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Chiral phase transition and instanton —anti-instanton molecules
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In this paper we explore the idea that the chiral phase transition in QCD can be described as a
transition from a disordered instanton liquid to a strongly correlated phase of polarized instanton-
anti-instanton molecules. We calculate the degree of polarization of the molecules as a function of
the temperature and show that the resulting T dependence of the fermion determinant drives the
chiral phase transition. We also show how the polarization of the molecules can lead to a nontrivial
behavior of the energy density and pressure. Finally, we study the e8'ect of the presence of molecules
on the propagation of quarks at T T . We derive the corresponding eR'ective interaction and find
that the strength in the scalar-pseudoscalar channel is four times the strength in the vector —axial-
vector channel which agrees with recent lattice QCD simulations. We give results for the quark
condensates as well as mesonic and baryonic correlation functions and find that the "screening
masses" of chiral partners become equal for T ) T„where we still observe substantial attraction in
the scalar-pseudoscalar meson channels.

PACS number(s): 12.38.Lg, 11.10.Wx, 12.38.Gc, 12.39.Fe

I. INTRODUCTION

Since the first suggestion (see [1] and references
therein) that instantons are related to the breakdown
of chiral symmetry in the QCD vacuum, significant ef-
fort has been made [2—5] to transform this idea into a
quantitative theory.

Recently, two results have led to significant progress in
connection with these efforts. First, it was shown [6,7]
that even the simplest possible instanton-based model of
the QCD vacuum, the so-called random instanton liq-
uid model (RILM), predicts correlation functions which
agree both with phenomenological information (see the
recent review [8]) and lattice calculations [9]. In partic-
ular, it was shown that many hadrons (including, e.g. ,
pions and nucleons) are bound by the instanton-induced
interactions, and that their properties (masses, coupling
constants, and wave functions) are reproduced by the
model.

Second, important new results were obtained from the
study of "cooled" lattice lattice configurations. "Cool-
ing" is a procedure that relaxes any given gauge field
configuration to the closest "classical component" of the
QCD vacuum. As emphasized in earlier works, the result-
ing configurations were found to be of multi-instanton
type [10]. The recent work by Chu et al. [11] now
concludes that the typical instanton density is given
by n (1.3—1.6) fm 4 while the typical size is about
p 0.35 fm. These numbers essentially reproduce the
key parameters n = 1 fm and p = 0.3 fm of the "in-
stanton liquid" picture of the QCD vacuum, originally
suggested on purely phenomenological grounds [2].

In addition to that, it was found that correlation func-
tions as well as hadronic wave functions in most channels
remain practically unchanged after "cooling. " This con-
firms that the agreement of previous lattice calculations
with the instanton model was not accidental. In fact,

these works provide a decisive experiment as far as the
validity of the instanton model is concerned, demonstrat-
ing that even after eliminating such QCD phenomena
as the perturbative gluon exchange and confinement one
still observes hadronic bound states. Moreover, the cor-
responding masses and wave functions appear to be only
mildly affected.

Although many details remain to be worked out, it
seems fair to say that instantons are indeed a major com-
ponent of the QCD vacuum, producing the quark con-
densate, the low-lying hadronic states and many other
nonperturbative features of QCD.

In this paper we discuss properties of the instanton en-
semble at finite temperature. Our focus is especially on
the region around the chiral phase transition T T . For
QCD with two light flavors lattice simulations give a crit-
ical temperature T, 140 MeV [12]. The first attempt
to understand this phase transition as a rearrangement
of the instanton liquid, going &om a random phase at low
temperatures to a strongly correlated "molecular" phase
at high temperatures, was made in [13]. The essential
point is that while individual instantons are strongly sup-
pressed in the chirally restored phase (because of the cor-
responding zero modes), instanton —anti-instanton (II)
pairs have a finite probability even above T . This idea
was recently reexamined in [14], and although the basic
ingredients of the model are the same, the two works sug-
gest significantly different scenarios for the chiral phase
transition.

According to the original idea, chiral symmetry is re-
stored because most of the instantons are removed by
a finite-temperature instanton suppression factor [15,16].
This factor describes the effect of Debye screening on the
fluctuations around the instanton solution. Of course,
it also affects the high-temperature molecular phase and
allows only a small number of molecules above T . In
the more recent work [14], on the contrary, it was argued
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that screening should not be a dominant effect at tem-
peratures below or just above T, (see also [17]). Instead,
it was shown that the temperature dependence of the
fermion determinant can provide chiral restoration even
without any additional suppression factors. This means
that one may have a significant number of instantons
even above T, and that the cause of the phase transition
is not the suppression of instantons but a rearrangement
of the instanton liquid.

This new scenario for the chiral phase transition im-
plies a number of nonperturbative effects in the region
just above T . One of these effects was already men-
tioned in [14]: instantons can provide a substantial con-
tribution to the energy density and pressure even above
the chiral phase transition. In this paper, we want to
study the effects of the rearrangement of the instanton
vacuum in more detail. In particular, we consider the be-
havior of condensates and hadronic correlation functions
through the chiral phase transition. For this purpose we
consider a schematic model in which the instanton liquid
is described as a mixture of a random and a molecular

component. The phase transition is then studied as a
function of the &action of correlated instantons.

The paper is organized as follows. In Sec. II, we give a
general discussion on correlations in the instanton liquid
and introduce the concept of instanton —anti-instanton
molecules. In Sec. III, we study the phenomenon of po-
larization of molecules at finite temperature and in Sec.
IV we describe how this effect determines the energy den-
sity and pressure of the instanton ensemble. A general
treatment of the new interaction induced by the pres-
ence of molecules is given in Sec. VI while in Sec. VII we
present the results of a simulation of a mixed ensemble
of random instantons and molecules.

II. CORRELATIONS
IN THE INSTANTON ENSEMBLE

Let us introduce the necessary general formulas and
notation. The ensemble of interacting instantons is de-
scribed by a partition function of the type

1

N+!N !
N+N

[dO;d(p;) p, ']exp( —S;„,)
Nf

det(D + my),

where N+ and N are the numbers of instantons and
anti-instantons, dO,. is the measure in the space of col-
lective coordinates [12 per instanton in SU(3)], and

(2)

4.6 exp( —1.86N, )
7r2(N, —1)!(N,—2)!

is the semiclassical amplitude for a single instanton which
depends on the running coupling constant g(p). Further-
more, S;„t is the gluon-induced interaction, which we do
not specify in this work. Instead, we focus on the last
factor, which appears after the integration over fermions
has been carried out. As is the case for the bosonic zero
modes, the integral over the fermion zero modes has to
be performed exactly. Assuming that the fermion de-
terminant factorizes in a zero mode and a nonzero mode
factor, the first factor is given by det(TTt+m2&), whereas
the second factor is taken into account to Gaussian order.
The matrix TII is the N/2 x N/2 "hopping" matrix

TII d Z 10 X ZI XD~ Io X zl

Here, zy, zI are the centers of the instantons and for sim-

plicity we assume that N+ ——N = N/2. The statisti-
cal mechanics described by the partition function (1) is
complicated and so far direct simulations have only been
carried out at zero temperature.

The instanton solutions and the corresponding zero
modes are known analytically for nonzero temperature
[20], and detailed studies of the temperature dependence
of the "hopping" matrix elements were performed in
[21,22]. The general structure of these matrix elements
is given by TII ——u4fi+ (u. r/r) f2 Here, the .four-vector
u„= (u, u4) is defined by UII = u„r& where Ull is the
upper 2 x 2 corner of the N, x N matrix that describes
the relative orientation of the instanton and the anti-
instanton and r+ = (7, —i). The two invariant functions
fi and f2 can be parametrized in the form [21]

nT sin(err T)cosh(err T)
[cosh(mrT) —cos(7r&T) + t'ai(T)]2

7rT cos(vrrT) sinh(vrrT)
[cosh(mrT) —cos(vr&T) + rz(T)]2

(6)

where r and w are the separation between the instanton
and the anti-instanton in the spatial and time direction.
All quantities are given in units of the geometric mean

In earlier works on the subject [13,18,19] the high-
temperature instanton suppression factor was extrapolated to
all temperatures.

Recall that any condition applied to a macroscopically large
system should not be important anyway.
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of the two instanton radii +pip~. The functions I"i, I"2
and Ki, K2 provide the correct normalization in the lim-
its of zero and infinite temperature. They are explicitly
specified in [21] and used in our simulations but their
detailed structure does not acct our arguments or the
results presented in this paper.

Neglecting all interactions one arrives at a random en-
semble of instantons in which the distribution over all
collective coordinates such as positions and orientation
is given by the corresponding invariant measure. As was
mentioned in the Introduction, this model leads to a sim-
ple and phenomenologically successful description of the
QCD vacuum. Notable exceptions are those channels in
which instantons produce a strong repulsion, in particu-
lar the i1' and 8' (scalar-isovector) channels.

Correlations in the instanton liquid have two aspects,
which we will refer to as long- and short-range correla-
tions. Long-range correlations are related to the phe-
nomenon of screening of the topological charge. Its most
important manifestation is the vanishing of the global
topological charge (and the vanishing of the topological
susceptibility), which takes place provided the theory has
massless fermions and one is considering a suKciently
large volume. As expressed by the Witten-Veneziano re-
lation, these correlations are related to the physics of g'
meson. We discuss this question in a separate publication
[23].

In the present work we want to focus on short-range
correlations, which can be studied by considering II
pairs. Correlations in the instanton liquid that may lead
to the formation of II pairs are caused by the gluonic ac-
tion S;„& or the efFective fermion action Sf = Nf Tr ln(D).
Naturally, their relative role depends strongly on the
number of light flavors Nf in the theory. However, both
types of interaction favor the same relative orientation of
the instanton and the anti-instanton. This orientation is
most simply described in terms of an angle 0 defined by

Before we consider this problem, let us make a brief
digression. Even if the contributions of "molecules" in
the QCD vacuum is not large, there are external param-
eters that can increase their role. One way of doing this
is to consider QCD-like theories with an increasing num-
ber of light flavors Nf. As the fermion determinant is
raised to a higher power Nf, the role of correlations in-
duced by the determinant certainly increases. Thus, one
may anticipate the existence of some critical number of
Havors Ny „above which the instanton ensemble is dom-
inated by molecules [24,5]. In this paper, however, we
want to consider another external parameter that has a
significant eKect on correlations in the instanton liquid,
namely the temperature.

III. POLARIZATION OF THE II MOLECULES

In Ref. [14] a schematic model was developed in order
to deal with the complicated statistical mechanics de-
scribed by the partition function (1). In this model the
instanton ensemble is described as a mixture of a molec-
ular and a random component. The di8'erential activities
for the two components are assumed to be

dZ~ = C dpidp2d RdU(pip2)

x exp[ —K(pi + pz)(p n + 2p n )]

x((TrrTr*i) ')

for the molecular component and

dZ = Cdpd RdU p

xexp[ —Kp (p n + 2P n )]

cos(0) = iu Ri

[u/ R'

where R„= (r, w) is the vector connecting the centers
of the instantons and u~ is the relative orientation vec-
tor introduced above. Maximal attraction, for both the
gluon and the fermion interaction, corresponds to 0 = 0.

Since the probability of a given configuration is pro-
portional to the value of the fermion determinant, con-
figurations with a large determinant should be preferred.
For a single II pair we have det(D) (cosg)2~i. If
this II pair sits in the vicinity of 0 = 0 we will re-
fer to it as a "molecule. " Clearly, it maximizes the
fermion determinant, or minimizes the corresponding
"energy, "—ln(detD).

However, dealing with a statistical system one should
not simply minimize the energy, but rather take into ac-
count the competition between minimizing the energy
and maximizing the entropy (i.e., minimize the free en-
ergy). In other words, we have to determine the relative
weight of the most attractive (molecular) orientation rel-
ative to all others in the SU(3) group from summing over
all states in the partition sum.

for the atomic component. Here, n, n denote the
densities of the random and the molecular components,
p, p are the average square radii of instantons in the
two components, C is the normalization of the single in-
stanton density [see (2)] and 6 = N, —sNf is—the
coefBcient of the Gell-Mann —Low function.

The model uses a simplified gluonic interaction cor-
responding to an average repulsion (S;„i) = topi p2
parametrized in terms of a single dimensionless constant

The fermion determinant for the random component
is approximated by ((1/N) TrTTt) ~~ ~2 where the average
is over all positions and orientations. For the molecular
component, on the other hand, the overlap matrix ele-
ment is first raised to the Ny power and then averaged

((T&&T~ )~~). This average is only performed over posi-
tions, whereas the relative orientation is kept fixed.

Using the overlap matrix elements defined in the last
section, one finds a very specific temperature dependence
of the quark-induced interaction. The average determi-
nant for the random component gradually decreases with
temperature, whereas the determinant for the molecular
component first increases (at T T ) and eventually,
at larger T, starts to decrease. This behavior leads to
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the disappearance of random instantons at high temper-
atures and to a phase transition to a purely molecular
phase in which chiral symmetry restored.

As we are going to show in this section, the reason for
this temperature dependence is given by a strong and
rapid polarization of the molecules in the critical region.
Polarization in this context means that at finite T the
vector connecting the centers of the instanton and anti-
instanton R„=zI —zI„= (r, 7 ) is no longer distributed
isotropically (as it is at T = 0), but tends to point in the
time direction. Roughly speaking one may say that at
T T the "instanton liquid" actually becomes a "liquid
crystal" of the nematic type.

In general, the anisotropy of a field theory at finite
temperature is of course a consequence of the different
boundary conditions imposed in the time and spatial di-
rections. An important consequence of these boundary
conditions is the fact that the propagators for bosons and
fermions become qualitatively different at finite temper-
atures. Both are anisotropic, but fermions are subject to
a qualitatively new phenomenon, the exponential screen-
ing of the propagator in the spatial direction. For a free
massless fermion, the propagator is S(r) exp( —7rTr)
where mT is the lowest Matsubara frequency. Therefore,
with increasing temperatures quarks develop a strong
preference to propagate in the time direction. This is
the main mechanism that produces an anisotropy of the
instanton ensemble at finite temperature.

Before we come to quantitative results, let us give a
qualitative explanation why the phenomenon takes place.
Suppose the vector connecting the I and I centers is
B„= (r, r). Using the overlap matrix elements spec-
ified above, the probability to have such a molecule is
roughly proportional to

det(iD) ]sin(mT&)/cosh(vrTr)
~

i . (10)
This factor is maximal for r = 0 and 7 = P/2 = (1/2T),
which is the most symmetric position of the II pairs on
the torus. Note that it corresponds to a molecule polar-
ized. in the time direction. As a function of temperature
one may expect the strongest effects to occur when the
temperature is such that the period of the torus in the
direction is about twice the typical size of a molecule. In
the Euclidean formalism, the phase transition becomes a
simple geometric effect: the transition occurs when the
II molecules optimally fit into the "temperature box."

In order to study this effect in more detail we have
performed a simulation of the partition function (1) for a
single II pair at finite temperature T. The interaction is
given by the fermion determinant discussed in Sec. II and
the gluonic interaction specified in [21]. The simulation
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is based on a simple Metropolis algorithm in which a new
random configuration of the II pair is accepted with a
probability Ji exp( —S,Ir), where the e8'ective action
is the sum of the gluonic and fermionic parts, S,ff
S,„& + ln(detD). Since there is only one pair present in
our simulation we keep the size of the instantons fixed
while the positions and orientations are updated.

In order to characterize the orientation of the II
molecule we introduce the angle o. between the vector
R~ (connecting the I and I centers) and the [three-
dimensional (3D)] spacelike plane: tann = Bp/~R]
r/r. The distribution of the polarization is then deter-
mined by averaging the n over a large number of configu-
rations. In Fig. 1, we show the differential distribution of
the angle o, for different temperatures and two different
cases: (i) two light and one heavy flavor (QCD); and (ii)
four light Havors. The distributions are normalized to
the isotropic four-dimensional (4D) distribution, which
means they are divided by the relevant Jacobian cos o..
In both cases we observe that the distribution is prac-
tically flat (= isotropic) at low temperatures T ( 100
MeV, but becomes strongly peaked at a = m/2 for larger
T. At very large temperatures, this peak starts to disap-
pear: this happens because at high T the time dimension
is so strongly squeezed that no molecules can be oriented
this way. As expected, the polarization is stronger in the
case of four light flavors.

In Fig. 2, we show a fraction of molecules in the ensem-
ble with ]R] ( min(Ro, 1/T —I4). We observe that the
degree of polarization jumps to a very large value 70/p
over a fairly small temperature interval T (120—150)
MeV.

Finally, let us make a comment on the physical mean-
ing of the polarization phenomenon in a less technical
language. The II molecules are virtual (or failed) tunnel-
ing events, in which the gauge fields penetrate into a new
classical vacuum only for a short period of time, and then
return back. For that reason, they do not contribute to
the quark condensate and other related quantities. "Po-
larization" of the II molecules at T T means that at

The gluonic II interaction at finite T was studied in [21],
with the result that it remains approximately isotropic until
rather high temperatures.

Note also, that near the maximum det(iD)
exp[ N17r T (br + 6r )],—so at large number of flavors

one can use a saddle-point method to evaluate the contribu-
tion of this region.

FIG. 1. Distribution of the polarization angle of an in-
stanton —anti-instanton molecule for diBerent temperatures T
(MeV). The distributions are shown as a function of the ori-
entation angle n introduced in the text and are normalized
to a uniform distribution cos n. The two figures show the
two cases of two light and one massive flavor (QCD) and four
massless flavors (Nf = 4).
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FIG. 2. Degree of polarization of an instanton-
anti-instanton molecule as a function of the temperature. The
two figures show the two cases of two light and one massive
flavor (QCD) and four massless flavors (Nf = 4).

such temperatures the tunneling is concentrated in the
vicinity of the same spatial point.

IV. MAGNETIC VERSUS ELECTRIC FIELDS,
AND THE EQUATION OF STATE

For three and more massless quarks the transition is be-
lieved to be of first order, but the phenomenon mentioned
above is also observed for two massless quarks (when there
is a second-order phase transition) and for light but massive
quarks, when there is no strict phase transition at all.

Lattice data on the thermodynamics of the chiral phase
transition suggest that the pressure p(T) remains rela-
tively small around the transition region, while the en-
ergy density e(T) changes by about an order of magnitude
over a small interval bT ((T, (see the review [25]). A
parametrization of the data obtained by Kogut et al. [26]
for the realistic case of two light and one medium heavy
Gavor, together with a general discussion can be found
in [27]. These authors stress that at chiral restoration
T T, not only the (relatively small) quark related en-

ergy and pressure are significantly changed, but that the
(much larger) gluonic energy and pressure should also be

modified.

Let us mention one more point emphasized in [27]:
there seems to be a contradiction between the small tran-
sition temperatures T 140 MeV seen in unquenched.
lattice simulations and the large value of the phenomeno-
logical bag pressure B 500 MeV/fm derived from the
trace anomaly [15,28] (at T = 0). With the usual bag
model equation of state, in which the pressure at T ) T,
is written as the sum of the Stefan-Boltzmann contribu-
tion for an ideal quark-gluon gas minus the nonperturba-
tive bag pressure, one is unable to get a positive pressure
at such a low transition temperature. The natural alter-

native is to assume that the nonperturbative phenomena
responsible for the bag pressure at T = 0 are partially
present at T ) T as well, so that only part of this large
B is removed across the transition region.

The question whether the rearrangement of the instan-
ton ensemble into a molecular phase can explain this be-
havior was studied in [14], where the schematic partition
function defined by (8) and (9) was used to determine the
instanton related contribution to the equation of state.
It was indeed found that instantons give a sizable contri-
bution to the energy density and pressure, that the two
quantities behave quite differently, and that the results
are roughly consistent with the lattice data. In particu-
lar, it was shown that, (i) p;„,t(T) jumps down, to about
half of its value at zero temperature, while, (ii) ;e„, (tT)
jumps up, thus contributing to the "latent heat" of the
transition. The reason for this behavior was attributed
to the specific temperature dependence of the fermion
interaction used in that model. In the last section we
have explained that this T dependence is caused by the
polarization of II molecules. Now we want to show that
this phenomenon leads to a simple microscopic explana-
tion of the energy density and pressure, related to the
(color) electric and magnetic fields associated with po-
larized molecules.

Let us first recall some well-known facts about instan-
tons at T = 0. The instanton (anti-instanton) fields
are self-dual (or anti-self-dual), G~„= +—e~„pG p. In
Minkowski space they correspond to classically forbidden
paths and the electric and magnetic fields are related by
Ek(x) = kiBg(x). As a consequence, in the classical en-

ergy density e,i =
2 (E + B ) the negative electric term

is exactly compensated by the positive magnetic one, so
the configuration may be created "out of nothing, " in
agreement with the classical equations of motion.

Furthermore, instantons contribute to the energy den-
sity of the @CD vacuum, but this happens not at the
classical but at the quantum (one-loop) level. This is
quite natural, since instantons correspond to tunneling
phenomena, which are known to lower the ground-state
energy. In @CD, this fact can be expressed in terms of
the "stress tensor anomaly"

z ((gG) )

which is nonzero for the instanton solution. Here, 6 =
s N, —s%f is the first coefficient of the P function.

For a dilute ensemble, one can directly relate the energy
density to the instanton density e = —4n;„,t [29]. As
we already emphasized above, this energy is numerically
rather large.

At finite instantoii density (and especially in strongly
correlated molecules) the fields are not purely self-dual.
However, at T = 0 molecules are unpolarized: therefore
only Lorentz scalars can have nonzero vacuum expecta-
tion values. Since the liquid is relatively dilute, these de-
viations from self-duality, just lead to a relatively small
correction to the right-hand side of the anomaly equa-
tion.

At finite temperature, instantons contribute to the
equation of state in two ways. First, the instanton den-
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sity will change, leading to a change in the bag pressure.
Second, the polarization of II molecules in the time di-
rection causes the expectation values of the electric and
magnetic fields to be difFerent. While the first efFect gives
equal but opposite contributions to the energy density
and pressure, non-self-dual fields give a positive contri-
bution to both the energy density and the pressure.

In order to study this effect, we have calculated the
color fields for a single molecule with given polarization.
Since II configurations are not exact solutions of the Eu-
clidean equations of motion the quantitative result de-
pends on the specific ansatz for the gauge fields. Here
we show the two most widely used forms of the gauge
potential, the sum ansatz [29] (solid lines in Figs. 3 and
4) and the ratio ansatz [4] (dashed lines in Figs. 3 and
4).

In Fig. 3, we show the modification of the action
S;„t ——Sg~t —2Sp and the energy for a single molecule
polarized in the time direction at a temperature of 200
MeV. Results are given for the most attractive and the
most repulsive orientation. Indeed, one finds consider-
able attraction for the favored orientation cos0 = 1. This
interaction is weaker in the ratio ansatz, but the qualita-
tive features are the same as in the sum ansatz. The new
result is the lower panel, showing the polarization of the
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FIG. 4. Interaction and Euclidean "energy" (E —B ) in
units of the single instanton values for a molecule oriented in
the spacelike direction at finite temperature T = 200 MeV.
Results are given as a function of the molecule size d in units
of the instanton radius p. Curves as in Fig. 3.

fields in the Euclidean time direction. Both in the sum
and in the ratio ansatz cases, the fields are dominantly
magnetic and give a positive contribution to the classical
euclidean energy density e = 1/2((B2 —E2)). The effect
is on the order of 15% in the sum ansatz, whereas in the
ratio ansatz-it is roughly 10%.

In Fig. 4, we show the same calculation for a molecule
which is oriented along a spacelike direction. Again we
observe attraction for cos0 = 1, but this attraction is
considerably weaker as compared to a polarized molecule.
Also, in the ratio ansatz the molecule is now essentially
self dual, while in the sum ansatz it is actually domi-
nantly electric.

Let us now come back to the discussion of the energy
density and pressure:

—1.5

.5
I

1.5 2,5
s = —,'(B' —E') +~', (E'+ B') .

b

(12)

FIG. 3. Interaction and Euclidean "energy" (E —B ) in
units of the single instanton values for a molecule oriented in
the timelike direction at a temperature T = 200 MeV. Results
are given as a function of the molecule size d in units of the
instanton radius p = 0.35 fm. The dashed curves represents
the results for the ratio ansatz whereas the solid lines show
the results for the sum ansatz. The lower line of each pair is
for the most attractive orientation whereas the upper line is
for the most repulsive orientation.

The important point is that although (E2+ B ) is much
larger than (B2 —E2), the former quantity is suppressed
by a smaller coefIicient. Therefore, even a moderate
deviation from self-duality leads to a substantial con-
tribution to the energy density and pressure. Taking
(B —E2)/(B2 + E ) 10% from the calculation of
a single molecule, one can get e 225 Mev/fms even
if the density of instantons does not change across the
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transition. Thus it appears that the observed jump in
the energy density can be explained by a change in the
(instanton-related) bag pressure plus the contribution
&om instanton interactions and the perturbative Stefan
Boltzmann part.

V. QUARK INTERACTIONS
INDUCED BY II MOLECULES

Instantons give a very successful phenomenology of the
@CD vacuum, because they provide a mechanism for chi-
ral symmetry breaking and generate strong (and quite
specific) interactions between light quarks. Although in-
stantons do not lead to confinement the interactions are

I

able to bind quarks into mesons and baryons and lead to
a quantitative description of the observed spin splittings.
At the one-instanton level the interaction is described by
the famous 't Hooft efFective interaction [30]

(&&0)(&o@)
f

(14)

where g are quark operators and Po is the zero-mode
wave function. The product runs over the light quark
Qavors. This is still a complicated nonlocal interaction
which depends on the color orientation of the instanton.
After taking the long-wavelength limit and averaging over
the color orientation it can be reduced to a local 2Ny-
point interaction [31,32]. In the case of two light flavors
it reads

2vr 4
A p dp &~ + 7~ +5 &~ ogpu (15)

where n(p) denotes the density of instantons. Here, g
is an isodoublet of quark fields and the four-vector ~
has components (v', i) with a equal to the Pauli matrices
acting in isospace. The Dirac matrix 0„ is defined by
0„„=(i/2) [p~, p ]. The interaction (15) successfully ex-
plains many properties of the (T = 0) @CD correlation
functions, most importantly the strong attraction seen in
the pion channel. It does not lead to an interaction in
the vector channels. This is consistent with the fact that
the p meson correlation function is close to the result ex-
pected from noninteracting constituent quarks. In order
to study the question whether the instanton model sup-
ports true bound states in the vector channels one has to
go beyond the dilute gas approximation and include the
effects of correlations among the instantons.

Near the chiral phase transition the collective coordi-
nates of instantons are no longer random, but become
correlated. Therefore, it is no longer possible to aver-
age over the instanton orientations and use the effective
Lagrangian (15). However, because of the presence of
molecule there should be strong nonperturbative effects
even around T . For this reason we would like to investi-
gate what kind of interactions are induced by correlated
II pairs. We first study the quark propagator in the field
of an instanton —anti-instanton molecule and then derive
the effective vertex that reproduces all four quark corre-
lations.

The quark propagator in the field of a single molecule
is given by

(x y) = So(x y) + ~ [~7,*(x)4' (y)- .

(16)

Here Py and P& denote the zero-mode wave functions in
the field of the instanton and the anti-instanton and T&y

is the corresponding overlap matrix element. For sim-
plicity we use the zero-temperature profiles. We neglect
all nonzero-mode contributions except for the &ee prop-

I

agator So. The propagator (16) satisfies the symmetry
relation

St(x, y) = S(y, x) .

For N = 2 the symmetry group is larger. In that case
we can relate the propagator to its transpose by

S(x, y) = —o2psCS (y, x)Cpso2

S (x, y) = ) a, (x, y)I';, (19)

where I'; is the complete set of (Hermitian) Dirac ma-
trices. Because of the chiral structure of the propagator
only the vector a~„and the axial vector a~~ components
are nonzero. For the scalar, pseudoscalar, and tensor
components we have

as ——a/ ——agp ——0 . (2o)

As a consequence [6] the scalar and the pseudoscalar cor-
relator are degenerate. Also the axial and the vector
correlator are degenerate, whereas the tensor correlator
is not affected by the presence of molecules.

The symmetry (17) leads to the relation

a;(x, y) = aJ(y, x) . (21)

which is also known as the Pauli-Giirsey symmetry [33].
The Pauli matrix: o2 acts in color space. A remnant of
this symmetry is still present for more than two colors.
If we remember that correlators of color singlet currents
only depend on the relative II orientation, which in the
case of molecules is given by R~w+, it is clear that the
symmetry (18) holds in the gauge that one of the pseu-
doparticles has the identity as orientation matrix. In that
case 0'2 contains a projector of SU(K, ) on the SU(2) sub-
group where the II molecule has its support.

To investigate the consequences of the symmetries (17)
and (18) let us consider the tensor decomposition of the
propagator
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av~(x, y) = —~2av„(y, x)~, ,
T (22)

a~„(x,y) = o,aT„(y, z)02 .

An immediate consequence of (22) is that

(23)

Under the restrictions quoted below (18) also the follow-
ing two equalities hold:

tal number of embeddings of instantons in SU(N, ). For
N = 2 the Pauli-Gursey symmetry becomes exact and
meson and diquarks are degenerate.

In [6] it was shown that all meson correlators can be
expressed in the coeKcients of the tensor decomposition
of the propagator. In the molecular vacuum, the coeK-
cients obey simple relations which allow us to find rela-
tions between the correlators. We find

T [S(x,z)q„] = 0 . (24) ) Iav'„(» y) I' = 3).Ia~„(z y) I' (27)

This term enters the disconnected contribution to the
isoscalar correlation function. Relation (24) therefore im-
plies that in the molecular vacuum the p and w mesons
are degenerate. s To exploit relations (22) and (23) fur-
ther, we remind the reader the definition of a flavor non-
singlet meson correlator

and

).Ia~' (* y)l' = —2). la~"„(z x)a~„(y y)l
kl kL

(28)

IIr (x, y) = Tr [S(x,y)1 S(y, x)I'],

and the corresponding diquark correlator

(25)

Ilr (z, y) = Tr[S(x, y)1'Ccr2S (x, y)o2CI'], (26)

where we have chosen a particular color component of
the diquark (every antisymmetric color matrix defines
a diquark current). Again, o2 projects onto an SU(2)
subgroup of SU(K, ). From (18) we conclude that me-
son correlators in the channel I are degenerate with di-
quark correlators in the channel I'p5 up to a color factor.
This factor is given by 2/Ã, (%,—1) which counts the to-

where the averaging is performed over the color and spa-
tial orientation of the molecule and we have assumed that
x and y are far away &om the locations of the pseudopar-
ticles. Relation (27) determines unflavored correlation
functions [6], whereas (28) gives the disconnected contri-
bution for flavor singlet correlation functions. Note that
(24) implies that avi (x, x) = 0. If the propagator is cal-
culated in the spatial direction, the relations (27) and
(28) remain valid even the molecules are polarized in the
temporal direction.

The effective vertex for quark-quark scattering in the
molecular vacuum can be obtained using the standard
reduction formula

d4X expixi+spgxq —apsxq ap4x4 ya—
(p ) yb (p )

4

(viv~l& ilssu4) = —J i=1
x (0IT[8(»)e,'(»)lb(zs) V("(z4)]I0) (ps) br&; (I4)(.&q (29)

where Q; is an isodoublet fermion field with color index a and spinor index i.. If we treat the correlated instanton
ensemble as a dilute gas of molecules, the vacuum expectation value can be calculated using the quark propagator (16).
We only have to perform the average over the global color orientation of a molecule whereas the relative orientation
between the instanton and the anti-instanton is kept fixed. At low temperatures, molecules are unpolarized and we
average over the direction of the vector connecting the centers of the instantons. After taking the long-wavelength
limit we obtain a local four-fermion interaction

i: ~ ~ 1 [(07~4 ) + (0'yP'754 ) ] ~ ~ 1 [(O'Yy 0) (4 YP'754 ) ]

+~ ~, , ((4~ 0)' —(4~ ~~4)*l —~ ~, ((4~ ~~@)'+ (4~ ~~~~0)*I)

with the coupling constant

G Tl' pl ) p2 CLpldp2 2 27t pl 27t p2
8TII

Here n(pi, p2) is the total tunneling probability for the II pair. Note that the isospin structure of (30) is difFerent from
(15), w is a four-vector with components (v', 1). When calculating correlation functions &om this efFective vertex

This is quite remarkable since the near-degeneracy of the p and cu mesons has no really good explanation. In fact, finite-T
+CD sum rules suggest that the degeneracy is lifted at finite T whereas our model predicts that it remains present.
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both the direct and the exchange term have to be taken into account. In order to extract the relevant coupling in
each channel directly Rom the Lagrangian we add the exchange term and Fierz rearrange it into an effective direct
interaction. The resulting Fierz symmetric Lagrangian reads

y
C

2~, (—(4~ ~.4)'+ Y~ ~u~50)']+ ~, (07P~50)') + &8,
C C

where E8 denotes the color octet part of the interaction:

(32)

88 ——G ~ 4' — ~ A'p5 + ~ A'p„+ ~ A'p„p5

1
, I(@ '~„0)'+(0 *~„~~0)']—

2~ ~, , ](4»*~„4)'—(4)*~,~ok)*l) (33)

At temperatures around the critical temperature for the
chiral phase transition, molecules become polarized in the
time direction and we should not average over the relative
position of the instanton and the anti-instanton. In this
case we get an effective Lagrangian which is identical to
(30) and (33) but with all vector interactions modified
according to (Qp~I'Q) ~ 4(gpoI'Q)

Like the effective interaction in the dilute instan-
ton gas, (15), the result for the molecular vacuum is
SU(2) xSU(2) symmetric. But in addition to being chi-
rally symmetric, the effective Lagrangian in the molec-
ular vacuum is also U(1)~ symmetric. Local fermion
Lagrangians of this type have been studied extensively
in the context of the Nambu —Jona-Lasinio (NJL) model
[34,35]. However, in contrast with the NJL model the ef-
fective interaction in the instanton model changes above
the chiral phase transition. Furthermore, the NJL model
has four unknown coupling constants, even when one re-
stricts oneself to zero temperature and color singlet terms
only. At finite temperature, the number of independent
couplings is even larger since the space- and timelike vec-
tor currents can have different coupling constants. In our
model, all coupling constants are specified in terms of a
single parameter G.

Let us now compare the 't Hooft interaction (15) (dom-
inant at T = 0) and the "molecule-induced" one we just
derived, valid for T ) T,. The main effects of the 't
Hooft interaction are (i) the strong attraction in the pion

I

I

channel and (ii) the strong repulsion in the g' channel.
The "molecule-induced" effective Lagrangian is also at-
tractive in the pion channel, but [since chiral and U(l)~
symmetry are restored] the same attraction also oper-
ates in the scalar-isoscalar (o), scalar-isovector (b), and
pseudoscalar-isoscalar (i1') channels.

Furthermore, this Lagrangian also includes an attrac-
tive interaction in the vector and axial-vector channels.
If molecules are unpolarized, the corresponding coupling
constant is a factor of 4 smaller than the scalar coupling.
If they are completely polarized, the attraction is present
only in the operators containing po, but becomes equally
strong as the attraction in the scalar-pseudoscalar chan-
nels. Transversely polarized vectors are not affected in
this case.

There are further nontrivial qualitative features of the
new effective Lagrangian. Note that it predicts no split-
ting between the isoscalar (w) and isovector (p) vector
channels. As we explained above, this is a consequence of
the remnant of the Pauli-Gursey symmetry in the molec-
ular vacuum. At the same time, there appears additional
repulsion in the axial-vector —isoscalar (fi) channel com-
pared to axial-vector —isovector (ai) case.

In order to estimate the effective interaction in baryons
we would like to start with a simpler problem and study
the interaction for diquarks. The effective Lagrangian
(30) can be rearranged into the form

G ~ c T T~ A c ~ A c T T~ A c

1
, ((&v,«P 0 )(4*~&,~')) 0) —(4v, v~«"0 0 )W ~wow«"0 &))) + &8

where 80 denotes the effective interaction among color
sextet diquarks. Only the antisymmetric color matri-
ces P' enter in (34). In order to facilitate the compari-
son with the mesonic interaction [36], they are normal-

ized according to Tr(P'P' ) = N, b" . Using this nor-
malization, the strength of the interaction as compared
to the &ee correlation function can be inferred directly
by comparing the coupling constants. For diquarks, the
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isospin wave function is determined by the Dirac struc-
ture [6,36]. Here, r denote the symmetric Pauli matrices
and 7 = v is the antisymmetric one.

From the efFective Lagrangian (34) we find an at-
tractive interaction for scalar g Cysts and pseudoscalar

C@ diquarks. The interaction for vector diquarks is
also attractive with a coupling constant that is a factor 4
smaller than the one in the scalar channel. All coupling
constants are a factor (N, —1) smaller than the ones in
the corresponding mesonic channel. Again, this is a con-
sequence of the remnant of the Pauli-Giirsey symmetry.

The nucleon can be thought of as consisting of an equal
mixture of scalar and vector diquarks coupled to a third.
quark, whereas the 4 resonance only contains vector di-
quarks. Using the effective interaction derived above, we
would therefore expect an attractive interaction for the
nucleon. The 4-nucleon splitting, however, is expected
to be significantly smaller than the vr-p splitting since the
coupling in the diquark channel is a factor of 2 smaller
than the coupling for mesons.

What are the physical consequences of our proposed
mechanism? How can the predictions from the effective
interaction (30) be verified? The most direct consequence
of the Lagrangian (30) is the behavior of mesonic corre-
lation functions as well as the corresponding screening
masses and susceptibilities. We will study this question
in the next section. The corresponding measurements on
the lattice will provide the relevant test in order to check
the assumptions of our model.

Finally, at the end of this section let us address
the question of the absolute strength of the "molecule-
induced" effective interaction. Instead of 7 unknown con-
stants (which would appear in a general NJL-type La-
grangian for T & T,) we have only G, which is deter-
mined by the number of II molecules n ~(T).

Let us make a few general remarks. First, there will be
a certain fraction of molecules present even at low tem-
peratures. This number can be determined using either
direct simulations of the instanton ensemble or (more
crudely) using the schematic model introduced in [14]. In
any case we expect instantons to be mostly uncorrelated
at low temperatures and G should therefore be smaller as
compared to the coupling appearing in the 't Hooft La-
grangian (14). At temperatures above T„ there should be
a general upper bound, n ~(T) ( n, (the density should
be smaller than some critical number for all T & T ) fol-
lowing &om the condition that the effective interaction
should not be strong enough to lead to a rearrangement of
the vacuum and cause spontaneous breakdown of chiral
symmetry. Second, in a fully polarized configuration the
interaction in the pion and longitudinal vector channel
are identical. This might lead to a situation in which all
scalars as well as the longitudinal components of vector
and axial mesons are massless. This speculative scenario
resembles the "vector limit" studied in [37]. Third, and
the most natural case, is that the density of molecules
and the effective interaction is simply too weak to pro-
duce any bound state. However, it can still be important
and lead to observable effects: one of them being modi-
fication of the "screening masses" to be discussed in the
next section.

VI. CORRELATION FUNCTIONS
IN THE COCKTAIL MODEL

Having outlined the main qualitative features of the
interactions induced by II molecules, we now want to
study some of the predictions of this model involving var-
ious correlation functions. For this purpose we introduce
a schematic model along the lines proposed in [14]. In
this model we assume that the total number of instantons
at temperatures around the chiral phase transition is not
much smaller than at T = 0. In practice we have used
n = 0.75 fm to be compared with the zero temperature
value n = 1.0 fm . We then study the phase transition
by varying the &action f = 2N ~/N;„, t of instantons
correlated in II molecules.

We have carried out our simulations in a box 5.8 x 1.3
fm, corresopnding to a total volume V = 256 fm and a
temperature T = 150 MeV. This is the temperature that
determines the boundary conditions on the fields and en-
ters in the calculation of the propagators. As we have
explained in Sec. IV we consider a scenario in which the
phase transition takes place over a fairly narrow interval
of temperatures bT &( T, . Since the instanton fields vary
smoothly with temperature, we keep the size of the box
fixed while we vary the fraction of molecules.

The calculation of the spectrum of the Dirac operator,
the quark condensates, and hadronic correlation func-
tions follows our earlier work on the random instanton
model [6]. The essential idea is to exactly diagonalize the
Dirac operator in the space spanned by the zero modes
of the individual instantons and treat the effects of the
nonzero modes on the single-instanton level. In this work
we simply replace all the eigenfunctions and overlap ma-
trix elements by their finite-temperature counterparts.
This means in particular that the quark propagator is
antiperiodic in the time direction and becomes screened
for large spacelike separations.

Before we come to correlation functions, we would like
to consider an even simpler set of physical quantities at
nonzero T, the expectation values of four quark oper-
ators. These matrix elements play an important role in
@CD sum-rule calculations and some of them can be con-
sidered as additional order parameters for chiral symme-
try breaking. It is therefore interesting to check whether
they vanish at T = T, in. a universal manner. At low
temperatures, the temperature dependence of these ex-
pectation values can be determined by calculating the
contribution from single pion states. At large temper-
atures T T, however, little is known about the T
dependence. Usually it is assumed that the expectation
values can be factorized

((qI'qqI" q) )

(35)

where the double angular brackets indicate thermal ex-
pectation values. This would imply that all expectatioII
values of four quark operators are restored at T, and that
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they vanish at twice the rate of the quark condensate.
Alternative SU(Ky) order parameters are given by the

expectation values

I I I

]
I I I

)
I I I

f

I I I

)

I I I

Oz(T) = (([uzppuz, —dz, ppdz, ][L ~ R])),

Oz(T) = (([uz, p;uz. —dz, p;dz, ][L m R])),

Os(T) = (([uz, Wpt uz —"z7pt dz][L ~ R]))

04(T) = (([uzi;t uz, —dz, p, t dz, ][L -+ R])),

(37)

(38)

where t = A /2 are the generators of SU(K,). These op-
erators enter the Weinberg sum rules at nonzero temper-
atures, related to the difference between vector and axial
correlators [38]. Instead of the operators listed above,
one may also consider the combinations only containing
left- or right-handed quark fields. These operators are
related to the sum of the vector and axial-vector corre-
lators, and need not be restored above the chiral phase
transition. A quantity sensitive to U(1)~ violation is the
expectation value of the 't Hooft vertex

0' (T) = ((detf(qf zzqf z))) (40)

As explained above, this does not rule out the possibility
that the U(l)z symmetry remains broken in an unquenched
calculation.

where the determinant is taken over the difFerent quark
flavors f = u, d, . . . and L, R stand for left and right com-
ponents of the quark fields. Around or above T there
is no quark condensate, and "unpaired" instantons have
very small density 0(m~~) [30]. However, in the mea-
surement of quantities such as this one, the denominators
of the quark propagators cancel the current quark masses,
recovering the famous 't Hooft effective interaction. In
a sense, the operator considered can induce a tunneling
event by itself. Unfortunately, this implies that a small
&action of the configurations will produce a large signal.
This is certainly not an easy way for measurements to be
performed.

In Fig. 5, we show the behavior of the quark con-
densate ((qq)) (asterixes connected by the solid line) and
the vacuum expectation values of the four quark oper-
ators introduced above as a function of the fraction f
of molecules. The dashed line shows the square of the
condensate. The expectation values of the 't Hooft oper-
ator ((0 )) are represented by open squares. The
behavior of the four quark condensates Oi —04 is almost
indistinguishable (solid squares) and we show only one of
them. All matrix elements are normalized to their value
at f = 0. One clearly observes the restoration of chiral
symmetry as the fraction of molecules approaches f = 1.
In our schematic model, not only chiral symmetry but
also U(1)z symmetry is restored as f ~ 1. This is ap-
parent from the behavior of ((0 )), which is very
large in the random model but vanishes in the molecular
vacuum. The factorization assumption fails badly for

0
0

FIG. 5. Quark condensates in the "cocktail" model for var-
ious concentrations f = 2N &/Nl;, t with the total density
n;„,t ——0.75 fm and the temperature T = 150 MeV fixed.
The various operators shown are de6ned in Sec. V of the text.
All expectation values are normalized to their value at f = 0.
The solid and dashed lines show the behavior of the quark
condensate (qq) and the square of the condensate (qq), the
open squares represent the expectation value of the 't Hooft
vertex, and the expectation values (Oz 4) are denoted by the
solid squares.

this operator but works fairly well for the vector opera-
tors 0, .

More microscopic information is given by the spectrum
of the Dirac operator which we show in Fig. 6. For
the purely random vacuum, the spectrum is peaked at
small eigenvalues A. Using the Casher-Banks formula

(qq) = —n(A = 0)/vr, this behavior shows that chiral
symmetry is indeed broken. In the purely molecular
phase, the distribution of eigenvalues is peaked at finite
A, the density of eigenvalues at zero vanishes and chiral
symmetry is restored. The position of the maximum of
the eigenvalue distribution refIects the typical inverse size
of the molecules. For arbitrary concentrations f we ob-
serve that the spectrum looks like a linear combination of
a random and a molecular component. This means that
the Dirac operator really decomposes into a random part
and independent 2 x 2 blocks corresponding to molecules.

Further details on the restoration of chiral symmetry
are provided by hadronic correlation functions. Here we
will only discuss spacelike correlators, since the corre-
sponding screening masses have received a lot of attention
in lattice calculations. We will present the corresponding
temporal correlators in a forthcoming publication [39]. In
general we consider correlation functions of the type

IIz (x) = (T[jr (x)jz (0)]), (41)

where jr(x) is a current with the quantum numbers of
the given hadron and x is a spacelike separation. In the
case of vector mesons we have used the trace of the vector



. SCHAFER F, E. V. SHURYAK , AND J.A . J. M. VERBA . . AARSCHOT 51

500
I I I II

I

I I I II

I

I I I I

[

I
1.5 I I I I II

I
I I II I

400--
a,

300
.5—

200
I I

0
I I I I

.5
I I

1

I

1.5

100 1.5
I I I I I I I II

I
I I

FIG. 6. S m

2

pectrum
ions

lrac o ep I

, 0.90, 1.00 of Dlo
or var'

of molecules. Th
e tempera e

1.5

I I I I
I

I I I II
I

I I I I

TI~
I

1 —c

.5—

I I

0

=0

I

.5
I I I

1

I

1.5

100
~ (fm)

I I

30—

10—

1 =c

.3—
I I

.5
I I I I

1

I

~ (frn)
1.5

calar meso a ion functions for
molecul es. Th

d h
or massle

ed curve
perature

s ess quark s.
es owsthe e correla-

I

0

tur

current correlation fucon function. Th
l

corre atio
in i s.

e vr

t ra y ls restored an
}1 l bs ecome de

an b as

10

e egenerate. He . ow-

.5—

0 I I

0
I

.5
I I I

1

I

1.5

ector mesoeso a ion fununctions for v
090 10

= 150 MeV
m and t

es. The

Th. d h d
n or massle

s e curve sh
perature

s ess quark s.
s ows ths e correla-

ever, this1s mean that the cor

ee ver
c or channels

ion functions
e om

p

l'4
e av 2vrTf eesons and 3

e screenin
ion of mol

AT for
olecules a

t}1
mains signific

correlator.

tt1ce slm l
e and

owt ebeha '
ehavior of thee nucleon and



51 CHIRAL PHASE TRANSITION AND INSTANTON —ANTI-. . . 1279

I I I I

I

I I I I I I I I

5—

0
0

I I I I I I

.5 1.5

I I I I

I

I I I I
I

I I I I

f=O

0
0 .5

%I
I I I I I

1.5

I I I
I

I I I
I

I I I

I
I I I

I

I I I

)4

37TT1500 ==

1000 == N 27TT

)~

C

i

pl-fl ~

500—

I I I I I I I I I I I I I I I I I I I

.8 .4 .6 .8
f

FIG. 9. Nucleon and A correlation functions for various
concentrations f = 0.00, 0.50, 0.75, 0.90, 1.00 of molecules.
The density of instantons n;„,t, ——0.75 fm and the temper-
ature T = 150 MeV are fixed. The dashed curve shows the
correlation function for massless quarks.

4 correlation functions. Among the various possible
correlation functions we only show the chiral even cor-
relators of the first IoKe current for the nucleon g~
e '(u Cp„u )p„lsd' and the standard A current j„=

'(u Cp„u )u' (II2 and II2 in the notation of [6]). The
chiral odd correlators vanish as f -+ 1, in agreement with
chiral symmetry restoration. In this limit the chiral even
correlators approach the cube of a thermal quark propa-
gator. Similar to the pion channel, there is some residual
interaction present in the nucleon channel. The screen-
ing mass of the A approaches 3vrT as f ~ 1, whereas
the nucleon screening mass remains somewhat smaller.
However, the eKect is much less pronounced as compared
to the pion channel.

As a consequence of chiral symmetry restoration, the
nucleon is expected to become degenerate with its chiral
partner, which is usually identified with the lightest odd-
parity ¹ resonance. Unfortunately, there is no current
that couples exclusively to the ¹ and not to the nu-
cleon so that the corresponding screening mass is difBcult
to determine. However, the fact that the chiral odd nu-
cleon correlation functions vanish implies that any contri-
bution from a positive-parity nucleon resonance to these
correlators is exactly canceled by the contribution of the
corresponding negative-parity resonance. This provides
at least an indirect check for the statement that the nu-
cleon and its chiral partner are degenerate.

VII. CONCLUSIONS

In this paper we have studied various consequences of
a scenario in which the chiral phase transition in @CD is
described as a rearrangement of the instanton liquid, go-
ing &om a random phase (at low T) to a correlated phase
of polarized II molecules at T ) T . In this scenario, a
significant number of instantons is present at tempera-
tures T T —2T„causing a variety of nonperturbative
effects.

As was shown in [14] the phase transition does not
require a perturbative instanton suppression but can be
triggered by the temperature dependence of the fermion
determinant. Here we have demonstrated. that this
particular behavior is due to the temperature depen-
dence of the fermion overlap matrix elements. At tem-
peratures T T these matrix elements strongly fa-
vor the appearance of polarized instanton —anti-instanton
molecules. This correlated instanton configuration leads
to chiral symmetry restoration.

One important eKect caused by instantons is the signif-
icant contribution to the energy density and pressure of
the system near the phase-transition region. As demon-
strated in Sec. IV the rapid polarization of the instanton
molecules causes the energy density to jump up, while

FIG. 10. Spacelike screening masses as a function of the
concentration f of molecules. The density of instantons
n;„,r, ——0.75 fm and the temperature T = 150 MeV are
fixed.

In lattice simulations one usually uses the fact that in stag-
gered fermion calculations different parity components are
discretized on alternating lattice sites in order to identify the
odd-parity component of the nucleon correlation function.
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the pressure lags behind and remains rather practically
unchanged. This behavior is consistent with lattice sim-
ulations, in which the energy density rapidly reaches (or
even overshoots) the perturbative value whereas the pres-
sure remains rather low until T 2T .

The presence of II molecules above T also produces
quite specific interactions between light quarks. We
have derived an effective local U(2) xU(2) symmetric
fermion Lagrangian which describes these efFects. This
Lagrangian is invariant under a remnant of the Pauli-
Gursey symmetry which results in the degeneracy of the p
and u channels. We Bnd that there is a substantial resid-
ual attraction in the scalar-pseudoscalar meson channels
even above T . This result is in agreement with lattice
simulations, in which the presence of an attractive inter-
action in the scalar channel has been established &om
an analysis of spacelike screening masses [41] and direct
measurements of the scalar susceptibility [44]. The con-
siderably weaker interaction in the vector channel fol-
lows &om the behavior of the quark number (vector)
susceptibility [45,46]. In agreement with our efFective
Lagrangian, lattice calculations result in a coupling con-
stant that is four times larger in the scalar-pseudoscalar
channel than in the axial-vector channel [44,47).

We have also established the presence of molecule-
induced interactions at T T from direct measure-
ments of the correlation functions in a schematic "cock-
tail" model. In this model, the correlators are determined
in an instanton ensemble with a given &action f of cor-
related II pairs at temperatures around the critical tem-
perature T 150 MeV. As the instanton liquid becomes
completely correlated, we observe the restoration of chi-
ral symmetry. In this limit most of the spacelike screen-
ing masses approach their perturbative values, m = 2vrT
for mesons and m = 3~T for baryons. Notable excep-
tions are the scalar (vr, o, h, rI') mesons whose screening
masses are much closer to AT.

An alternative method that has been proposed to
study the interaction between quarks in the high-
temperature phase is the dimensional reduction scheme
[48,49]. This model does not directly address the ques-
tion of the mechanism for chiral symmetry restoration
but uses the fact that at temperatures much higher than
T @CD reduces to an efFectively three-dimensional gauge

theory coupled to an adjoint Higgs field [48]. In this the-
ory quarks become nonrelativistic and interact via the
gluon exchange and the string potential in the reduced
theory. The splitting between the screening masses cor-
responding to hadrons with diferent quantum numbers
can be calculated using a nonrelativistic reduction of the
Hamiltonian in the three-dimensional theory. One Ands
that the screening masses of the vr and the longitudinal
component of the p are degenerate and roughly equal
to the perturbative value 2vrT while the transverse com-
ponents of the p are pushed up. Although we observe
substantial attraction for the vr and no repulsion in the
vector channel, the spin splittings (at least for mesonic
channels) are similar to what we predict in the fully po-
larized case. One might therefore hope that the two pic-
tures join smoothly at suKciently high temperatures.

Finally, we would like to comment that the "mixed-
phase" (the region T T, ) discussed above can be ob-
served not only in lattice simulations, but also in ongoing
real experiments. In fact, it is exactly the kind of mat-
ter which is now produced and studied at the CERN
Super Proton Synchrotron (SPS) and Brookhaven Alter-
nate Gradient Synchrotron (AGS) [to be complemented
by future experiments at the BNL Relativistic Heavy
Ion Collider CERN (RHIC) and Large Hadron Collider
(LHC)]. The collective hydrodynamic expansion can nat-
urally test the equation of state. Peaks in the dilepton
spectra should provide information on the masses of vec-
tor mesons decaying in matter, so hopefully one can check
modifications of the masses of the p, the w, and the ai or
the splitting of longitudinal and transverse components.
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