and I’ have weak scale masses, there is a danger
of flavor-changing neutral currents. This problem is not
as severe in the first two models, since, provided that
the couplings k; are of order one, the masses of the ¢
and ! are of order (167%/g2) times the weak scale. Thus
mixing is highly suppressed by the large masses, and is
not a problem. However, it would still be of interest to
study the potential for observing nonstandard FCNC and
CP violation in the B meson system.

V. EXPERIMENTAL SIGNATURES

We believe that the model-building strategy we have
described is rather general. There are a number of pre-
dictions for supersymmetry phenomenology which follow
in this framework.

(1) The masses of squarks and sleptons are governed
(apart from the top squark) by their gauge couplings, in
accord with Eq. (3.12). Flavor-changing neutral currents
are not a problem.

(2) The masses of the gauginos are related in a well-
defined way to those of squarks and sleptons, as can be
seen by comparing Egs. (3.16) and (3.17). For example,
when Fs is small the ratio of squark to gluino masses is
approximately 2/+/3.

(3) The Higgs sector is necessarily more complicated
than that of the MSSM, if one insists that all masses
arise from dimensional transmutation. One expects at a
minimum that there is an additional gauge singlet with
weak-scale mass.

(4) There is new physics at a variety of scales. The
fields g, g, I, and [, as well as the fields P, N, and F lie at
a comparable scale, presumably about 2 orders of magni-
tude above the weak scale. Finally, the supersymmetry-
breaking fields of the 3-2 sector lie at energies 1-2 orders
of magnitude larger. So one expects new physics up to
scales of order 103 TeV or so.

(5) The supersymmetry-breaking scale is constrained
from below by the need to have the R axion heavier
than 10 MeV, and from above by the cosmological re-
quirement that the gravitino be lighter than 10 keV [10]
and is predicted to be in the range 105-107 GeV (1
eV< mg/y < 10 keV). (This scale depends on the size of
the messenger hypercharge coupling and the superpoten-
tial couplings.) The gravitino is the lightest supersym-
metric partner, and the next to lightest supersymmet-
ric partner is a neutralino (linear combination of neutral
gauginos, Higgsinos, and gauge singlet fermions) which
should decay into a photon and a gravitino with a life-
time in the range 10713-1075 sec. (Note that this decay
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rate is more rapid than would be expected for a process
involving gravity because of the Goldstino component of
the gravitino, and is so uncertain because it is inversely
proportional to the fourth power of the supersymmetry-
breaking scale.) This decay of the neutralino is a distinc-
tive model-independent signal for low-energy supersym-
metry breaking.

(6) Some of the new particles predicted are potential
dark matter candidates. The R axion is unstable once
the R symmetry is broken; for instance it can decay
into gravitino pairs. The gravitino could provide an in-
teresting amount of warm dark matter if its mass is in
the 10 keV range. The massless charged fermion of the
supersymmetry-breaking sector could be given a small
mass through higher dimension operators such as

K

UQLE (5.1)

mp

and provide hot dark matter. The other particles of the
supersymmetry-breaking sector can all decay into these.
The ¢ and ! particles could decay by mixing with ordi-
nary quarks and leptons, or could be cold dark matter
candidates. The other messenger particles are all unsta-
ble since they mix with the neutralinos and Higgs scalars
by a small amount.

VI. CONCLUSIONS

We have presented a renormalizable approach to spon-
taneous supersymmetry breaking, in which all mass
scales arise via dimensional transmutation. Supersym-
metric partner masses are calculable in terms of a few
new couplings, and at the weak scale the model resem-
bles the MSSM, but with a constrained parameter space.
The absence of observed FCNC and CP violation from
the supersymmetry-breaking sector is explained by hav-
ing flavor universal gauge couplings transmit supersym-
metry breaking to squarks, sleptons, and gauginos. The
supersymmetry-breaking sector can be as simple as an
additional SU(3)xSU(2)xU(1) gauge theory with the
particle content of one family, and with communication
of supersymmetry breaking facilitated by a small num-
ber of additional fields including vector like quarks and
leptons and one or more gauge singlets. The only impor-
tant role played by nonrenormalizable supergravitional
couplings is to cancel the cosmological constant (by fine
tuning) and to give mass to an otherwise troublesome
axion. The model is easily made consistent with all ter-
restrial, cosmological, and astrophysical constraints. The
lightest superpartner is the gravitino, which may lead
to a distinctive signal in future accelerators such as the
CERN ete~ collider LEP II. As one would expect for a
dynamical model, these theories can readily explain the
hierarchy. For example, in the 3-2 model, with the as-
sumption that all couplings are equal at the GUT scale,
the supersymmetry-breaking scale is in the desired 103
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TeV range.

Some readers may be concerned about our liberal use
of discrete symmetries, and the associated problem of
domain walls. We do not view this problem as serious.
Our discussion does not require that these symmetries
be exact; if they are broken by dimension-five operators
generated by Planck scale physics, or by operators gen-
erated at lower scales by gauge anomalies, these domain
walls will quickly disappear.

In comparison with the conventional MSSM, it is a
great advantage to have the supersymmetry-breaking
sector made explicit so that supersymmetry breaking pa-
rameters are calculable. The MSSM can arise from mod-
els in which supersymmetry is dynamically broken in a
gravitationally coupled “hidden sector.” In fact, the 3-
2 model which we have used as our prototypical exam-
ple can be used as a hidden sector model. Hidden sec-
tor models with dynamical supersymmetry breaking have
the virtue that they can explain the origin of the hierar-
chy. If, for example, we take the two-family SU(5) model
as hidden sector, and assume that the SU(5) coupling is
equal to the unified coupling at Mgy, we obtain roughly
4 x 101° GeV for the SU(5) scale, i.e., a quite reason-
able intermediate scale value. In addition, these models
do not suffer from the conventional Polonyi problem [11]
since the hidden sector, by assumption, does not have flat
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directions.® However there are still potential difficulties
with the hidden sector approach, such as the cosmologi-
cal abundance of gravitinos and flavor-changing neutral
currents, which simply do not arise when supersymmetry
breaking occurs in a renormalizable visible sector theory.
Thus we feel that if nature turns out to be supersym-
metric, then the possibility of low-energy supersymmetry
breaking should be taken seriously.
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