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Predicting the masses of heavy hadrons without an explicit Hamiltonian
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There are striking regularities in the masses and mass di8'erences of known hadrons. Some of
these regularities can be understood from known general properties of the interactions of quarks
without a need to specify the explicit form of the Hamiltonian. The Feynman-Hellmann theorem is
one of the tools providing this understanding. If the mass regularities are exploited, predictions can
be made of the masses of as yet undiscovered hadrons. In particular, it is found that the mass of the
B; is 6320 + 20 MeV. Predictions concerning (i) excited vector mesons, (ii) pseudoscalar mesons,
(iii) P wave -mesons, and (iv) ground-state spin- —and ——baryons are also made.

PACS number(s): 12.40.Yx, 14.20.—c, 14.40.—n

I. INTRODUCTION

Thus far, the quark potential model has been the most
successful tool enabling physicists to calculate the masses
of normal mesons and baryons containing heavy quarks.
We call attention to several reviews on the subject [1—8].
However, potential models suffer &om the fact that, al-
though motivated froin @CD, so far, they cannot be de-
rived &om that theory. In this paper we make predic-
tions about hadron masses with complementary methods
which use general properties of the potential (or, more
generally, of the interaction) but not its specific form.
Among the complementary methods are (1) obtaining
constraints on hadron (and quark) masses [1,9,10] Rom
the Feynman-Hellman theorem [11,12], (2) using theo-
rems which relate the ordering of bound-state energy lev-
els to certain properties of potentials [13],and (3) taking
advantage of regularities in known hadron masses to ob-
tain estimates of as-yet undiscovered hadrons using either
interpolation [9] or semi empirical mass formulas [14,15].

We exploit these methods to obtain constraints on
quark and hadron masses. We also provide new theoreti-
cal justi6cation for the methods we use and make predic-
tions for the masses of as-yet undiscovered mesons and
baryons. We devote considerable effort to making what
we believe is a good prediction for the mass of the B' vec-
tor meson, using the Feynman-Hellmann theorem. We
also discuss in some detail the ground-state pseudoscalar
mesons and the ground-state baryons (both spin 2 and
spin 2), because additional issues arise in these cases. We
discuss only briefly the excited vector mesons and P-wave
mesons (tensors, axial vectors, and scalars), although we
give some predictions in these cases as well.

where the expectation value is taken with respect to the
normalized eigenfunction belonging to E. The Feynman-
Hellmann theorem was applied to quarkonium physics
[1,10], with A = p, the reduced mass of the system. For
example, Quigg and Rosner [1] applied the theorem to the
nonrelativistic Hamiltonian H = p2/(2p) +V, where V is
an interaction which is assumed to be flavor independent,
and therefore independent of p. Then

BE/Bl = —(p')/(»') & 0 (2)

i.e., E decreases monotonically as p increases because p
is a positive definite operator. Of course, if V depends
on p but (BV/Bp) & 0, then BE/Bp & 0 still remains
valid.

Even in the case of some many-body Hamiltonians
with relativistic kinematics, the Feynman-Hellmann the-
orem may be applied to give useful information about
how eigenenergies change when constituent masses m;
change [16]. As an example, we consider a Hamiltonian
H, given by

H = ) [(p,- +m, )'r —m, ]

+V(ri, . . . , r„;mi, . . . , m„), (3)

where we have let the interaction V depend explicitly on
the m; (i = 1, 2, . . . , n). The mass M of a hadron is given
in terms of the energy eigenvalue E of this Hamiltonian
by

a parameter A, then the bound-state energy eigenvalues
E(A) vary with A according to the formula

BE/BA = (BH/BA),

M =E+) m;. (4)
Some years ago, Feynman [ll] and Hellmann [12] in-

dependently showed that if a Hamiltonian H depends on Taking the partial derivative with respect to m, and using
(1) we obtain

*On leave from the University of Torino, Italy.

B@/Bm, = (m;/(p; + m;) r ) —1+ (BV/Bm, ) . (5)

We can see Rom Eq. (5) that if
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(BV/Bm;) & 0, (6)

then

BE/Bm; & 0, m, = 1, 2, . . . , n . (7)

These inequalities are a generalization of (2).
In the remainder of this section we restrict ourselves

to the case in which (6) and (7) both hold, so that an
increase in one or more m; leads to a decrease in E. We
generalize the definition of p to be

bE/hp & 0, (9)

We now note that an increase in one or more m; results
in an increase in p as well as a decrease in E. Under
these circumstances, a change b'p results in a change hE
in the opposite direction. (We use the symbol h to indi-
cate these changes because we are not specifying precisely
what quantities are held constant as p varies. ) It follows
that E will be monotonically decreasing with increasing
p, , provided the increase in p arises &om an increase in
one or more m;. We can state this result in the form

The interaction V can be written as Vo+ V', where Vo

is independent of quark flavors and V' depends on fla-
vor. The term Vo is the static quark-antiquark potential,
which is commonly assumed [17] to contain a Coulomb-
like term, an approximately linear confining term, and a
constant term, all independent of flavor. In the Fermi-
Breit approximation, V contains both spin-dependent
and spin-independent terms which are explicitly func-
tions of flavor through the quark masses. However,
most phenomenological treatments of quarkonia have not
needed the Fermi-Breit spin-independent term [5], and
we neglect it here. In states with zero orbital angular mo-
mentum, the expectation values of the tensor and spin-
orbit terms of the Fermi-Breit interaction vanish, leaving
the colormagnetic interaction as the only spin-dependent
term. We write the colormagnetic term V, in the form

= —) A; A f(r; )o; o /(m, m. ),

where 0;,oj are Pauli spin matrices, A;, Aj are Gell-Mann
SU(3) matrices, and f(r;~) (r;~ = ~r; —r~ ~) are positive
definite operators.

It V = Vo+ V, we obtain

if the changes in the m; are all in the same direction.
The inequality (9) turns out to be a powerful tool for
obtaining constraints on quark and hadron masses. As
we shall see ih Sec. V, this inequality holds empirically
for vector mesons even in the absence of the restriction
that all m; change in the same direction.

For a two-body Hamiltonian of the form (3) with a
flavor-independent potential, we can say something more.
Consider E as a function of p and M, where M = mq +
m2. We can then show explicitly that

BE/Bp, & 0, BE/BM & 0 . (10)

It follows that even if mq and m2 change in opposite di-
rections, if p increases and ~ either remains constant or
increases, then E decreases. This result holds even in the
presence of some flavor-dependent interactions, including
a colormagnetic interaction for vector mesons, as we shall
see in the next section.

III. APPLICATION TO MESON AND BARYON
EIGENENERGIE8

mq(ms &m (mg.
In order to apply (7), and therefore (9), to hadrons,

we need to discuss for which hadrons (6) is likely to hold.

We adopt a constituent quark picture, assuming that
a meson is composed of a quark and an antiquark, and
a baryon is composed of three quarks. We confine our-
selves to hadrons containing u, d, s, c, and b quarks.
Furthermore, we neglect any violation of isospin and let
m = mg ——mq. As usual, we assume that the quark
masses m; satisfy the inequalities

(BV/Bm;) = ) (f(r;~))(A; Ai)(o., o~)/(m, m~) . (13)

The quantity (A; . A. ) is negative for a quark-antiquark
pair in a meson (—s ) and for all quark pairs in a baryon

(—s). Also, (o; . o~) is —3 if two quarks (or a quark and
antiquark) are in a spin-zero state, and 1 if they are in a
spin-one state. Now in vector mesons and spin-2 baryons
we have (o., o~) = 1 for all quark pairs. Then we see
Rom (13) that the eigenenergies of these hadrons satisfy
(6). We therefore expect the energy eigenvalues of vector
mesons and spin-2 baryons to satisfy (6), and therefore
(7) as well. In the two-body case (vector mesons), (12)
can be written

(14)

We can see explicitly &om (14) that (BV/Bp)
0, (BV/BM) & 0, so that (10) holds, as we stated in
the previous section.

For pseudoscalar mesons the sign of the colormagnetic
term is negative, and the interaction violates (6). For
spin-2 baryons, the three colormagnetic terms in (12) are
either all (.'0 or one term is positive and two are negative,
so that (6) is sometimes violated. Thus, we expect that
pseudoscalar mesons and spin-2 baryons might violate

(7) for small m;, where the contribution from (13) is large
and positive.

In addition to V, , terms arising &om instantons may
contribute to V'. These terms are apparently important
in states in which two quarks (or a quark and an an-
tiquark) have spin and orbital angular momentum zero
(pseudoscalar mesons and spin- z~ baryons) [19]. Instan-
tons tend to mix the wave functions of certain mesons,
like the g and g' (which contain both qq and ss in their
wave functions, and perhaps some glueball admixture as
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well). Such states are unsuitable for our scheme, as, in
order to compute the reduced mass of a system, we must
know its quark content.

If we confine ourselves to mesons containing q(=
u, d), s, c, and b quarks, then 10 different ground-state
vector mesons and 20 different ground-state baryons of
spin 2 exist. Of the former, 9 are experimentally known;
of the latter, only 4 are known, none of which contains a
heavy quark.

Let a particular energy eigenvalue of a meson contain-
ing a quark i and an antiquark j be E;~, where we sup-
press an index labeling which eigenvalue we are refer-
ring to. Likewise, we denote an energy eigenvalue of a
baryon by E;~A, . If we replace a single quark by a heav-
ier quark, then, because of (7), the eigenenergy of the
new hadron will be smaller than that of the old one. By
continuing this process we obtain chains of inequalities
among the E,~ and also among the E,~I, . We consider the
longest chains of inequalities for which (7) and (9) hold.
A longest chain arises when we start with the lightest
hadron (containing only q-type quarks) and replace each
of its quarks one at a time by the next heavier quark,
each time obtaining a diferent hadron (i.e. , we replace q
by s, s by c, and c by b). A longest meson chain contains
7 eigenenergies, and a longest baryon chain contains 10.
If there are n + 1 different kinds of quarks taken v at

I

a time (v = 2 for mesons and 3 for baryons), then a
longest chain contains nv + 1 eigenenergies. In our case,
n+ 1 = 4 because we have omitted the t quark and have
not distinguished between the u and d quarks.

There are five different longest chains for mesons, all
of which have the same first two and last two eigenener-
gies. At least one of the three intermediate eigenenergies
differs in each of the five chains. One longest chain for
mesons is

Ebb ( Ebc ( Ecc ( EcB ( EBB ( Esq ( Eqq

The four other longest chains have intermediate eigenen-
ergies

Ecc) Ecs) Ecq) Ebs f Ecs ) EBB

Ebs & Ecs & Ecq & Ebs & Ebq & Ecq

(16)

It follows that (9) holds for the mesons with eigenenergies
as in (15) or (16), whereas this may not necessarily be
the case when one quark mass increases and the other
decreases.

We next turn to the spin-& baryons and denote their
energy eigenvalues by E,~I, . From our discussion we can
write down a number of longest chains. One such chain
1s

Ebbb + Ebbc ( Ebcc ( Ebcs + Ebss ( Ecss ( EBBB ( Essq ( Esqq ( Eqqq (i7)

All longest distinct baryon chains, of which we have
counted 42, contain the same first two and last two
eigenenergies.

In both the meson and baryon cases, each longest chain
can be considered to be a path in a simple tree diagram,
which depends on the number of different quarks n + 1
and the number of quarks v in the hadron. One can
obtain the number N(n, v) of distinct longest chains by
counting the different paths in each diagram. More gen-
erally, it can be shown that N(n, v) = N(v, n) and is
equal to the dimensionality of an irreducible representa-
tion of the permutation group corresponding to a Young
Tableau with v rows, each containing n boxes. The ex-
plicit formula is

H,'=i(v —i)'
N(n, v) = (nv)!

IV. CONSTRAINTS ON QUARK MASS
DIFFERENCES

As has been pointed out by a number of authors
[1,2,20,21] Eq. (4) can be used together with (9) to ob-
tain constraints on quark mass differences in the form
of inequalities. What is new in our treatment is our
justification of the use of (9) for longest chains of vec-
tor meson and spin-& baryon eigenenergies. In particu-
lar, this means that, unlike some other authors, we do
not need to use as input spin-averaged hadron masses,

which are normally calculated in a perturbative approx-
imation. In this connection. , Lipkin [10] has pointed out
that, strictly speaking, the Feynman-Hellmann theorem
should not be applied to spin-averaged masses because
they are not eigenvalues of the Hamiltonian.

In order to obtain inequalities among quark masses we
use the experimental values of hadron masses, including
the p, K*, P, D*, D,*, B*, B;, J/g, and T mesons
(of the 10 vector inesons, only the B,* is missing) and
the 4, Z', :*,and 0 baryons (only 4 of the 20 spin-

baryons are known). When the isospin of a state is
greater than zero we average over the members of the
isospin multiplet. For the qq state we believe it is better
to choose the p than the u because the latter might have
a small admixture of ss, whereas such an admixture in
the p violates isospin. Note that in our scheme the u is
degenerate with the p, although it is actually 15 MeV
heavier. In fact;, in not distinguishing between u and d
quarks, we consider the u and p together as just a sin-
gle one of the ten distinct vector mesons in our scheme,
which is concerned only with masses. We have given an
a priori reason for choosing the p instead of the u. In the
next paragraph we give an a posteriori reason. However,
if instead of choosing the p, we choose the u, our predic-
tions are not appreciably affected. All the meson masses
are taken &om the Particle Data Group [22], except the
mass of the B,*, which comes &om two recent measure-
ments [23,24] of the mass of the B, plus a measurement
of m(B,*) —m(B, ) (which needs confirmation) quoted in
[22].
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Using the masses of the observed ground-state vector
mesons we obtain the inequalities

m, —m& & M(K') —M(p) = 126 + 4 MeV,
m —m, & M(D') —M(K') = 1115+ 4 MeV, (19)
ms —m, & M(B*) —M(D') = 3316 + 6 MeV .

TABLE I. Values of quark constituent masses in MeV for
calculating meson energy eigenvalues from experimental val-
ues of their masses. We show in the first row the (rounded
off) values of the quark masses used in this work and, for
comparison, values used by some other authors in subsequent
rows.

The errors are partly experimental and partly due to our
assumption of isospin invariance. If we substitute the
u for the p, the right-hand side of the first of these in-
equalities becomes smaller by 15 MeV. However, we can
regain the stronger inequality (larger right-hand side) by
considering

m, —m~ & M(P) —M(K') = 125 + 4 MeV . (20)

This fact gives an a posteriori justification of our deci-
sion to use the p, rather than the u, in our set of vector
meso ns.

.Apparently stronger inequalities have been obtained
previously with spin-averaged values for vector and pseu-
doscalar mesons. The results in MeV are [20]

Reference
This work

[9]
[»]
[18]
[21]
[25]
[26]
[7)
[14]
[17]

[»)

7A q

300
263
300
220
310
336
337
350
270
335
330
325

mg
440
404
500
419
620
510
600
500
600
450
550
602

mc
1590
1543
1800
1628
1910
1680
1870
1500
1700
1840
1650
1320

One of several sets of quark masses in this reference.

mQ

4920
4876
5200
4977
5270
5000
5259
4700
5000
5170
4715
4749

m —mq) 184 + 4,
m —m, ) 11806 4,
mg —m ) 3343 +4 .

(21)

However, aside from Lipkin s [10] objection to using spin-
averaged masses, the spin averaging process relies on
a perturbative treatment of the spin-dependent forces,
which may not be justified for light mesons. In fact, we
shall see in Sec. VI that when we vary the quark masses
to obtain a best fit to the data, the quark mass differ-
ences violate (21) but satisfy (19). Still other authors [21]
have obtained inequalities among quark masses using a
variety of assumptions, but not if the Hamiltonian con-
tains both relativistic kinematics and a flavor-dependent
interaction.

As we have remarked, only four ground-state baryons
of spin 2 have been observed thus far. These lead only
to inequalities for m, —mq. The strongest of these is

m, —m~ & M(Z') —M(K) = 153 + 4 MeV . (22)

This inequality is stronger than the corresponding in-
equality we obtained &om mesons. As we shall see in Sec.
VIII, in order to obtain a best fit to the baryon data we
must use quark mass differences for baryons which are
up to 35 MeV larger than the corresponding quark mass
differences for mesons.

V. SATISFYING THE QUARK MASS
CONSTRAINTS

Many different sets of quark constituent masses are
used in the literature, most of them obtained from fits
to spectroscopic data. We show in Table I a selection of
these sets [7,9,14,15,17,18,21,25—28], including in the first
row the set that we use in this work for vector masses. (In
the next section we explain how we arrive at this mass
set). We can see from Table I that the sets of masses
given in the first seven rows satisfy the inequalities given

in (19), whereas the sets of masses given in the last five
rows violate one or more of these inequalities. Therefore,
if one calculates the vector meson masses with any one
of the last five sets and a potential which is flavor in-
dependent except for a conventional colormagnetic term,
one will obtain results in disagreement with experiment.
This disagreement will occur independently of whether
one uses a nonrelativistic Schrodinger equation or a wave
equation with relativistic kinematics of the form given in
Eq. (3).

We use the experimental values of the vector meson
masses together with the input values of the quark masses
to calculate the meson eigenenergies E,~ from Eq. (4).
We can plot these eigenenergies as a function of p. For
illustrative purposes we use four different sets of input
quark masses &om Table I, and show in Fig. 1 how
E varies as a function of p for the ground-state vector
mesons. For completeness we include mesons containing
qb, qc, and sb as well as sc, ss, and cc in order to see how
E varies with p when mq increases and m2 decreases. In
Figs. 1(a) and 1(b), the quark masses satisfy all the in-
equalities (19), whereas in Figs. 1(c) and 1(d), the quark
masses violate at least one of these inequalities.

We see from Figs. 1(a) and 1(b) that, when the quark
masses satisfy (19), E appears indeed to be a mono-
tonically decreasing function of p for the vector mesons.
From Figs. 1(c) and 1(d) we see that, with quark masses
violating (19), E, as obtained from the observed meson
masses, is not monotonically decreasing as a function of
p. The sets of quark masses used in (c) and (d) seem a
priori as reasonable as those of sets (a) and (b). How-
ever, if we use the quark masses of (c) or (d) with a
flavor-independent potential and a conventional color-
magnetic term, the calculated values of E must be mono-
tonically decreasing and therefore in disagreement with
experiment.

We see from Figs. 1(a) and 1(b) that, not only is E
monotonically decreasing as a function of p, but is also
concave upward. We cannot prove concavity &om the
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FIG. 1. Energy eigeiivalues of vector mesons using experimental masses from Refs. [22—24] in conjunction with four sets of
quark masses from Table I: (a) from Ref. [21], (b) from Ref. [18], (c) from Ref. [7], and (d) from Ref. [27]. In the figure, the
letters a through i stand for p, K', P, D', B', D,",B,', J/Q, and T, respectively.

Feynman-Hellmann theorem. However, in the two-body
nonrelativistic case, we can show for a power-law poten-
tial of the form

holds empirically for vector mesons [see Figs. 1(a) and
1(b)] and also for spin-2 baryons.

V=nr~, nP&0, P& —2,
that the concavity condition

(23) VI. PREDICTING THE Bc MASS

O'E/Op, ' & 0 (24)

is true. This result follows directly &om the scaling prop-
erty of the Schrodinger equation with a power-law poten-
tial [1]. The fact that (24) holds for a power-law potential
is relevant because, as has been emphasized by Martin
[29,30], the quarkonium static potential can be well ap-
proximated by a power law. If we include a Fermi-Breit
term in the potential of form given by Eq. (12), (24)
remains valid. Of course, we are interested in the curva-
ture of E as a function of p without concerning ourselves
with how M varies. In the presence of the colormag-
netic interaction (12) we can say that the curvature is
positive, provided that as p increases, M does not de-
crease. It has been shown [31,32] that in the two-body
nonrelativistic case with a Bavor-independent potential,
the ground-state energy satisfies

0 E/M (0, (25)

h E/8p &0 (26)

where A = I/p. Not only is E concave upward as a func-
tion of p in a class of nonrelativistic two-body models,
but it turns out that

Of the 10 vector mesons in our scheme, only the B,
has not yet been seen. We can use the inequalities (9)
and (26) together with the experimental vector meson
masses and Eq. (4) to estimate the mass of the B; by
interpolation. We do this by assuming that E(p) can be
approximated by a simple curve containing only a few
parameters. The simplest curve (containing only two pa-
raineters) is a straight line, but a straight line violates
the concavity condition (26). We therefore approximate
E(p) with a three-parameter curve. We emphasize that
the functional form of the curve has no theoretical sig-
nificance other than that it satisfies the inequalities (9)
and (26). In addition to the three parameters of the
curve we have four additional parameters, namely, the
quark masses mq, m„m„and mp. Using a given three-
parameter curve we vary the seven parameters in order
to obtain a best fit to the eigenenergies E;~. We then
obtain the value of Eg &om the Btted curve and use the
fitted masses m, and mi, to obtain M(B;).

We at once encounter a difBculty in our scheme:
namely, that a longest chain of meson eigenenergies con-
tains only seven members, and one of these (Es,) is un-
known. Therefore, if we use a longest chain, we have
seven parameters and only six data points so that the pa-
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a quadratic

E = a exp( —p/b) —c,

E = a+ by+ cp

(27)

(28)

and a hyperbolic (or Pade)

E = a/(@+b) —c, (29)

where a, b, and c are parameters to be varied. In prin-
ciple, these parameters are functions of the sum of the
quark masses as well as a function of p, but &om our
previous discussion, we expect E to be decreasing when
plotted as a function of p with a, 6, and c independent
of any other masses in the problem. We obtain compara-
ble Gts to the data with all three curves, and the meson
energies are quite stable to our choice of functions.

We show in Fig. 2 our Gt to the vector meson energies,
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This work
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M, = 1590 MeV
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rameters are not uniquely determined. We overcome this
difBculty by using all nine known meson eigenenergies,
assuming that (9) and (26) hold even in this case. We
Gnd that our assumption is consistent with experiment:
namely, we can Gnd a set of quark masses such that the
meson eigenenergies, as calculated &om the experimen-
tal values of the meson masses with the aid of (4), satisfy
(9) and (26). The procedure of including all nine known
meson masses constrains the parameters much more than
using only six masses. However, even when we use nine
data points, it turns out that the quark mass differences
are much more constrained than the quark masses them-
selves.

Kwong and Rosner [9] previously used the interpola-
tion method with two three-parameter curves (quadratic
and Pade), although without any theoretical justification
of the inequalities (9) and (26). We have used three dif-
ferent three-parameter curves: an exponential

with an exponential curve as an example, and the set of
quark masses given in the Grst row of Table I. These
quark masses are rounded to the nearest 10 MeV and are
based on a somewhat arbitrary choice of 300 MeV for the
mass of the u and d quarks. We can get comparable Gts
to the data for quark masses which differ &om our choices
by 100 MeV or more, but the mass differences are much
more constrained. With the exponential Gt, the values of
the parameters with our quark masses are

a = 754 MeV,
6 = 1375 MeV,
c= 506 MeV .

(30)

Our result for the B* mass is

M(B,*) = 6320 + 20 MeV . (31)

y2 = ) [E(p) —E(expt)]'/(b, M)', (32)

where E(p) is obtained from one of the three curves,
E(expt) are the experimental eigenenergies obtained with
the help of (4), and AM are the experimental errors in
the meson masses, except that we have taken a minimum
error of 1 MeV and increased some errors to take isospin
mass splittings into account.

Other authors, using potential models, have obtained
similar values of the B,* mass. For example, Martin
[30], using a power-law potential, obtained a value of

TABLE II. Predicted masses of as-yet unobserved B,(bc)
mesons. In column 4 we show predictions for the ground-state
vector and P-wave mesons and upper limits for two excited
vectors from interpolation of the energy eigenvalues, using the
Feynman-Hellmann theorem. In column 5 we show the pseu-
doscalar mass obtained from a semiempirical mass formula,
and excited vector and P-wave states from interpolation of
mass differences.

We have estimated the theoretical error partly &om the
spread in values obtained using the different functional
forms for E(IJ,) given in Eqs. (27)—(29) and partly from
values obtained with different longest chains and various
constraints on the quark masses. Our quoted errors in
Eq. (31) and our subsequent predictions reflect the sta-
bility inherent in our procedures. Our predicted value of
the B' mass is given in Table II in the Grst row of column
4

Our value of M(B,*) is more stable to the choice of
curve than the result of Kwong and Rosner [9]: 6284 &
M(B,*) & 6349 MeV. Perhaps one reason for this is that
we differ &om those authors in the choice of the function

to be minimized. We choose

MeV

FIG. 2. Energy eigenvalues of vector mesons using our
quark masses from the first row of Table I and the experi-
mental masses from Refs. [22—24]. The letters stand for the
same mesons as in Fig. 1, and the solid circle is our prediction
for the B,'. The solid line is a fit to the vector meson data
with an exponential form, Eq. (27), with parameters given in
Eq. (30).

Name

B,
B
B
B

B*

Spin-parity J
1
0
1
1
0+
1+
2+

(6940
(7290

6630 + 40
6730 + 40
6760+ 40

n + Lg Mass(MeV) Mass (MeV)
1 Sx 6320 + 20
1 'SQ 6255+ 30
2 Si 6900 + 20
3 Sx 7250 + 20
1 PQ 6660 + 30
1'P, 6740 + 30
1 PQ 6780 + 30



1254 RONCAGLIA, DZIERBA, LICHTENBERG, AND PREDAZZI 51

6318 MeV, and Eichten and Quigg [33], using various
potentials, obtained values between 6319 and 6343 MeV.
Bagan et al. [34] have averaged a variety of other peo-
ple's results to obtain 6330 + 20. On the other hand,
some authors have obtained quite different values of the
mass of the B,*. For example, Jain and Munczek [35] find
M(B,*) = 6277 MeV.

500

250

I I I

j
I I I

VII. OTHER MESON MASS PREDICTIONS

Mv —Ms = pa, (2p, )p /(mq + m2), (33)

where m~ and m2 are the constituent quark masses, and
we have determined the two ft. ee parameters p and q from
a fit to the experimental splittings to be q = 0.642 and
p = 1.917 (GeV)2 ~. The running coupling constant is
given by

As we have already remarked we do not expect the
pseudoscalar meson energy eigenvalues to be monoton-
ically decreasing as a function of p. However, once we
have a prediction for the B* mass, we can obtain es-
timates for pseudoscalar meson masses in other ways.
We use semiempirical mass formulas [14,15] for the split-
ting between vector and pseudoscalar states. These
semiempirical formulas are based on the colormagnetic
interaction as given by the Fermi-Breit theory. How-
ever, the formulas take into account the fact that the
strong-interaction coupling constant runs. The formulas
also make empirical corrections which depend on quark
masses so as to get improved agreement with known data
compared to the Fermi-Breit formula. The semiempirical
formulas then may be used to predict mass splittings in
cases where experimental data are absent.

Following [15]we take the hyperfine splitting in mesons
to be given by

-250 —+
0

+-500—
500 1000 1500

[M~vj

'ttb

2000 2500

FIG. 3. Eigenenergies of the pseudoscalar mesons obtained
from the masses of the Particle Data Group [22] (crosses) com-
pared with the eigenenergies from the vector meson masses
and the semiempirical mass formula of Eq. (33) (open cir-
cles). The quark masses of the first row of Table I were used
to obtain eigenenergies from masses. In order of increasing p
are vr, K, D, B, D, B„g„B„andgg.

M(B,) = 6255 + 30 MeV,

las are in remarkably good agreement. Note that the
eigenenergies of the light pseudoscalars violate the con-
dition that E(p) be monotonically decreasing. We ex-
pect this violation because the colormagnetic term for
light pseudoscalars gives a large positive contribution to
BE/Op.

Using the semiempirical mass formula we obtain a
splitting in the B system of 65 + 10 MeV, and in the
bb system of 55 + 10 MeV. We estimate that the masses
of the B, and gg are

4'
pot+ (pg/pp)lnt

' (34)
M(qb) = 9405 + 15 MeV .

(36)

where

ln(Q /AgcD)
Pp ——ll —2nf/3,
pg ——102 —38nf /3,

(35)

with AqcD ——100 MeV, and nf ——4. We use the quark
masses of the first row of Table I rather than the masses
in [15],so that our values of the parameters q and p differ
a little from those in [15].

We show in Fig. 3 the eigenenergies of the pseudoscalar
mesons, where we use the data [22] on pseudoscalar
masses as input together with the quark masses obtained
for the vector mesons. We omit the g and g' mesons,
because, as we have already remarked, they are mixed
states of uncertain quark content. We also give in Fig. 3
the eigenenergies of the pseudoscalars obtained &om the
corresponding vectors with the aid of the semiempirical
mass formula (33). We see from Fig. 3 that, except (as
expected) for the pion, the eigenenergies obtained &om
the observed masses and &om the semiempirical formu-

We give the mass of the B, in Table II.
We next turn to excited vector meson states, for which

the data are considerably poorer than for the ground
states. Furthermore, complications might arise &om pos-
sible mixing with four-quark, hybrid, and glueball states.
For example, the excited p(1465) and w(1394) states dif-
fer in mass by about 70 MeV, although they ought to
be degenerate in our model. We believe this difference
indicates appreciable mixing. Similar considerations ap-
ply to light P-wave mesons. Therefore, we use only the
charmonium and bottomonium data of the Particle Data
Group [22] and confine ourselves to excited B; states.
Because we have only two data points for each excited
state (a @ and an T) we cannot do better than use a
linear fit to predict the masses of missing states, again
using the quark masses in the first row of Table I. The
problem with a linear fit is that a straight line is not con-
cave upward, so that the predictions made in this fashion
should be regarded as upper limits. We show in column
4 of Table II our predictions for the upper limits of two
excited vector meson H,* states.
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Quigg [36] suggested that it might be better to inter-
polate between mass difFerences, since these are consid-
erably smaller than the masses themselves. With this
procedure we have no theoretical reason to reject a lin-
ear interpolation. We show in column 5 of Table II our
predictions for the masses of vector B,* excited states us-
ing linear interpolation of the mass difFerences between
corresponding states in the cc and bb systems. Again the
errors include not only statistical errors but an estimate
of the errors associated with the procedures. Note that
the predicted masses in column 5 are less than the upper
limits of column 4, i.e., the latter are indeed an upper
bound.

%1rning to the P-wave mesons we are not able to show
analytically that the sum of the Fermi-Breit tensor and
spin-orbit interactions satisfies the inequality (6). Nev-
ertheless, it turns out empirically that if we use the same
values of quark masses as for the vectors (row 1 of Ta-
ble I), the eigenenergies of the tensor (J+ = 2+), axial
vector (J+ = 1+), and scalar (J+ = 0+) mesons sat-
isfy (9) and (26). We exploit this fact to fit separate
three-parameter exponential curves to the tensors, ax-
ial vectors, and scalars so as to obtain predictions for
the B P-wave states. These are shown in column 4 of
Table II. Our estimated errors are rather large because
of deviations of the curve kom the eigenenergies of the
known mesons.

We can also use linear interpolation between cc and bb

states to obtain the masses of B P-wave states. These
are also given in column 5 of Table II together with esti-
mated errors. We see from Table II that the predictions
for the P-wave mesons in columns 4 and 5 agree within
the errors.

VIII. BARYON MASSES

Because the masses of only four baryons of spin
are known experimentally and none of these contains
any heavy quarks, the Feynman-Hellmann theorem by
itself does not enable us to make useful predictions of
the masses of any baryons containing heavy quarks.
However, if we use the Feynman-Hellmann theorem in
conjunction with a semiempirical formula for the col-
ormagnetic splitting in baryons [15], we are able to
make some useful estimates of unknown masses. The
reason is that the masses of the A, (quark content
qqc), Z, (qqc), :- (qsc), and Az (qqb) spin-2 baryons
are known &om experiment [22,37,38], so that we can
estimate the masses of the corresponding spin-2 baryons
&om a semiempirical formula for the colormagnetic split-
ting in baryons [15]. We are then able to use a procedure
analogous to that we used for mesons in order to obtain
estimates of the masses of unknown baryons.

The expression (33) for mesons can be generalized to
baryons as follows [15]. We order the quarks so that if
two quarks have the same flavor, they are chosen to be
the first two; if all quark Qavors are different, then the
first two are the lightest. We denote by M* the mass of
the ground-state spin-2 baryon, with Mg the mass of the
ground-state spin- —baryon in which the first two quarks

have spin 1, and with M~ the mass of the spin-2 baryon
whose Qrst two quarks are in a relative spin 0 state. We
take the two-quark colormagnetic matrix elements as

8R,, g = F;, i,pn, (2p;~) p, /(m; + m, ), (37)

with

IV,~ = [VV +*(~'~+~~~)]!(I"&+V'~+ I ~~) (38)

to simulate the shrinking of the wave function with in-
creasing mass mA, of the spectator quark. The expression
for I";~ i, in Eq. (38) is slightly diff'erent &om that given
in Ref. [15] and fits the data somewhat better. The pa-
rameters n y and AgcD are chosen to be the same as in
the meson case, while p, q, and x are adjustable.

Following [15] we write the ground-state baryon mass
differences

M —MS = 3A13,2 + 3+23,1 )

MS —MZ ——4R12 3 —2B13 2 2B23

Although the structure of (39) is motivated by perturba-
tion theory we take these semiempirical mass formulas to
be more generally applicable, the justification being the
good agreement with observed baryon mass splittings.

A di%culty is that, unlike the meson case, where we de-
termined the quark masses Rom a fit to the vector meson
eigenenergies, we do not know a priori what input val-
ues to use for quark masses which will be best suited for
baryons. Our procedure is to start with mq ——300 MeV
and the other quark masses taken at reasonable starting
values, for example, with the values given in [15]. We
then adjust the quark masses by an iteration procedure
which we shall now describe.

(1) We use input quark masses and adjust the param-
eters p, q, and x to get a best fit to the known colormag-
netic splittings in baryons. We then use the semiempiri-
cal mass formula to calculate the masses of three spin-2
baryons (Z;, :-,*, and Z&) which are not known &om
experiment.

(2) We then use the Feynman-Hellmann theorem, anal-
ogously to the meson case; i.e., we adjust the param-
eters of a three-parameter curve and the quark masses
m„m and mg to get a best fit to the eigenenergies of

(3) We then use the new quark masses in the semiem-
pirical mass formula and repeat steps (1) and (2).

In practice, this method rapidly converges. We find the
best parameters of the semiempirical mass formula (39)
are p = 0.331 (GeV), q = 0.417, x = 3.805 when used
with the following (rounded) quark masses for baryons in
MeV.

mq —300
p m, = 475, m~ = 1640, mg ——4990. (40)

a = 1307 MeV, b = 757 MeV, c = 813 MeV. (41)

The mass difFerence m, —m~ satisfies the inequality (22).
The parameters of an exponential curve of form (27) turn
out to be
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M(Zb) —M(Ab) = 200 + 20,
M(Zb) —M(Ab) = 230 + 20,
M(:b) —M(-Ab) = 190+ 30,
M(=-', ) —M(Ab) = 330 + 30,
M(:-b) —M(Ab) = 360+ 30 .

(42)

TABLE III. Predicted masses of as-yet unobserved
baryons. In column 3 we show a prediction for a ground-state
spin- — baryon (:-b) whose first two quarks have an antisym-
metric spin wave function. (Antisymmetric 0, and Ab states
do not exist in our picture. ) Column 4 shows predictions for
ground-state spin- —baryons with symmetric spin wave func-
tion in the 6rst two quarks. In column 5 we show predictions
for the ground-state spin- — baryons. See Eq. (42) for (we
believe, more precise) estimates for baryon mass difFerences.

There are several reasons why our procedure for
baryons is not as precise as that we used for mesons.
First, the input "data" for baryons include three baryon
masses which do not come &om experiment but are only
estimated &om a mass formula. Second, even using these
three baryons, we have only seven baryons to obtain the
three parameters of a curve and the three quark masses.
Third, we have to obtain unknown baryon masses by ex-
trapolation, which is a less precise method than the in-
terpolation method used for mesons.

Comparing the masses of Eq. (40) with those used
for mesons (see the first row of Table I), we see that the
quark masses which give a best fit to the baryons are (ex-
cept for mz, which was assumed to be the sazne) a little
higher than those which lead to a best Gt to the mesons.
Because these quark masses are constituent masses, i.e.,
efjective ones, there are no theoretical reasons why the
masses determined &om the baryons should coincide ex-
actly with those determined &om the mesons. If we insist
that a single set of quark masses hold for both baryons
and mesons, and vary these masses, our overall best fit
to the hadron data is signi6cantly poorer and our predic-
tions have greater errors.

Using the baryon data only, we can predict the
masses of as yet unobserved baryons &om the Feynman-
Hellmann theorem and the baryon semiempirical mass
formulas. As we have remarked, the baryon masses, given
in Table III, are obtained by extrapolation, rather than
interpolation, so that the errors are larger than in the
meson case. The errors in the masses of the =b (qsb, spin
2, antisymmetric in qs), =b (spin 2, symmetric in qs), "b
(spin 2), 0, (ssc, spin 2), 0,* (spin 2), Ob(ssb, spin 2),
and Ob (spin 2) arise partly because of the substantial
error in the measurements to date [37,38] of the mass of
the Ab. We believe that the following predicted mass dif-
ferences (in MeV) are likely to have smaller errors than
any of the masses given in Table III:

It is interesting that our semiempirical mass formula
makes the Zb about 10 MeV heavier than the =b. How-
ever, the probable error is such that this is not a firm
prediction. All we can really say is that the Zb and:-b
have masses which are very likely within 20 MeV of each
other.

IX. CONCLUSIONS

In conclusion, we have shown that the Feynman-
Hellmann theorem leads to the inequality 6'E/bIJ, ( 0
for most ground-state vector mesons and spin-2 baryons,
even in the presence of relativistic kinematics and a
Qavor-dependent colormagnetic interaction. We were not
able to show this for hadron pairs which di8'er by one
member of the pair containing both a heavier and a
lighter quark than the other, but the result seems to be
empirically true even in this case. This inequality and the
concavity condition (26), provide theoretical justification
for an interpolation method [9], which allows one to make
a quantitative prediction about the mass of the B* and
other mesons without assuming any specific functional
form for the quark-antiquark interaction. We obtain the
masses of still other mesons containing heavy quarks by
using a semiempirical mass formula and by interpolating
among mass diBerences.

For the baryons we can also use (9) and (26) to obtain
predictions, but we need the semiempirical mass formula
from the outset and also need to extrapolate the data in
order to obtain useful results. Therefore, our predictions
are not as precise as in the meson case. Our predicted
baryon masses could be considerably improved if a more
precise measurement were made of the mass of the Ab.
Also, if the masses of the Z* and:-* were measured, we
would not have to rely so heavily on the semiempirical
mass formula, and therefore could further improve our
results. Nevertheless, because our baryon predictions re-
quire extrapolation of the data, rather than interpolation
as in the meson case, our predicted baryon masses will
continue to have a somewhat great uncertainty than our
meson results.

In making our predictions of the values of heavy hadron
masses, we have not had to assume an explicit form for
the Hamiltonian, but only some general characteristics
about its Havor dependence. Therefore, our results ought
to have a greater generality than those based on specific
models.

Note added in proof. In the full listings of the latest
Review of Particle Properties [L. Montanet et at. , Phys.
Rev. D 50, 1171, (1994)], the mass of the 0, is given by
2710+ 5 MeV, in agreement with our prediction in Table
III.
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