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CP violation in the cubic coupling of neutral gauge bosons
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We investigate the CP-violating form factor of the ZZZ and ZZp vertices in the pair production
of Z bosons. Useful observables in azimuthal distributions are constructed to probe CP nonconser-
vation vrhich may originate from these vertices. A simple two-Higgs-doublet model of CP violation
is used as an illustration.
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I. INTRODUCTION

In the near future, with the availability of experimental
data at energies around the electroweak breaking scale,
one expects to learn about the structure of the cubic and
quartic self-interactions of gauge bosons. So far, these
interactions have not been directly tested in any experi-
ments.

One exciting possibility is that such interactions will
give new insight into CP violation, whose physical ori-
gin has not been understood with satisfaction yet. The
observation of CP violation in the kaon system can be
explained in various ways within the framework of gauge
theories, and choosing between them requires additional
observation of CP violation. With this in mind, it is
interesting to look for CP-violating signals which may
be induced by the self-interactions of gauge bosons. We
discuss here one such possibility, where the coupling of
three neutral gauge bosons has a CP-violating term in
it. We erst did a model-independent discussion based
on the most general form factors. Then a simple model,
the two-Higgs-doublet model, is used as an illustration of

how the form factors may arise in a realistic CP-violating
theory.

II. HELICITY AMPLITUDES

Such a CP-odd term is indeed allowed in general on
fundamental grounds, as is obvious from the general
parametrization of the cubic coupling of gauge bosons
[1—3]. Most theoretical studies along this direction have
been done [4—6] only for the process e e+ ~ W W+.
The efFect of CP violation in e e+ m Z Z has not
been thoroughly carried through [7] and there is the
need for a detailed analysis. This motivates us to per-
form a careful madel-independent study. In Sec. V,
a simple two-Higgs-doublet model is used as an illus-
tration. We follow the helicity formalism for Z pair
production, e (o')e+(o) ~ Z (A)Zo(A'), outlined in Ap-
pendix D of Ref. [3]. Here we include explicitly effects
from the form factors f4 and fs which describe the ver-
tex V(P) ~ Z(q)Z(q') for outgoing on-shell Zo bosons,
where the incoming particle V is either another Z boson
or a photon:

ieI'P~~~~ =ie
2 ti f4 (P g"~+ P~g" ) +i fs e" ~~(q —q')pI (V = Z, p),
Z

where s = P . Note that f4 term is CP odd. The fs term, although CP even, is included for completeness. The
helicity amplitudes are given by

4~~ 2 m dw(8~&cr~, ~&A~) (O)
(gbrr) A, A' ( )

y 2( fg f f)A( )

sin "+p
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The kinematic variables are defined as usual, p
1 —P = 4M&/s. The amplitude for the initial helic-
ity configuration u = cr is highly suppressed due to the
helicity argument in the high energy limit i/s )) m .
Therefore we are only interested in the cases for which
Err = —(cr —o) = +1. The relevant Wigner d functions
appearing in Eq. (2) are listed below:

d~i +2(8) = —d i 2(0) = 6—(1 + cos 8) sin 8,

di ~i(8) = d'-i i(o-) = -('+ ' '1,+1 —1,~&

(8) = —d' „(O) = — '
sinO.

In the standard electroweak model at the tree level, the
elements AA A~ (0) come from the t-channel exchange di-
agram. The electron couplings g~ to the Z boson are
specified by

r 1 I 1
~ (——y sin'814 ),(sino~ cos0~) 2

r
~+ =m =

I ~
(sin 0~) .

q sin 8~ cos 8~ )

After simplification, we summarize the result for various
cases AA = A —A' as follows:

+2
+1
+1
0
0

+ 0
0 +

00

&~), (0)
—v 2(1+P')

(1/p) [Acr&A(l ~ P ) —2 cos 0]
(1/p)[acr&A(1+ P ) —2cos 0]

—(1/p') cos 0
—(2/p ) cos 0

(4)

0
+'~P

ipP—
0
0

(5)

0
—AApP
—AApP

0
0

When the kinematic variables of the two identical Z
bosons are interchanged, i.e. ,

{A, A') ++ (A', A), 0++ ir —8, 4++ 7r+ C, (6)

the amplitude is unchanged because of Bose symmetry, if
one includes a negative sign coming from the azimuthal
4 rotation exp(iAovr).

The usual CP transformation is

(A, A') m (—A, —A'), 0 m ir —8, @ —i ir+@. (7)

However, we can simplify this CP transformation by in-
corporating Bose symmetry in Eq. (6). The resulting CP
transformation becomes

(A, A') ~ (—A', —A), 0, 4 unchanged.

The situation now becomes very similar to our previous
analysis [6] in the process e e+ i W W+.

If CP is conserved (when f4's are turned oK), we have
the following relation for the amplitudes in our phase
convention:

~,—;A,A (0) = ~,—;—A, —A(8) .

III. SPIN-DENSITY MATRICES

To avoid studying complicated event topology in the
four-fermion Anal configuration from the decays of the
Z pair, we concentrate our attention to the decay of a
single Z . This strategy is equivalent to the study of the
density matrix for one of the Z bosons.

We only look at the Z boson at the scattering angle
8 and temporarily ignore the recoiling one, which is con-
sidered as being produced at the scattering angle ~-O.
The polar angle g and the azimuthal angle P are de-
fined in the Z rest frame for the lepton E in the decay
Z ~ E E+. We define the axes of the rest frame of Z as
follows. The z axis is along the direction of motion of Z
in the e e+ c.m. frame. The x axis lies on the reaction
plane and toward the direction where 0 increases. The
y axis is given by the right-hand rule.

The angular distribution of E from the Z ~ E E+
decay is specified by the the spin-density matrix p; ~ of
the Z boson:

p(-);,, = A'(8)-' ) W.,.—,, „(8)m.*.., „,(O) . (1o)

This equality will be destroyed by the presence of CP-
violating form factors f4 in channels (A, A') = {0,6) or
(+, o).

Here A is the normalization such that Trp = 1. p is
Hermitian by definition. The normalized distribution for

is given by

dlV(l, 0)
dP dcos @

——) mg (1 ~ hcosg) p(8)~~+ (1 —hcosi/) p(8) + 2p(8)oo sin g4m 4

—2~2Rep(0) ~ o (1 + h cos g) sin @cos P + 2v 2Im p(0)+ o(1 + h cos g) sin @sin P
—2v 2Rep(8) o(1 —h cos i/) sing cos P —2~21m p(8) o(1 —h cos g) sin@ sing
+2Re p(0)+ (1 —cos @)cos 2P —2Im p(0) ~ (1 —cos @)sin 2P
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The two contributions come &om helicity configurations E&(h = 1) and E& (h = —1), with difFerent weights:

——gl. l(&I. + &a) I ~+ —&Rl(gi. + ga) I ~—+ is+ = 1. (12)

In our present phase convention, if CP were conserved
(i.e., when f4 ——0), we would have the identities

(13)

based on the transformation in Eq. (7). Similar expres-
sions were first noticed in Ref. [4] on the process e e+ ~
W W+ and in Ref. [8] on the process e e+ ~ tt.

IV. CP-VIOLATING OBSERVABLES

Under CP conjugation, we change variables 8 M vr—
Q, @ ~ vr —@, and P -+ —P. The distribution in Eq. (11)

I

is transformed into itself if we assume CP conservation
as in Eq. (13). In the presence of the CP-violating term
f4, our analysis of CP-violating observables in Ref. [6]
can be easily applied here.

However, as the coupling of A'Z is almost purely ax-
ial vectorial, there is approximate charge symmetry C,
which assigns this vertex even C parity, with the f4 term
also even as well. Any C-odd observable will be sup-
pressed.

We 6nd out that the most prominent efFect of CP non-
conservation resides in the elements (+, —) or (—,+) of
the spin-density matrix:

Im p(Q)+ —Im p( —Q) + — ) (&& ) (Qe) & (P + P ) sin Q
b. 4P2sin Q+p —4 (14)

This particular location in the density matrix produces the azimuthal dependence in the form of sin 2P. If we integrate
@ and p over quadrants, we expect that CP nonconservation appears in the folded asymmetry, A"(8), which is

[dN(E, 8, I+III) + dN(E, x —8, I+III)] —[dN(E, 8, II+IV) + dN(I, vr —8, II+IV)]
[dN(I, 8, I+II+III+IV) + dN(Z, x —8, I+II+III+IV)]

Here the range of the azimuthal angle has been divided
into the four usual quadrants I, II, III, and IV. It turns
out that this observable A" is C even and thus it is not
subjected to the suppression from approximate C sym-
metry.

We can show that

Q"(Q) = ——Im p(8)+ —Im p(~ —Q) + . (16)
7r

It is interesting [9] to note that we do not need to
know the charge of X as the events are collected over
quadrants I+III or II+IV. We can use this fact to apply
our formula even to the larger sample of jet events from
the Z pair without tagging the charges of the primary
partons. Our formalism can be easily translated for the
process qq ~ Z Z in the hadron collider.

In Fig. 1, we show the CP-odd. asymmetry in the den-
sity matrix versus the scattering angle 0 per unit of small
Re f4 at various energies, ~s = 200, 250, and 300 GeV
in the e+e collider. Observation of' this asymmetry is
a genuine signal CP violation, as it is not faked by the
Gnal state interaction.

At CERN e+e collider LEP II energy v s = 200 GeV,
the Z Z production cross section is about 1.4 pb (see
Fig. 2) which can provide about 700 Z Z pairs per year
for the design luminosity of 5 x 103 cm s . As we
have shown above, it is possible to test CP symmetry in
purely charged leptonic, purely hadronic, or mixed chan-
nels of the two Zo boson decays. However, we may re-
quire that at least one of the Z decay into the charged
leptons in order to avoid backgrounds from the TV+TV

production. The branching ratio of a single Z decaying
into all charged leptonic channels (e+e +y+p +w+~ )
is about 10%. Therefore, we estimate about 140 tagged
events per year in this category, and it is possible to mea-
sure A"(8) at a sensitivity about 0.1, which translates
to the level of fg about 0.4, according to Fig. 1. At
higher energy ~s ) 300 GeV, such as that in the Next
Linear Collider (NLC), we can greatly improve the xnea-
surement of CP asymmetry. In fact, the contribution 4o.

vs=200 GeV

I

I

E
850 GeV

300 GeV

0
cos 8

0.5

FIG. 1. The CP-odd asymmetry in the density matrix ver-
sus the scattering angle 0 per unit of small Re f4 at various
energies, ~s = 200, 250, and 300 GeV.
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to the total cross section &om the anomalous form factor
f4' grows rapidly as the energy increases. Figure 3 com-
pares the standard model prediction osM (solid curve)
with b, cr (dashed curve) Arou.nd ~s 450 GeV, b, cr

becomes comparable to osM even for a small fg 0.05,
and a large CP eKect can appear.

V. TWO-HIGGS-DOUBLET MODEL

Cubic couplings among neutral gauge bosons do not
appear at the tree level in the standard model gauge

1.50
I

I I I I I I I

I

I I I

1.25

FIG. 2. Diff'erential cross section do /d cos 8 for e e+
Z Z at various energies ~s= 200 (solid curve), 250

(dashed curve), and 300 GeV (dot-dashed curve), predicted
by the standard model. The horizontal lines indicate the level
of the corresponding total cross sections.

group of SU(2)L, xU(1)y. But they can be induced at
the loop level. In the minimal standard model with just
one Higgs doublet, such amplitudes do not have any CP
violation even at the one-loop level, as will be clear &om
our analysis below. We therefore perform the calcula-
tion of CP-violating effects in these trilinear couplings
when there are two-Higgs-doublets [10] present in the
model, which is a popular model in its own right. Among
the possibilities which open up with the two doublets
are spontaneous CP violation [11], incorporation of the
Peccei-Quinn symmetry [12] to solve the strong CP prob-
lem, and incorporation of supersymmetry.

At the one-loop level, cubic coupling obviously comes
&om triangle diagrams. If the internal lines are fermions,
no CP-violating efFect is generated at the one-loop level,
because the Z or photon couplings with fermions are Qa-
vor diagonal and CP conserving. There are also triangle
diagrams with internal W' lines. In the Feynman —'t Hooft
gauge, it can be shown that they do not contribute to the
form factors as shown in Eq. (1). Thus, for our purpose,
we need to calculate only the diagrams involving Higgs
bosons in the loop. Obviously, such diagrams can never
involve the antisymmetric e symbol, and so one can only
obtain a nonzero f4 This . term has been shown to be
nonzero for R'TVZ coupling at the one-loop level for the
model at hand [13]. We want to extend their calcula-
tion for the case of V'ZZ couplings, where V* can be
either an ofF-shell Z boson or photon, and the other two
Z bosons are assumed to be on shell.

To set up the notation, we call the two Higgs multiplets
to be yz and p2. Usually, they are assumed to have spe-
cial transformation properties with respect to some dis-
crete symmetries in order to avoid Qavor-changing neu-
tral currents at the tree level. We assume that such dis-
crete symmetries are not imposed on the soft terms in. the
Higgs potential; otherwise, CP violation would be elimi-
nated in the Higgs sector of the model. Without any loss
of generality, we can take the vacuum expectation values
(VEV's) of yi and y2 to be vi exp(i8) and v2. One can
then define a linear combination p of the two multiplets
which has a VEV, v = gvi2+ v22, and the orthogonal
one y' has a vanishing VEV. The components of these
doublets can then be written as

1.00

0.V5

I

0.50

0.25

p pp l

200 300
vs (GeV)

a~(0.05/f, ')'

I l I I I I

400 500

( H+

E~«+ &)&
(17)

The fields shown here are complex combinations of the
fields in the yq-y2 basis. The components m+ and z
are absorbed by the gauge bosons and disappear &om
the physical spectrum. There are four physical spinless
bosons in the model. One of them is the complex field
H+. The other three are, in general, superpositions of
the fields Pi, P2, and Ps. We define the eigenstates by
HA, where

FIG. 3. Standard model prediction of the cross section
osM (solid curve) is compared with the deviation Acr (dashed
curve) due to the anomalous form factor Re f4 which is set
to be 0.05.

3

=) 0 ~H~,
A=a

0 being an orthogonal mixing matrix.
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Vertex

4 (J) ":z(q)

42(P) ":A(q)

Feynman rule

(p+ q)~

(p+ q)~ (19)

The coupling of these neutral Higgs bosons with the Z
boson looks very simple in the P basis: Z {v)

H, i
I

Hc

Using Eq. (18), it is trivial to rewrite these Feynman rules
in terms of the mass eigenstates of neutral Higgs bosons:

Vertex

IIA(p) ":z(q)

JIA(p) ":H&(q)

Feynman rule

O1A(p+ q)„
(02AO&B 02BOSA)(p+ q)„

(2O)

02AO3B O2B 03A ) &ABC 01C &

C
(21)

which simplifies the form of the Z coupling with two
physical Higgs bosons. Notice that the Z coupling be-
tween two physical Higgs bosons is necessarily Bavor

Using the orthogonality of the mixing matrix 0, we can
write

Z (q')

FIG. 4. Triangle diagrams with internal scalar lines which
give rise to the Z'ZZ coupling.

changing, which opens up the possibility for CP violation
at the one-loop level. For the reason that the photon Geld
preserves flavors at the tree level, there is no f&~ form fac-
tor at the one-loop calculation in the two-Higgs-doublet
model.

These cubic couplings appear in the triangle diagrams
shown in Fig. 4. Notice that, in the Ggure, the Higgs bo-
son lines have been denoted with subscripts i, j, k, which
run 6.om 0 to 3, where Ho is identiGed with the unphys-
ical Higgs boson z which appears as intermediate lines
since we adopt the Feynman —'t Hooft gauge. A straight-
forward calculation now shows that the form factor f&
&om these diagrams can be written in the form

ef4s— 1 /' e i Mg
A;~gI(M, , M~, Mi, ) .

1287I 2 (sin 8~ cos 81v j P2 —M&
gt2)

(22)

Here, A,~g is a factor coming &om vertices which will be discussed below, and the loop integral I(M;, M~, Mg) is equal
to

A2
2! (2: —y) ln 2 2 2 . d2:dy,xM2+ yM2+ mM~2 —1s(1 —w)M@2 —xyP2 —io+ (23)

where the positive Feynman parameters x and y are re-
stricted within the integration domain @+y & 1 and. also
to = 1 —x —y. A is a cuto8' which disappears in the
expression for f&+, as we will show below. When one of
the particles denoted by i, j, or k is the unphysical Higgs
boson, the corresponding mass should be interpreted to
be Mz, because the propagator of the unphysical Higgs
boson has a pole for this value of mass in the gauge we
use. For future purposes, notice that

1.0

05—

0.0

I I I I

)

I I I I

)

t I I I

i

I I j I

I

I I ) I

vs=200 Gev

M&=250 GeV

M&=150 GeV

Imaginary

I(M;, M~, Ml, ) = —I(M~, M, , Mi, ), (24)

Agg3 = OggOg2Og3 —= A. (25)

which follows from the definition in Eq. (23).
Let us now discuss the factor A,~I, . First, consider the

case when all the Higgs bosons in the loop are physi-
cal ones. Because of the antisymmetry of the coupling
of HAHBZ„ from Eq. (20), all the Higgs bosons in the
loop must be different. If, following the direction of the
momentum arrow in Fig. 4, we encounter the mass eigen-
states Hi, H2, and II3 in that order, it is easy to see that
the factor coming &om the vertices is

—0.5— 10 (f4/O», z, ~ )

/

/

/

I I / I I I t I I i I I I I l I I I i t I I I I I I I

50 75 100 175 150 175 200

(GeV)

FIG. 5. The size of f4 /O&1012013 versus the lightest Higgs
boson mass at ~s = 200 GeV, for the cases Mz ——].50 GeV and
M3 ——250 GeV. The real and the imaginary parts are given
by the solid and the dashed lines, respectively.
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Obviously, there are three such diagrams, and their total
contribution is

A {I(Mi) Mz) M3) + I(M2, M3) Ml) + I(M3) Mi ) MQ) )
(26)

On the other hand, if we encounter the eigenstates in the
reverse order, we obtain a factor —A from the vertices.
However, this term will be multiplied by

(I(M3) Ml) M3) + I(M3, M2, Ml) + I(Mi) M3) M2)) .

~120 —~230 —~310 (27)

and the same value for any even permutation of sub-
scripts, but opposite sign for an odd permutation. There-
fore, the last factor of summation in Eq. (22) becomes

By virtue of Eq. (24), the product of the two is the same
as the contribution of Eq. (26).

Next we consider diagrams where one of the iateraal
lines is the unphysical aeutral Higgs boson z. Note that
since there is no coupling of the Z boson with two un-
physical Higgs bosons, at most one internal line caa be
the unphysical Higgs boson. In this case, one can derive

) i;,sI(M;Ms, Ms,) = 2) [+1(Ms, Ms, Ms) +1(Ms s Mi)+ t(Ms Ms Ms)
i,j,I

I(Ml) M2) Mz) I(M2) M3) Mz) I(M3) Ml) Mz)
I(Mz) —Ml, M2) —I(Mz, M2) M3) —I(Mz, M3) Ml)

+1(Mz, Ms, Ms) +1[MzMs, Ms), +1(Mz, M Ms)].s (28)

One can see that the cutofF A depeadence is canceled
by pairs in Eq. (28). We also note that f4z remains finite
when P3 = Mzz as noted in Ref. [3].

Figure 5 shows the extremely tiny size ( 10 s) of
f4z for typical choices of parameters. We only use this
two-Higgs-doublet model as an illustration of how CP
violatioa occurs even in a purely bosonic sector.

VI. CONCLUSION

We have demonstrated possible CP-violating efFects in
the process e+e + ZZ. While the event statistics prob-

ably will not be large en6ugh to test some of the popular
alternative gauge models of t P violation, such as the
two-Higgs-doublet model, it is nevertheless sufficient to
provide nontrivial constraints on the |P-odd form fac-
tors in the three gauge boson couplings.
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