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Complete spectra of the staggered Dirac operator P are determined in quenched four-dimensional
SU(2) gauge fields, and also in the presence of dynamical fermions. Periodic as well as antiperiodic
boundary conditions are used. An attempt is made to relate the performance of multigrid (MG) and
conjugate gradient (CG) algorithms for propagators with the distribution of the eigenvalues of P.
The convergence of the CG algorithm is determined only by the condition number e and by the
lattice size. Since e s do not vary signi6cantly when quarks become dynamic, CG convergence in
unquenched fields can be predicted from quenched simulations. On the other hand, MG convergence
is not a8'ected by ~ but depends on the spectrum in a more subtle way.

PACS number(s): 11.15.Ha, 02.60.Cb, 02.60.Dc

I. INTRODUCTION

Big efforts have been undertaken to Gnd eKcient multi-
grid (MG) inethods for the computation of propagators
in background gauge fields [1—10]. The goal is to find
an improved method for the solution of discretized Dirac
equations. Such an improvement would considerably ac-
celerate numerical simulations of theories involving dy-
namical fermions when one uses the hybrid Monte Carlo
algorithm [11].

Although ultimately one wants to simulate theories
with dynamical fermions, all the work on MG meth-
ods mentioned above focused only on quenched gauge
fields. However, it is reasonable to expect that MG meth-
ods have a chance to perform better when one considers
"real" gauge fields which are generated in the presence
of dynamical fermions. On the other hand, one will not
expect any big difference for the behavior of the conju-
gate gradient (CG) algorithm. The reasons for these two
statements are as follows. The inclusion of the fermionic
determinant in the Monte Carlo process will tend to de-
crease the number of (approximate) zero modes. This is
so because configurations with less low-lying modes are
more probable. MG methods intend to take care of the
low-lying modes [which are responsible for critical slow-
ing down (CSD)] on coarser grids, and the task of deal-
ing with a reduced number of low-lying modes should
be easier. Concerning the CG algorithm, its (asymp-
totic) convergence properties are determined by the con-
dition number. Since condition numbers of the (negative

squared) massless Dirac operator are not influenced dra-
matically by the presence of dynamical quarks, one does
not expect a significant consequence for the convergence
behavior of the CG algorithm.

Previously other works have been concerned with the
role of low-lying modes in MG methods. Harmatz et
al. made a visual study of approximate zero modes in
the quenched Schwinger model in the &amework of their
multigrid algortihm [2]. The present author showed that
there exists an "idealized" MG algorithm which is able to
eliminate CSD (or at least to reduce CSD strongly) both
for bosonic propagators [6] and for propagators of stag-
gered fermions [9] in quenched four-dimensional SU(2)
gauge fields. A prerequisite for the success of the ideal-
ized MG method was the preservation of criticality of the
Dirac operator under coarsening. In the present study we
focus on the consequences of dynamical fermions for the
performance of a simpler MG algorithm. This simpler
algorithm proved to work in the quenched case, but it js
unable to outperform CG [8]. Nevertheless, it is worth to
see how it performs when dynamical fermions are present.

This paper is organized as follows. In Sec. II we recall
the deterministic MG method. The spectrum of the stag-
gered Dirac operator is determined by means of a Lanc-
zos procedure. This procedure is recalled and numerical
results are presented in Sec. III. Computations of prop-
agators by CG and by MG are reported in Sec. IV, and
we end with some conclusions.

II. MULTIGRID METHOD

*Electronic address: kalkreut Qlinde. physik. hu-berlin. de
~Present address.
There is a recent alternative proposal by Liischer [12] where

one does not have to invert Dirac operators directly.
For a positive Hermitian matrix the condition number

equals the ratio of the largest to the smallest eigenvalue.

We wish to solve the squared Dirac equation

( P'+m') X = f—
by the MG method, where P is the gauge-covariant stag-
gered Dirac operator, m is a bare mass parameter, and f
may be a pseudofermion Geld, for instance. We measure
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physical quantities in units of a, where a denotes twice
the lattice spacing of the staggered lattice. The reason
for this is that &ee staggered fermions enjoy translational
invariance only by shifts of a, not a/2 [13,14].

The following MG notation will be used. The funda-
Inental lattice is denoted by A . The first block lattice
A is obtained by coarsening with a factor of Lb. Thus
A has L b fewer sites than A (in d space-time dimen-
sions). Restriction and interpolation operators C and
A, respectively, are given by kernels C(x, z) and A (z, x)
with z C A, x E A . Note that C(x, z) and A (z, x) are
N, x N matrices in a gauge theory with N colors. Also,
C and A depend on the gauge field, although this is not
indicated explicitly.

In a twogrid algorithm one performs a certain number,
say one, of conventional relaxation sweeps on A, and one
obtains an approximate solution y of Eq. (1). The error
e = y —y is unknown, but the residual r = f —(—P
+m ) y is computable. Error and residual are connected
by the residual equation (—P +m ) e = r This e. quation
is solved on A, where it reads

[C(—P +m )A]ebi k =Cr (2)

This is the Galerkin choice of the residual equation on the
block lattice. It assumes that e is smooth and can be obtained
by smooth interpolation (via A) of a suitable function eb&,k

on A . The notion of smoothness in gauge fields is discussed
in Ref. [8], and a more general discussion for disordered sys-
tems can be found in Ref. [15]; see also the recent work by
Baker [16].

Solving Eq. (2) is simpler than solving the original equa-
tion because there are fewer degrees of &eedom on A .
In the coarse grid correction step one replaces y by
y+ A ebio, g. Then one performs again a relaxation sweep
on A, etc. It is obvious how this twogrid algorithm can
be generalized to a more-level MG algorithm.

We use a blocking procedure for staggered fermions
which is consistent with the lattice symmetries of &ee
fermions [14]. This forces us to choose Ib = 3. Even
Ib are not allowed. In four dimensions, coarsening by a
factor of 3 reduces the number of points by 81. There-
fore, only a two-grid algorithm was implemented. This
is sufBcient to test the power of the MG method. The
residual equation on the coarse grid was solved exactly
by the CG algorithm.

The averaging kernel C is chosen according to a
ground-state projection definition. In the present work C
satisfies the gauge-covariant eigenvalue equation(s) [17]

(—Aiv C*)(z, x) = Ap(x) C*(z,x), (3)

together with a normalization condition CC* = IL, and
a covariance condition C(z, z) oc 1l where x denotes
the center of block x. In Eq. (3), Ap(z) is the lowest
eigenvalue of —L~, and —L~ is the gauge-covariant
fermionic "two-link lattice Laplacian, " defined through
P = A + o & I"&, with "Neumann boundary conditions
(Bc's)." I"~„ is the lattice definition of the field strength
by means of plaquette terms. Neumann BC's mean that

derivative terms in 4 are omitted where one site is in
block x and the other one is in a neighboring block. For
more details we refer to Ref. [8].

The ground-state projection method is numerically im-
plementable in four-dimensional non-Abelian gauge fields
[17], and since the method is gauge covariant, no gauge
fixing in computations of propagators is required. Fi-
nally, we cling to a variational method where the inter-
polation operator A equals the adjoint of the restriction
operator C.

III. SPECTRUM OF —P IN THE PRESENCE OF
DYNAMICAL FERMIONS

As explained in the Introduction, naively one expects
P to have less approximate zero modes in the presence
of dynamical fermions than in the quenched case. In
order to study this conjecture we need firstly a hybrid
Monte Carlo program, and secondly a method to deter-
mine the low-lying spectrum of P. For the generation of
four-dimensional SU(2) gauge fields coupled to dynamical
staggered fermions a FORTRAN program with vectorized
Cray code was used, which had been written by Meyer
and Pendleton [18]. They used this program when they
studied the chiral transition with many fermion flavors in
the SU(2) Higgs model [18]. The Meyer-Pendleton pro-
gram was used with four flavors of staggered fermions.
The spectrum of P was determined by means of a Lanc-
zos procedure to which we turn next.

A. Lanczos procedure

The Lanczos procedure is a technique that can be used
to solve large, sparse, symmetric eigenproblems [19]. The
method has been used in lattice field theory for a long
time; see e.g. [20]. In the course of the Lanczos itera-
tion one generates for a given matrix A a sequence of
Hermitian tridiagonal matrices T~~& by transformations
with a matrix Q whose columns are called "Lanczos vec-
tors. " These transformations have the property that the
extremal eigenvalues of T~~~ are progressively better es-
timates of the extremal eigenvalues of A. (In our case
A = —P .) For details about the method and its con-
vergence properties in exact arithmetic we refer to the
literature [19].

In exact arithmetic, the Lanczos iteration should stop
after at most n steps when A is an n x n matrix. In prac-
tice, however, there are severe problems [19,21] caused
by rounding errors and loss of orthogonality among the
Lanczos vectors. As a consequence there appear so-called
"spurious" eigenvalues [21] which are not eigenvalues of
A. A clever way of identifying spurious eigenvalues and
coping with their presence was proposed by Cullum and
Willoughby [21]. In their algorithm one compares the
eigenvalues of T~~~ with the eigenvalues of a matrix T2,
which equals T~~~ with the first row and first column
deleted. If a simple eigenvalue of T&~ ~ is also an eigen-
value of T2, then this eigenvalue is spurious.
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A problem which remains in the Cullum-Willoughby
algorithm is that the correct multiplicities of the eigenval-
ues of A do not emerge. This is so because an unreduced
symmetric tridiagonal matrix does not have degenerate
eigenvalues [23]. Nevertheless, in practice the matrices
T~~~ will have multiple eigenvalues which correspond to
simple eigenvalues of A. They arise because the iteration
essentially restarts itself when the numerical instabilities
become too large.

In the present exploratory study the complete spec-
trum of —P was determined. This was done in order to
be sure about the correctness (i.e. , to have no numerical
uncertainties) in the distribution of low-lying modes. Of
the several computational variants of the Lanczos pro-
cedure the most stable one as described in Ref. [19] (al-
gorithm 9.2.1 and remark on p. 492) was implemented.
Eigenvalues of the tridiagonal matrices T~ ~ were deter-
mined by means of the NAGLIB routine F02AVE [22].

iterations were performed to compute T~~l. (This is
at least twice the number of "good" eigenvalues which
can be expected. ) The entries in the initial Lanczos
vector were chosen randomly in SU(2), and the vector
was normalized in the two-norm. Eigenvalues of T~~~

were counted as being equal when they differed by less
than e = 10 . The same e was used to identify equal
(simple) eigenvalues of T~~l and T2. Proceeding in this
way it turned out that in nontrivial gauge fields there
seem to be no additional degeneracies to the ones ex-
plained above. Only for P = 5.0 it was impossible to
identify ~A~/2 eigenvalues whose sum equals 4]A~. For
P = 1.8, . . . , 2.8 the method works perfectly. On 64

(124) lattices we always found 648 (10368) eigenvalues
whose sum caine out as 5184 + hs (82944 + bi2), with
h«8 x 10 (h, 2 & 1.7 x 10 ) in REAL arithmetic on
a Cray Y-MP. Because of the randomness of the nonva-
nishing off-diagonal matrix eleinents of —P this is very
good evidence that the spectrum was determined exactly.

B. Numerical results in four-dimensional SU(2)
gauge Be1ds Complete speetr a

Let us first recall what one knows a priori about the
multiplicities of the eigenvalues of —P . One knows
that in SU(2) gauge fields every eigenvalue is internally
twofold degenerate [6]. Also, —P couples only even lat-
tice sites to even sites, and odd sites to odd sites. There-
fore the spectrum 8 of —P equals the union of the spec-
tra S,„,„and 8 gq of —P restricted to the even and odd
sublattices, respectively. One knows that 8, ,„=8 pp

[9]. Thus, if there are no further degeneracies, then on
a lattice A of volume ~A~ there must be ~A~/2 diff'erent
eigenvalues. Their sum must equal 4Tr (—P ) = d~A~.

These statements are valid for periodic and for antiperi-
odic boundary conditions.

Concrete numerical investigations were done with the
following parameters. The spectrum of —P was inves-
tigated on 6 and 12 lattices. Two different kinds of
boundary conditions (BC's) were used: one with periodic
BC's in all directions for gauge and Fermi fields (PBC's),
and one with periodic BC's for the gauge field in all di-

. rections and with antiperiodic BC's on the Fermi field
in time direction and periodic BC's in spatial directions
(APBC's). The coupling P = 4/g of the Wilson action
for the SU(2) gauge fields was varied between 1.8 and
5.0. Quark masses m in the hybrid Monte Carlo runs
were chosen to be m = 0.2 and m = 0.05. These values
were also used in the Meyer-Pendleton work [18]; they
quote m = 0.1 and m = 0.025 since they measured phys-
ical quantities in units of a/2.

In the Cullum-Willoughby Lanczos procedure j = ~A~

Spectra on 12 lattices are shown in Figs. 1 and 2. We
number the different eigenvalues AI, by A: = 0, 1, 2, . . .,
with Ao & Ai & . . The data shown for finite P are
results obtained with gauge fields generated by the hybrid
Monte Algorithm in the presence of dynamical fermions
with a mass of m = 0.2. However, on the scale of the
whole spectrum there is very little difference compared to
m = 0.05 or to quenched gauge fields. For finite P there
is also no difference between PBC and APBC. The CPU
time on a Cray Y-MP is some 50 min for the implemented
Lanczos procedure on 12 lattices, and only 8 sec for 6
lattices.

In Figs. 1 and 2 the data for P = oo (pure gauge) are
not outcomes of numerical computations, but were taken
from analytical results. In the &ee case the eigenvectors
and eigenvalues of —P are easily determined. For the
eigenvalues Ag one finds, on a (2N)" lattice with PBC's,

, (vrA:„)
Af, =4) sirl

~

"
~

with kp g (0, 1, . . . ,
~ ). (4)

The result on a (2N) (2w) lattice with APBC's in the
v dzrectjon and PBC's jn the other chrectjons 1s

with

From the point of view of identifying correct eigenvalues,
multiple eigenvalues of numerically computed T ~ 's are wel-
come, because they are guaranteed to be not spurious.

I wish to thank U.-J. Wiese for pointing out to me that this
degeneracy is due to a global charge conjugation symmetry
which is special to SU(2). [—] = N/2 if N is even, and = (N —1)/2 if N is odd.
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2P = 28
3:pure gauge
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FIG. 1. Spectrum of —P on 12 lattices with periodic
boundary conditions.

The P = oo values (4) and (5) are shown in Figs. 1 and 2
with their true multiplicities modulo the fourfold degen-
eracy mentioned above, so that they indicate the curve
which the numerical data should approach for large P.
When one runs the Lanczos program with &ee fields, one
obtains the eigenvalues (4) and (5) very fast and accu-
rately.

The numerical problem mentioned above which was
found for P = 5.0 is probably due to the fact that the
eigenvalues in the large P region tend to group in the
clusters (4) or (5), respectively, where it is hard to dis-
entangle them numerically.

When one looks at the complete spectra, figures for 6
lattices look practically the same on the overall range as
Figs. 1 and 2, when one rescales the abscissa by 16, i.e. ,
the density of eigenvalues scales with the inverse lattice
volume. Only for the eigenvalues of the &ee —P this is
not true. These values are collected in Table I.

25
12 lattice, antiperiodic BC in t direction
I I I 1 1

1: P=1.8

k. c (0, 1, . . . , k. .„j
where

k „=v /2 —1 if w is even, = (r —1)/2 if r is odd.

(5)

Now we take a closer look at the low-lying spectra of
—P . Because of renormalization effects it is difficult to
say for which triples (A, P, m) (+ BC's) the results can
be compared physically. We do not intend to do such a
comparison in this exploratory study. Nevertheless, one
could possibly discover trends, and it is instructive to
look at the results as one keeps two parameters fixed.

Figure 3 shows the lowest eigenvalues (modulo the
fourfold degeneracy mentioned above) of —P on 64 lat-
tices at P = 1.8. We look at individual configurations,
but all Monte Carlo runs were independent. In the
quenched case and for m = 0.2 one is in the confined
chirally broken phase, while for m = 0.05 one is just in
the deconfined chirally symmetric phase [18]. We note
the following. In the confined phase there is little dif-
ference in the spectra with PBC and with APBC, while
in the deconfined phase (or close to the transition) there
is a difference. At this point we also want to add the
following observation (cf. note added in proof). The chi-
ral condensate (yy) as measured by the Meyer-Pendleton
Monte Carlo program sees no difference between the two
kinds of BC s (within statistical errors), in both phases.
In contrast, the sign of the Polyakov loop is sensitive to
the choice of BC's. Disregarding renormalization effects,
Fig. 3 confirms the naive expectation that the effect of
dynamical quarks is to rise the low-lying spectrum of
—P; there are less approximate zero modes the lighter
the fermions are.

Figures 4—6 show examples of the low-lying spectra of
the massless operator —P on 124 lattices for the pure
gauge theory (with static quarks), and in the presence
of dynamical staggered fermions with masses m = 0.2
and m = 0.05, respectively. Here we note again that the
results do not depend on the choice of BC's for smaller
values of P, while they do for larger P. In the limiting
case of free fields the lowest eigenvalue is always zero in
case of PBC's no matter how big the lattice is. In case of
APBC's it equals 4sin [m/(2r)]; see Table II; note that

64 lattice, @=1.8
0.05

~m =005 APBC
m = 0.05, PBQ

. om =02 APBC
004 „m =0.2, PBC

quenched, APBC.quenched, PBC.

0.03-
20

15

2: P =2.8
3: pure gauge

0.02-

10-
0.01-

0
0

I

4
eigenvalue no.

I I

8000 10000 120004000
0:—

0 2000 6000
eigenvalue no.

FIG. 2. Spectrum of —P on 12 lattices with antiperiodic
boundary conditions for the Fermi 6eld in the t direction.

FIG. 3. Low-lying spectrum of —p on 6 lattices at

p = 1.8. m is the quark mass in the hybrid Monte Carlo

program. APBC and PBC stand for the choice of boundary

conditions. The examples shown are CN's 1, 2, 5, 6, 9, and

10 of Table IV.
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TABLE I. Spectrum of the free staggered —P on 6 lattices. Degeneracies are given modulo
the a priori fourfold degeneracy.

Eigenvalue
Degeneracy

PBC's
3

64
6

192
9

256
12
128

eigenvalue
degeneracy

1
16

APBC's
4

104
7

240
10

224
13
64

in numerical simulations on 6 and 12 lattices the lowest
eigenvalue is always much smaller than the kee value, it
is almost zero.

gauge fields can be found in [8]. Here we focus on the
standard CG algorithm [19] and the multigrid method of
Sec. II.

8. Condition number8

To conclude this section let us give an idea of condition
numbers. Call the two masses which were used in the hy-
brid Monte Carlo runs mq ——0.2 and m2 ——0.05. Denote
by K;, i = 1, 2, the condition number of (—P + m;),
i.e. , r; = (A „+m, )/(A;„+m, ), where A „and A

(—:Ap) denote the highest and the lowest eigenvalue of
—P, respectively. Results for free fields are in Table III.
Table IV gives examples in particular nontrivial config-
urations on 6 and 12 lattices. (Note that it makes no
sense to quote ~2 for Hybrid Monte Carlo runs with mq,
and vice versa. ) The configuration numbers (CN's) are
referred to in Sec. IV.

Condition numbers are (much) larger in nontrivial
gauge fields than in case of Bee fields, in particular for
APBG s. This is just another manifestation that the in-
version of (—P + m2) in nontrivial gauge fields is much
harder than the computation of &ee propagators. Finally,
note that A „ in Table IV depends in general little on
the choice of boundary conditions.

IV. INVERSION OF (—P'+ m')

A comprehensive summary about the computation of
propagators by means of various algorithms in quenched

A. Results of the conjugate gradient algorithm

0.001
124 lattice, m=0. 2

One often finds the general statement that the speed
of convergence of CG depends on the condition number
[24]. In cases where the extremal eigenvalues are well
separated one can find "superlinear convergence, " i.e. ,
convergence at a rate that increases per iteration. More
precisely [25], the asymptotic convergence rate of CG de-
pends exclusively on the condition number (i.e. , only on
the extremal eigenvalues), but the form of the conver-
gence behavior is inBuenced by the entire spectrum. If
the eigenvalues are not distributed uniformly between

;„and A „(i.e. , if they are clustered or there are
large degeneracies), then CG converges better than the
estimate determined by the condition number.

In the case of free fields, the eigenvalues of —p +
m are clustered [Eqs. (4) and (5)], and the results of
the computation of free propagators by CG [8] may be
interpreted as a kind of superlinear convergence. As we
saw in Sec. III, in nontrivial gauge fields the eigenvalues
are distributed uniformly between A;„and A „so that
"standard" convergence must be expected. It is already
known [8] that the inversion of —p +m becomes harder
the more disordered the gauge field becomes.

A result of the present study is that the convergence

0.001

0.0008-

124 lattice, quenched

P =2.4, APBC
+ P —24 PBC

P=2.0, APBC
P = 2.0, PBC

0.0008-

0.0006-

e P=2 8, APBC
P=2.8, PBC
P=2.4, APBC
P= 2.4, PBC8=1.8, APBC
P =1.8, PBC

0.0006-
0.0004-

0.0004-
0.0002—

0.0002-

0
0 4

eigenvalue no.

0
0 6

eigenvalue no.

FIG. 4. Low-lying spectra of the quenched operator —P
on 12 lattices. APBC and PBC stand for the choice of
boundary conditions. Results for p ) 2.4 are outside the
range of this plot; only for periodic BC does Ao come back
to zero as P m oo. The examples shown are CN's 13—16 of
Table IV.

FIG. 5. Low-lying spectra of —P on 12 lattices in the
presence of dynamical staggered fermions of mass 0.2. APBC
and PBC stand for the choice of boundary conditions. (For
P = 2.8, PBC only the lowest eigenvalue is visable (i.e. ,
is ( 0.001); this point alxnost coincides with the one for
"P = 2.4, PBC"). The examples shown are CN's 23—28 of
Table IV.
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TABLE II. Lowest eigenvalue of the free —P on staggered (2L)" (2r) lattices with APBC in
v direction, and PBC in the d —1 spatial directions.

Ap

64

1.0
124

0.267 949 1
184 24'

0.120 614 8 0.068 148 3
304

0.043 704 8
36'

0.030 384 5

724

0.007 610 6

TABLE III. Extremal eigenvalues of the free —P and condition numbers K,,

4

4

124
124

BC
PBC

APBC
PBC

APBC

&min

0
1
0

0.267 95

&max

12
13
16

15.732 05

K]

301
12.5
401
51.2

K2

4801
13.0
6401
58.2

TABLE IV. Examples for the extremal eigenvalues of —P, and for condition numbers K, in
particular gauge fields on ~A~ lattices. The value in the column headed m gives the value of the
mass of the dynamical fermions in the hybrid Monte Carlo run; m = oo stands for a quenched
simulation.

CN

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28

29
30
31
32
33
34

64
64
64
64

64
64
64
64

64
64
64

4

124
124
124
124
124
124
124
124
124
124

124
124
124
124
124
124

124
124
124
124
124
124

BC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC
PBC

APBC

0.2
0.2
0.2
0.2
0.05
0.05
0.05
0.05

0.2
0.2
0.2
0.2
0.2
0.2
0.05
0.05
0.05
0.05
0.05
0.05

1.8
1.8
2.8
2.8
1.8
1.8
2.8
2.8
1.8
1.8
2.8
2.8
2.0
2.0
2.4
2.4
2.6
2.6
2.7
2.7
2.8
2.8
1.8
1.8
2.4
2.4
2.8
2.8
1.8
1.8
2.4
2.4
2.8
2.8

&min

1.222 x 10
1.725 x 10
5.668 x 10
2.029 x 10
1.119x 10
4.045 x 10
4.016x]0
4.304 x 10
3.395x 10
4.052 x 10
3.887x 10
3.990x 10
1.747x 10
8.574 x 10
7.556 x 10
1.588 x 10
4.204 x 10
1.916x 10
4.915x ]0
2.621 x 10
4.002 x 10
6.]98x]0

3.075 x 10
6.911x 10
8.475 x 10
1.602 x 10
8.250 x 10
3.249 x 10
4.222 x 10
9.507x 10
1.956x 10
1.053x 10
5.829 x 10
8.323 x 10

21.15
21.14
18.28
18.48

20.73
20.76
18.25
18.38
20.58
20.36
18.38
18.32

20.73
20.70
19.30
19.29
18.82
18.82
18.66
18.66
18.47
18.48

20.68
20.70
18.97
19.13
18.31
18.30
21.38
21.55
19.73
18.93
18.46
18.88

528.1
527.2
189.5
76.2

517.8
519.5
41.4
39 ~ 2

519.2
518.5
482.6
481.3
426.7
318.8
209.8
282.4
231.3
181.6
518.0
518.5
474.2
479.1
457.8
454.8

K2

8066
7910
309
90

7248
3107

47
46

8286
8277
7494
7255
2807
869
361
650
434
287

8550
8620
7886
1453
7216
7527
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0.001

0.0008.

0.0006-

0.0004-

12 lattice, m=0. 05

,9 =—2.8, APBC
P = 2.8, PBC

a P = 2.4, APBC
P =2.4, PBC
9= 1.8, APBC

~ P= j..8, PBC

the convergence of CG. Thus if one wants to study the
convergence of the CG algorithm one can do that with
"cheap" quenched gauge fields, one does not have to take
"expensive" unquenched configurations.

Finally let us note that identical convergence behavior
(measured by rms norms) was found for m = 0.2 on 6
and 12 lattices. Only for the smaller mass m = 0.05 the
RMS residual is reduced faster on the 6 lattice (Fig. 7).

0.0002- B. results of the twogrid algorithxn

0
0 4 6

eigenvalue no.

FIG. 6. Low-lying spectra of —P on 12 lattices in
the presence of dynamical staggered fermions of mass 0.05.
APBC and PBC stand for the choice of boundary conditions.
(Ao ——0.011 for P = 2.4, APBC, so that for these parameters
no point is visable on the scale of the plot. ) The examples
shown are CN's 29—34 of Table IV.

behavior of CG in nontrivial gauge fields is practically
only determined by the condition number K of —P +m2,
and by the lattice size; see Fig. 7. For configurations on a
lattice of given size with the same r, CG yields sequences
of rms norms of residuals which practically coincide, even
if the spectra are difFerent. This comes as no surprise
for configurations where the spectra are almost identical
(e.g. , CN's 13 and 14, 23 and 24, 29 and 30), but it is also
true in cases where there are more difFerences in the spec-
tra (e.g. , CN's 15 and 16, 25 and 26). However, on the
other hand, as mentioned in Sec. III, on the overall range
of the spectra there is little difFerence between quenched
simulations and simulations with dynamical fermions (of
mass m = 0.2, 0.05). Therefore slight Huctuations in the
distrubution of eigenvalues on small scales do not afFect

For the inversion of —P + m by means of an MG
method we used the twogrid algorithm described in
Sec. II, where the relaxation scheme on the fine grid was
successive overrelaxation (son. ) with a relaxation param-
eter u, and sweeping was done in lexicographic ordering.
According to the conventional MG wisdom Gauss-Seidel
relaxation (w = 1) is a good smoother. However, from
previous works [8] we know that the picture changes in
nontrivial gauge fields. The performance of our simple
variational MG method can be improved at finite gauge
coupling by choosing w ) 1.

An obvious statement is that convergence of the MG
algorithm is not determined by the condition number e.
This is clear in the limiting case of free fields, because
in pure gauges critical slowing down is completely elimi-
nated by MG, i.e. , convergence is completely independent
of K.

In nontrivial gauge fields convergence of MG depends
on details of the spectrum. For instance, CN's 1, 2, 5, and
6 all have the same K for m = 0.2 (Table IV). The spectra
are practically equal for CN's 1 and 2, and for CN's 5 and
6, and so is the MG convergence within each of the two
groups (also as a function of w). But MG convergence in
CN 1 is distinctly difFerent &om CN 5. Convergence was
monitored for u = 1.0, 1.2, 1.4, 1.6, 1.8, and 1.9. In CN
1 the best value was 1.6, while it was 1.8 in CN 5. MG
with plain Gauss-Seidel relaxation performed identical

C$

Co
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-15

-10

-15

-20 -20

-25
0 50 100 150 200 250 300 350 400 450 500

iteration no.

FIG. 7. CG convergence of the RMS residuals in depen-
dence on the condition number a. Curves 1—4 are results
for 12 lattices with e = 479, 519, 1453, 7886, respectively.
Curves 5 and 6 are results on 6 lattices with e = 3107,7248,
respectively. The curve for convergence on a 6 lattice with
K = 518 coincides with curve 2.

-25
0 50 100 150 200 250 300 350 400 450 500

iteration no

FIG. 8. MG convergence of RMS residuals. The numbers
at the curves have the same meaning as in the caption of
Fig. 7. The relaxation parameter u is 1.8 for m = 0.2, and
1.9 for m = 0.05. Here the curve for convergence on a 6
lattice with K = 518 does not coincide with curve 2, as it does
in Fig. 7.
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on CN's 1 and 5. In all cases evident inferiority of MG
was found compared to CG, a factor of about 10 in CPU
time.

On 124 lattices we monitored MG convergence for the
same set of u values mentioned above, and for all 12
configurations of Table IV. The best w value depends on
the individual gauge field. Roughly speaking one obtains
best convergence if one chooses u = 1.8 for m = 0.2,
and u = 1.9 for m = 0.05. But again we could not find
any significant difference in the performance of the MG
algorithm in quenched and unquenched gauge fields. The
poor performance of MG found earlier [8] is no feature of
quenched computations.

We conclude by giving results of MG computations in
Fig. 8, where convergence is shown for the same configu-
rations as in Fig. 7. We stress that we show convergence
in number of iterations. Conversion to CPU time favors
CG by another factor of 4.5.

V. CONCLUSIONS

The complete spectrum of the staggered Dirac operator
in four-dimensional SU(2) gauge fields can be determined
very accurately by the Cullum-Willoughby Lanczos pro-
cedure [21], provided the Wilson coupling P = 4/g is
not too large. At finite P the eigenvalues of —P are dis-
tributed uniformly between the lowest and the highest
eigenvalue. This is so both for quenched simulations and
for simulations with dynamical fermions. On the over-
all scale the shape of the spectrum depends little on the
fermion mass. As a consequence the convergence of the
CG algorithm is only determined by the condition num-
ber K. On a lattice of given size CG produces iterates
whose residual norms depend only on K. Since K is al-
most not affected by the presence of dynamical fermions,
one can predict the convergence of CG in unquenched
simulations &om quenched simulations.

With antiperiodic boundary conditions the lowest ei-
genvalue of —P is 4sin [vr/(2~)], which is not so close
to zero on lattices of realistic size. However, when one
introduces a nontrivial gauge field the lowest eigenvalue
is brought very close to zero. Moreover, for intermedi-
ate values of P the spectra are practically the same for
periodic and for antiperiodic boundary conditions.

On a 6 lattice we found that at fixed P the low-lying
spectrum is raised when dynamical fermions are intro-
duced, and that this rise is bigger the lighter the mass of
the dynamical quarks become. (This is a general trend,
also when one passes the finite-temperature phase tran-
sition. ) Naively this can be taken as a confirmation of
the expectation that the effect of dynamical fermions is
to suppress configurations with many approximate zero
modes. However, one has to consider renormalization ef-

fects, which we did not intend to do in this exploratory
study. That renormalization effects play an important
role can be seen already &om the results on 12 lattices.

For the performance of the variational MG method
studied here we could not find any improvement when
quenched gauge fields are replaced by configurations with
dynamical fermions. We could only rediscover the pre-
viously known result [8] that there will be a break even
point in lattice sizes after which the MG method will out-
perform the CG method. This is so because in the limit-
ing case p -+ oo critical slowing down is completely elim-
inated. However, we cannot judge how big the lattices
have to be in order to reach the break even point. It is
reasonable to believe that in principle the presence of dy-
namical fermions will affect the performance of MG algo-
rithms in a positive way. We think that the main reason
for seeing no improvement is that the notion of "Laplace
smoothness" [14] which stands behind the definition (3) is
inappropriate for staggered fermions. One should rather
use the "Dirac notion of smoothness" [14,10] which is in
the spirit of the discussion in Ref. [15,16]. Possibly with
Baker's algorithm [16] one can observe that the presence
of dynamical fermions simplifies the task for MG algo-
rithms.

Note added in proof. I am thankful to R. Sommer for a
useful remark after submission of this article. When —1 is
an element of the gauge group, then there is no difference
in expectation values of observables when one switches
from PBC's to APBC's. The results of the present Monte
Carlo simulations are consistent with this fact. Figures
3—6 (where we look at individual configurations) indicate
that fluctuations in the spectrum of P become stronger
as one passes &om the confined to the deconfined phase,
or as one increases p.
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