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Hyperon pairs bound in deuteronlike states are obtained within the SU(3) Skyrme model in
agreement with general expectations from boson exchange models. The central binding from the
flavor-symmetry-breaking terms increases with the strangeness contents of the interacting baryons
whereas the kinetic nonlinear o-model term fixes the spin and isospin of the bound pair. We give a
complete account of the interactions of octet baryons within the product approximation to baryon

number B = 2 configurations.

PACS number(s): 13.75.Ev, 12.39.Dc, 13.75.Cs

I. INTRODUCTION

It seems to be generally recognized that the relative
scarcity of experimental data on hyperon-nucleon and
especially hyperon-hyperon interactions calls for major
theoretical input to arrive at a satisfactory description
of the data [1]. From the boson exchange point of view
such a description is typically approached by “upgrad-
ing” a reliable description of the NN interaction with
SU(3) flavor symmetry, assuming of course that the for-
mulation of the NN interaction admits such a generaliza-
tion. An example of this approach can be found in the
construction of the Nijmegen potentials (see Ref. [1] and
references therein). The one-boson exchange potentials
obtained in this way generally predict the existence of
loosely bound hyperons, while ruling out deeply bound
hyperons.

An alternative approach which is well tailored to ad-
dress the construction of hyperon-nucleon and hyperon-
hyperon potentials is one based on the Skyrme model
[2-4]. It has already been successfully implemented in
the construction of the nucleon-nucleon potential, as re-
viewed recently by Walhout and Wambach [5]. In the
Skyrme model deeply bound hyperons also seem to be
excluded once Casimir energies are properly taken into
account [6], but deuteronlike states, for which a Skyrmion
product ansatz description seems to suffice, remain pos-
sible. An analysis of such configurations to determine
hyperon-nucleon and hyperon-hyperon potentials has in
fact recently been carried out by Kélbermann and Eisen-
berg [7,8], where much of the focus is on the central in-
teractions. No conclusive statements about the existence
or otherwise of bound states seem to have emerged from
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these two studies.

Before we indicate below that the SU(3) Skyrme model
construction of hyperon-nucleon and hyperon-hyperon
potentials can indeed lead to qualitative and quantita-
tive results, it is perhaps worthwhile to point out that
such an approach has the further merit that it ties to-
gether the mesonic sector (B = 0), the baryonic sector
(B = 1), and the B = 2 sector in the single comprehen-
sive framework of a dynamically closed model with only
a few (typically 5) parameters. Furthermore, the SU(3)
flavor-symmetry-breaking part is fixed by meson masses
and weak decay constants, while in turn it then repro-
duces the hyperon spectrum in the B = 1 sector and
will also be responsible for two hyperons forming loosely
bound deuteronlike states.

We now turn to some of the more salient aspects of
our analysis. It is rather satisfactory to find that, apart
from the known problems associated with the central at-
traction in the Skyrme model (see Sec. IV for further
discussion of this point), many of the more robust pre-
dictions from the one-boson exchange approach to the
problem also emerge from the Skyrme model analysis. In
this regard we mention that we extract unambiguously
an attractive AA interaction in the 'S, state, a result
also required from a number of complementary analyses
[9]. Second we find, e.g., an NX potential with rela-
tive components of the various spin and isospin inter-
actions which are comparable with those found in the
Nijmegen potentials [10,11]. As another specific exam-
ple, the spin dependence of the INA potential we obtain
is the same as that favored from phenomenological and
potential model estimates in Ref. [12]. Furthermore, it is
possible to predict from our analysis the spin and isospin
of bound deuteron-type hyperon states. We also extract
a rather prominent correlation of an increased binding of
baryons with growing strangeness.

A short outline of the presentation is as follows. In
Secs. II and III we introduce the SU(3) Lagrangian,
recall aspects of the framework in which it is typically
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employed, and discuss our strategy of identifying a set of
independent relative orientations of two Skyrmions which
eventually facilitates the identification of the various in-
teraction potentials. This strategy, which generalizes the
known approach for the NN potential [5,13], seems to
offer advantages over the approach of Refs. [7,8] where a
Monte Carlo calculation is used to evaluate matrix ele-
ments [14]. (See also Sec. IV.) The details of this rather
technical part are collected in Appendix A. In Sec. IV we
consider the question of the missing intermediate range
attraction in the Skyrme model and possible resolutions,
argue to which extent various aspects of our present anal-
ysis of hyperon-hyperon interactions would retain their
validity should this be resolved satisfactorily, and then
discuss general and specific results for the various inter-
actions. Tables for the various interaction potentials as
functions of the separation R are collected in Appendix
B.

II. LAGRANGIAN AND B =1 SECTOR

The Lagrangian we use is the standard SU(3) Skyrme-
model Lagrangian given by [15,16]

L= L(sym) +L(FSB). (1)

In terms of the chiral field U and with the standard no-
tation for the left current

p=Ut0,U =X L7, (2)
and the topological current
ghvaB

Br=—

pyrcy tr L,L,Lg , (3)

the flavor symmetric and flavor-symmetry-breaking parts
are given by

2
S 1r 1 v
LEy™)(U) = 4 tr L, L¥ + oo X tr [L, L,][L*, L*]
= {( tr L,L*)? — tr L,L, tr L*L"}
2 2
B B* + tr (U +U' - 2)
= L(2> + LOA) | £G4 4 £6) | £(CSB) (4
and
_fk—17,
LEB(y) = Lk ( 1)(ULuL” + L, L Ut
f}z{m%( - f,?m?r 0 1
—’—ftr( 01)(U+U _2),
(5)

where we have provided for the possibility of different sta-
bilizing terms at most quadratic in the time derivatives.
Among the stabilizers of fourth order the extension to

SU(3) allows for an alternate term £(44) [17], which re-
duces to the Skyrme term £(44) in the SU(2) limit. Its
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FIG. 1. Mass splittings for 1% and 3 baryons. Crosses in-
dicate experimental sphttmgs, dashed lines the spectrum cal-
culated in the slow rotator approach, dotted lines the results
from rigidly rotated solitons. Parameters used for the rigid ro-
tator are fr = 93.0 MeV, m, = 138.0 MeV, fx = 113.5 MeV,
mg = 495.0 MeV, e = 4.12, x = 0, K =0, 66—0 and
for the slow rotator f, = 93.0 MeV, m,. = 138.0 MeV,
fx = 113.5 MeV, mk = 495.0 MeV, e = 3.45, x = —0.07,
k=20, € =0.

effects in the B = 1 sector [16] have been small, whereas
here they are shown to be large if x is chosen accordingly.

The Lagrangian (1) succesfully describes the baryon
splittings in the B = 1 sector when empirical meson
masses and decay constants are used. Figure 1 shows the
baryon spectrum calculated by treating the flavor sym-
metry breaking in two different ways: for rigidly rotated
solitons (RRA) [18,19,16] the chiral angle minimizing the
soliton in the isospin subgroup is rotated without changes
into flavor directions of decreasing hypercharge. In the
case of the slow rotator approach (SRA) [20,21] the soli-
ton is allowed to change its shape according to the flavor-
symmetry-breaking forces exerted at a given strangeness
angle. These forces mainly reduce the one-pion tail of
the SU(2) soliton to a more rapid decay corresponding
to the higher meson masses present in the cloud.

III. PRODUCT ANSATZ, ENERGY
FUNCTIONAL, AND ASYMPTOTIC
INTERACTION IN THE B = 2 SECTOR

In order to obtain a hyperon-hyperon potential (gen-
erally baryon-baryon potential) we follow the standard
Skyrme model procedure, namely, evaluate the energy of
a B = 2 configuration and subtract the energies of the
two B = 1 configurations which constitute that B =
configuration. As the extremely short distance behav-
ior of the potentials to be calculated is not of immediate
concern, we content ourselves with the following hedge-
hog product ansatz for the B = 2 configuration:
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U(r;A,C) = AUy (z,y,2 — %)C Un(z,y,z + %)C’TA”,
(6)

where Ug(r) = "™, A and C = A'B are constant
flavor rotations, C' denoting the relative orientation of
the two SU(3) Skyrmions in flavor space. As a matter of
convenience we chose the two Skyrmions to be separated
by a distance R along the z axis. The profile function for
the hedgehog is obtained by a numerical minimization
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of the energy functional in the B = 1 sector. Using
the product ansatz, we can calculate the energy of the
B = 2 configuration for any given orientations A, C' and
separation R by performing a numerical integration over
the spatial coordinates of the hedgehog configuration.

One notes from translation and flavor symmetry that
the energy functional resulting from £(Y™) depends only
on the relative separation R and orientation C of the two
Skyrmions. The general structure of the energy func-
tional is therefore established in the form

V) (R; 4,C) = UO(R) + UL (R)Di:(C) + [3Ds3(C) — Dis(C)JUS (R)

>

(I)=(44),(44),(6)

{U§ (”) Q3D (C) Dy (0)

+Us"(R) @V §[Di(C)D35(C) ~ Dij(C)D34(C)]
+UD (R) QW 4[6D11(€)D22(C) — 6D12(C)Dn (€) — Dii(C)D35(€) + Dy (C)Dy(O)]}

+USY (R) Dss(C). (7)
Here we have used the convention (2, ) € {1,2,3} and the notation
oW = { 3-3L%, (I)=(44), (8)
1, (I) = (44), (6),

where L2 is the Casimir operator of SU(3) and D,, the SU(3) D functions in the adjoint representation. The
occurrence of the Casimir operator of SU(3) is due to a manipulation which allows us to keep the indices of the D
functions in the SU(2) subgroup: the energy density from the Skyrme term L#A) has contributions proportional to

fabeDeos faeDeer = = (LaDser ) (LaDaer)

where L, are the left Euler angular momentum operators.
The explicit expressions stemming from the action of the
Casimir operators are given in Appendix A.

In Eq. (7) we do not show those terms which contain
combinations of D functions which are of second rank in
the spin in the energy functional, since their matrix el-
ements between the spin one-half baryon states vanish.
In principle they do, however, occur and due care has to
be exercised, when the different components of the in-
teraction are evaluated. For completeness we list these
combinations ordered according to the spin-tensorial de-
composition of the left and right indices of the two D
functions which refer to the Euler angles in A and B,
respectively:

[0><2]2 :

Di3D;s — 3D;i;D;;

[2 x 0]2 : D3;D3; — 3D;;D;;

[2 x 2]0 3D;;Dj; + 3D;;Dj; — 1Dy;Dij

[2 X 2] : 3DiiD33 + 1D;3D3; — 1Di3Dys
2

—3%D3:Ds; + $D;;D;; ,

—3L2 (Dbc' Dde’) +

%(L?ID),C')Dde' + 3 Dber (LZDde’) ; (9)

[
D33D33 — $D;3D;3 — $D3; Ds;

[2x2]4 :

The seven different components U© (R),
U él)(R) ‘e Uq(qz)(R) of the interaction appearing in
V{ym)(R; A,C) can now be calculated. We note that
if we evaluate the energy of the B = 2 hedgehog-
hedgehog configuration for twelve orientations, C, such
that the seven combinations of D functions appearing
in V(&Y™ (R; A, C) and the five combinations of Eq. (10)
are linearly independent, we obtain a system of linear
equations from which the interaction components can be
solved by inversion of the coefficient matrix. The set of
orientations

+'gljDijDij . (10)

1, et5 A2 , PRE TS , et T MgiT Az , et M2 gi A ,

eiirMgiT Az =it s , elirgiTrag—iTAa ,

et i Mgif i , e 8MeiTAegiT , 8 A giF Ao giT e ,
€52t F Ao i A , ei8RagiTAegiFAs (11)

can be checked to give the required linear independence
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and are subsequently used to determine the interaction
components as already outlined.

Translation invariance implies that for the flavor-
symmetry-breaking part £(FSB) the energy functional de-
pends on R alone, but since flavor symmetry is broken,

J

VFSB)(R; A, B) =

it depends on the orientations A and B of the individual
Skyrmions in flavor space. Neglecting the numerically
small and cumbersome terms proportional to f# — f2,
we find that a simple calculation shows the energy func-

tional to be

USFS®) (R) [(1 _ Dss(A)) (1 - Dss(B)) + %DkS(A)DkS(B)]

+UFSB)(R) [Ds,(A Dsi(B) + 3D;m(A)Dkz(B)]

U§™®) (R)[ (3Dsa(4) Dsa(B) — Dsi(4)Dsi(B))
)

+3 (3Dk3(A Dia(B) — Dii(4)Dui(B) )] , (12)

where k € {4,5,6,7}, 7 € {1,2,3}. The radial functions in the flavor-symmetry-breaking part of the energy functional,

V(FSB)(R; A, B), are given in terms of the integrals

4
Us™P (R) = 3 (f?(m?c — f2m?

U(FSB) (R) (
UZ(FSB)(R)

r(t)=rt ges,

These integrals are evaluated numerically.

Finally, knowing the interaction components, we have
to evaluate the matrix elements of the energy functional
between the spin one-half baryon wave functions diago-
nalizing the rotational Hamiltonian with the symmetry-
breaking term {see [18,19,16] and Eq. (A1)} to extract
the potentials in the various interaction channels. We
have to distinguish direct and exchange matrix elements;
see Fig. 2. The single particle degrees of freedom of the
interacting baryons are given by the collective rotations
A and B, respectively, which appear in all the D func-
tions of the potential energy. In such an interaction term
D(A), say, can transfer strangeness 0 < |S| < 1 to the

N’ Y’ Y’ N’
o) o]
N Y N Y

FIG. 2. Direct and exchange matrix elements for noniden-
tical baryons.

¢ = cosx[r(d)], s = sinx[r(d)]

) /—(1 —c1)(1 = ¢g) d®r,
~ f2m?) /,:(1) - #(2)s182 d°r,
= g(fzz{mg( - ffm,zr) / %[31:3(1)1?3(2) —#(1) .,:(2)} 185 dr

i=1,2. (13)

incoming baryon state depending on the Euler angles A.
For the direct terms the outgoing baryon also carrying
the Euler angles A has the same hypercharge as the in-
coming one, whereas the exchange terms allow for dif-
ferent strangeness of the outgoing baryon. Since total
strangeness is, of course, conserved, the baryon described
by the Euler angles B must compensate for the hyper-
charge difference. Speaking in terms of a one-boson ex-
change description, the latter processes thus contain the
kaon exchange terms.

The details of the calculation of the matrix elements
and the various interaction potentials are collected in
Appendix A. We must emphasize, however, that gen-
erally, we will only use wave functions diagonalizing the
rigid rotator Hamiltonian, because the use of a chiral an-
gle which changes in response to the flavor-symmetry-
breaking forces [20,21] is technically too complicated,
here. For testing purposes we will also use baryon wave
functions which are SU(3) symmetric as well as those for
the strong symmetry-breaking limit. Unfortunately, the
restriction to the rigidly rotating soliton directly leads to
the fact that the asymptotic forces will always have the
one-pion exchange tail, even for kaon exchange terms.
This statement can be verified by examination of the
asymptotic interaction, which is related to the lower or-
der terms in the Lagrangian after insertion of the equa-
tions of motion for the individual solitons. Within SU(2)
this has been shown by Yabu and Ando [22], and the
extension to SU(3) is straightforward:
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V(R; A, B) Roge —%/tr [f,fv,\a@a(n -V ®5(2) +f,2,( m2

The eight asymptotic pseudoscalar soliton fields &, solv-
ing the Euler Lagrange equations should have the form!

X-, @€ {1,2,3},

b, = Dabﬁb XK» @€ {415’677}7 (15)
Xn, =38,
with
e—mcT
leading for large values of R to
V(R; A,B) ~ 4nf2V,V;
e—mKR
x{ Dy;(A)Dw;(B)A% 7
o
+Dsi(A)Dg;(B)A] R
e—m,,R
+D;1;(A)D;i(B) A2 7 .7

However, because of the rigid rotator approximation all
masses are set to m, and the asymptotic constants all
equal:

SU(2
A _ g=nN(—m2) 3g5, @) (18)
sU@) gr=nn(0) 8 f2

For SU(3) symmetry the matrix elements of the D func-
tions in Eq. (17) for nucleons are summarized by

D;;(C) = Dai(A)Da;(B)
= (30)°0:(A);(B) [7(4) - 7(B) + %], (19)

and we recover the conventional one-pion exchange in-

teraction together with a small term from one-n ex-

. SU@) _ 7 SU(2) .

change since for SU(3) symmetry g, = 7694 in
the Skyrme model.

Numerically and fortunately, the long range part of the

exchange matrix elements will turn out to be small, so

the impact of the wrong tail is not important.

IV. RESULTS

The main emphasis of the present investigation is on
the question of whether strangeness is loosely bound. Ac-
cessing the problem within the framework of the Skyrme

!We thank A. Hayashi for supplying us the asymptotic so-
lution of the Euler Lagrange equations when flavor symmetry
is broken.

2
m‘n‘

om2. —m? )%{)‘a@a(l)’Ab@b(z)} &’r. (14)

model has some advantageous and some problematic as-
pects.

The problematic aspects stem from uncertainties in the
higher order terms of the Lagrangian, inadequacies of
the product ansatz, and, ultimately, the disturbing fea-
ture that an intermediate range attraction in the nucleon-
nucleon system does not emerge as simply and naturally
as one might have hoped; see, e.g., [5,13,23,24] and refer-
ences therein. The obvious advantages lie in the fact that
the lower order terms of the Lagrangian are unambigu-
ously fixed in the mesonic winding number zero sector.
Now, the same Lagrangian governs the higher winding
number configurations, so that conclusions based solely
on the lower order terms, should also be reliable for the
case of higher winding numbers. One example for this
is the baryon spectrum in SU(3), where the lower order
SU(3) symmetry breaking in the Lagrangian, Eq. (5), is
sufficient to describe the mass splittings, as recalled in
Sec. II. Another example is given in the case of meson-
baryon scattering where the use of mesonic weak decay
constants and masses for this winding number one con-
figuration is mandatory [25,26].

Provided that the problem of the missing intermedi-
ate range attraction finds its resolution in higher order
terms and/or in improved two-baryon configurations [5)
beyond the product ansatz, we can confidently focus on
the longer range part of the interaction: it does not in-
volve the higher order terms explicitly and also the prod-
uct ansatz gradually becomes exact.

The longer range components of the baryon-baryon
forces are due to the flavor symmetric and flavor-
symmetry-breaking mass terms £(®5B) and £(FSB), and
the nonlinear o-model term £(?) [see Eq. (14)], where the
latter does not contribute at all to the central interaction.
If we accept the line of reasoning above, the central in-
teractions from the flavor and chirally symmetric terms
of the Lagrangian are viable to modifications, the others
not.

In Figs. 3 and 4 we show the central interactions from
the flavor symmetric part of the Lagrangian for the NN,
AA, ¥¥, and EE systems. The general absence of any
attraction is as conspicuous as the fact that the variation
with respect to decreasing hypercharge of the system is
small. This suggests that any improvement on the central
attraction in the NN system will lead to very similar
attractions for the other baryons.

We explore this hypothesis in Figs. 3 and 4 by vary-
ing the higher order stabilizing terms of the Lagrangian:
Fig. 3 shows the changes when the usual Skyrme term
L4A) je., x = 0 in Eq. (4), is replaced by its alternate
form £A)] je., x = 1 in Eq. (4). This substitution
does not lead to any changes within SU(2), but in SU(3)
the situation changes drastically as may be seen from
the figure. Since the B = 1 solitons in the SU(2) sub-
group are unaffected by variations of x, it is clear that
large negative values of x will yield arbitrary attraction
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R (fm)

FIG. 3. Central interaction from the flavor symmetric part
of the Lagrangian with fourth order stabilizing terms shown
for the NN system (thin solid line), AA system (thick solid
line), and £¥ and EE systems (dashed line). (The lat-
ter two curves practically coincide and only one is shown.)
The lower quadruple of curves is obtained with the param-
eters fr = 93.0 MeV, m, = 138.0 MeV, fx = 113.5 MeV,
mg = 495.0 MeV, e = 4.12, x =0,k=0,€ =0. The upper
group has S replaced by £(4A), i.e., same parameters as
before, only x = 1 now.

for B = 2 configurations in SU(3). But it seems very
likely to us that the B = 1 soliton would not be stable
towards deformations out of the SU(2) subgroup then, to
which it was constrained by ansatz. We therefore refrain
from such manipulations. In any case, from the mesonic

sector, £(#A) seems to be small [17] since it violates the
Zweig rule.

Figure 4 shows the changes when the fourth order sta-
bilizer is replaced by a sixth order one and when scalar
degrees of freedom are taken into account. For the latter,
we choose a form inspired by, but simpler than, a local
approximation to the dilatons [27,28,24]: namely,

1 T Y I SN DR N |

01 03 05 07 09 1 13 15 17 19 21
R(fm)

FIG. 4. As in Fig. 3, but showing the effect of alterna-
tives to fourth order stabilizers. (As in Fig. 3, ¥¥ and E2
curves practically coincide.) Upper quadruple of curves with
sixth order stabilizer: f, = 93.0 MeV, m, = 138.0 MeV,
fx = 113.5 MeV, mg = 495.0 MeV, e =0, x =0, k = 0,
€s = 0.0125 MeV~'. Lower group shows the effect of dila-
tons: fr = 93.0 MeV, m, = 138.0 MeV, fx = 113.5 MeV,
my = 495.0 MeV, e = 4.12, x =0, kK = 0.03, €6 = 0.

LWy - LOW)

_ f-ﬁm?r K2 n
= 4[{,2 1 exp ;gtl' L”,L N (20)

which effectively scales down f, in the interior of the
soliton. Expanding the exponential to second order gives
the nonlinear 0 model and the usual attractive symmetric
fourth order term which destabilizes the soliton, but here
there are higher order terms present in the exponential
to counteract this destabilization now. Within SU(2) the
inclusion of dilatons was shown to lead to an intermediate
range central attraction [24] when these fields were made
strong enough. In SU(3), however, strong dilaton fields
lead to a problem since not only is f, scaled down in the
interior, but also all mass terms resulting in too-small
hyperon splittings in the B = 1 sector [29].

As already mentioned, the rationale of all these differ-
ent higher order terms is not only to investigate further
mechanisms for an intermediate range attraction, but
also to demonstrate that the central interaction from the
flavor symmetric terms is fairly independent of the hyper-
charge of the two-baryon configuration. Thus, if the NN
system acquires its intermediate range attraction from
the flavor symmetric terms, this attraction will also be
present for the hyperons. It remains to be said that the
interactions in Figures 3 and 4 have all been determined
with baryon wave functions diagonalizing the rotational
motion in the presence of SU(3) symmetry breaking; see
Eq. (A1). The distortions in the baryon wave functions
away from SU(3), however, do not play a decisive role
here, which means that SU(3) symmetric wave functions
or wave functions in the strong symmetry-breaking limit
always lead to very small variations of the flavor sym-
metric central interaction with respect to hypercharge.

Figure 5 shows the central interactions for identical
baryons as they arise from those terms, which explic-
itly break the flavor symmetry. These contributions arise
solely from the Euler angle matrix elements of

U{T®) (R)[1 — Dgs(A)][1 — Dgs(B)]

(FSB)

Uy 0

(MeV)
-20 |
-40
-60
-80 |
-100
-120 .

21 1 1 1 s 1 1 1 1 1 1 1 1 1 L 1 1 1 1
001 05 09 13 17 2.1
R (fm)
FIG. 5. Central interaction from the flavor-symmetry-

breaking part of the Lagrangian for the NN system (thin solid
line), the AA system (thick solid line), the £ system (dotted
line), and the EZ system (dashed line). The curves are ob-
tained for the parameters fr = 93.0 MeV, m, = 138.0 MeV,
fk = 113.5 MeV, mx = 495.0 MeV, e = 4.12, x = 0, k = 0,
€ — 0.
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in Eq. (12) and are directly proportional to the product of
the strangeness contents of the two interacting baryons,
since (Y|35]Y) = (Y|3(1 — Dss)|Y). From Fig. 5 we see
that UéFSB)(R) is attractive and large, such that bind-
ing is enhanced with growing strangeness content. Since
this additional binding comes from a term fixed in the
mesonic sector, we judge this to be a reliable conclu-
sion, which also summarizes one of the main points of
the present work.

In Appendix B we give a complete list of all interac-
tion components for NN, NA, NX, NE, AA, XX, and
ZZ systems using only the normal Skyrme term £(#4) as
stabilizer adjusting the VA splitting. Again, the longer
range spin-isospin dependence is due to terms fixed in
the mesonic sector and thus insensitive to any reason-
able modifications of the Lagrangian. For the NN case
we exploit one of the advantages of our approach to the
SU(3) interactions, namely, that we are able to switch
continuously from SU(3) symmetry to the SU(2) limit
by simply changing the baryon wave functions; see Eq.
(Al). Comparing these cases for the NN interaction, we
find that there is a smooth transition with small changes
in the longer range parts of the interaction to the well
known results in SU(2). This finding apparently is in
contrast to other work published recently on the baryon-
baryon interactions in the SU(3) Skyrme model [7,8] and
similar discrepancies persist for other baryon pairs, too,
which could be [14] due to difficulties in the Monte Carlo
integrations used in Ref. [7,8].

From the fact that two nucleons are loosely bound and
well separated in an isospin I = 0, spin J = 1 state
(the deuteron), and that no additional repulsion arises in
the longer range central interactions when hypercharge
is decreased, we are able to predict the spin and isospin
of bound deuteronlike states of hyperons. To this end
we just have to examine the sign of the different spin-
isospin components of the long-range interaction, which,
as already has been stated, is due to well established
terms in the Lagrangian. Explicitly (see Appendix B) we
find that an NA pair should be bound ina (I = 1, J =1)
state, an NX pairina (I = %, J = 1) state, an NZ pair
ina (I =0, J =0) state,a AA pairina (I =0, J =0)
state, a XX pair in a (I = 2, J = 0) state, and a EE pair
ina (I =1, J=0) state.

In SU(2) the most attractive configuration, the torus,
can be found numerically by initializing a general mini-
mization algorithm with the most attractive product con-
figuration [30,31,5]. This most attractive product config-
uration occurs at a relative orientation of C' = exp(i§Az)
for the two hedgehogs. With the tools set up for the
present investigation we are in a position to determine
the most attractive product configuration in SU(3) by
minimizing the flavor symmetric part of the interaction
energy, Eq. (7), with respect to the 8 Euler angles in C at
all separations. Interestingly, the most attractive orien-
tation is unchanged, i.e., it resides in the SU(2) subgroup,
hinting that the torus will also be the minimum in the
B = 2-sector of SU(3). In the case of flavor symmetry
with all meson masses equal to the pion mass, the torus
is known [6] to be lower in energy than the SO(3) soliton
found by Balachandran et al. [32].

B. SCHWESINGER, F. G. SCHOLTZ, AND H. B. GEYER s1

V. CONCLUSIONS

In the present work we have explored to which extent
it is possible to make reliable statements about whether
hyperons form bound deuteron like states. To this end
we have used the SU(3) Skyrme model and compared
the NN interaction in the product ansatz to different
NY and YY interactions which emerge from the same
ansatz. (Y represents any octet baryon with nonzero
strangeness.) For loosely bound deuteronlike configura-
tions the product ansatz is sufficient if the only purpose
is the investigation of whether there is more binding in
the NY system relative to the NN case in the longer
range part of the interaction.

Such a comparison within the Skyrme model unfortu-
nately also meets two other obstructions: the well-known
problem of the missing intermediate range central attrac-
tion and the incomplete knowledge on the correct combi-
nation of higher order stabilizing terms. The latter state-
ment, of course, reflects the belief that the lower order
terms are fixed by their empirical values in the mesonic
sector for which evidence has been given in several places
[19,25,26,33]. Fortunately, it turns out that the higher or-
der stabilizers, which exclusively make up the chiral and
flavor symmetric contributions to the central interaction,
show little variation with respect to different baryon pairs
considered. Therefore, the uncertainties associated with
these terms are eliminated when we look at differences
between NN NY and YY interactions: if some combi-
nation of higher order terms, most likely a coupling to
scalar degrees of freedom, leads to a central attraction in
the NN case, it will also do so for the other cases.

There remain the longer range contributions from
the known lower order terms: the nonlinear ¢ model
is responsible for the spin- and flavor-dependent com-
ponents of the interaction, whereas the chiral and
flavor-symmetry-breaking terms introduce further cen-
tral interactions which become increasingly attractive
as the strangeness contents of the participating baryons
grow. The conclusion that hyperons must be bound
in deuteronlike states therefore seems inescapable. Al-
though our findings confirm or extend what is commonly
expected, we think that we actually have added some
weight to such expectations.

Since the contribution of the nonlinear ¢ model to
the potential is also considered a reliable quantity here,
we were actually in a position to predict the spins and
isospins of the most attractive baryon-baryon configura-
tions. Again, the Skyrme model result seems to agree
with conclusions drawn from one-boson exchange mod-
els.
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APPENDIX A

The interaction terms depend on the Euler angles of
the participating baryons, with the angles in A corre-
sponding to the degrees of freedom of the first baryon,
the angles in B to the second. The wave function for an
individual spin one-half baryon can be expressed as

CIEIEH)

— X %+jsD{m} )
= 2V X P

where the th"}
the rotational Hamiltonian of the baryon considered
[18,19,16].

We begin with the direct matrix elements between an
incoming baryon X (A) interacting with a baryon Y (B).
The relative rotations C = A'B contained in the D func-

(4), (A1)

are real amplitudes that diagonalize

J

(@ VG VIDEY ol G Dy = > \f X

{m}{m'}

i (% W
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tions of all flavor symmetric interaction terms translate
into the expression

(XY D (5352 (€) 1XY)

= 3 X1 Dy ) (O X
IyM
' {n
SRR CHICRD
With the conventions of de Swart [34] individual angular
integrals are actually real, so we may omit the complex
conjugation later. For the direct matrix elements the
transferred hypercharge y vanishes, and I, j;, j; are the
possible isospins and spins in the irreducible representa-
tion {n}, corresponding to hypercharge y, y;, y2, respec-
tively. The angular integrals of the baryon-baryon inter-
action may all be decomposed to integrals over three D
functions, where isospin and spin dependence factorizes
via SU(2) Clebsch-Gordan coefficients, leaving isoscalar
SU(3) factors [34]. We define reduced SU(3) matrix ele-
ments in terms of these isoscalar factors:

(B) 1Y) . (A2)

{m'} ) ( {m} {n}|{m'}, ) |

i'y 11 Jgo| 11

(A3)

and abbreviate the SU(2)-Clebsch-Gordan coefficients by isospin and spin operators ofrank I = 1,2, J =1. For I =1

we adopt the usual notation

0 for A,
®|Talc) = (Ta)be = { (Ta)pe for N and E, (A4)
i€qbe for X.

For I = 2 it is also convenient to define an isospin quadrupole operator which will appear in the X3 interactions:

12
ca

) = @

(A5)

Since all baryons considered have spin one-half, the Pauli matrices o} suffice to reproduce all J = 1 matrix elements.

The different nonvanishing Euler angle matrix elements of the interaction which now can be expressed by the
reduced matrix elements given in (A3) and by isoscalar factors are listed below. The spin and isospin operators
embody the different possibilities for spin or isospin flips between incoming and the outgoing baryons X'(A) and
Y'(B). Note that the implicit summations run over ¢,j € {1, 2, 3}:

(X" Y'|(1 - ADss(4)) (1 = XDss(B))IX ¥) > [1 = M(ixyx) GDID ooy o0l (ixvx) (31))]

x[1 = N{(irur ) EDIDE 0o | Gryw) G1)] (A6)
for arbitrary coefficients \, X',
(XY |Dys(A)Dsa(B)XY) = T - Ty YEXFDCY TN 50 3(11) D)l ix) (31)
x((ivyy) GOIDE o0 1 Groy ) (31) (A7)
(X'Y'|Dsi(A)Dss(B)| X Y) = Lox - oy ((ixuyx) (DI 1o Il (ixyx) (21))
(v yv) GDIDES) (101 Gryy ) (31)) (A8)



1236 B. SCHWESINGER, F. G. SCHOLTZ, AND H. B. GEYER 51

y YCix + D@y +1) 11y D)

(X'Y'|D;;(A)Dj;(B)|XY) > 3ox -0y Tx -T 6 i 1 100yl Exyx)(31))

x((ivuy ) BDIDE (10l ) (31)). (A9)

The combination of D functions where the right indices are coupled to a second rank tensor,
3Dg3(A)Dg3(B) — Dg;(A)Ds;(B),
3D;j3(A)Djs(B) — D;i(A)D;i(B),

leads to the same expressions as (A8) and (A9), respectively, apart from the replacement o x - oy — Sxy, where

Sxy=3ax-Ro’y‘R—

is the tensor force operator and R= e3 has been used:

(X'Y'|5QWD;i(C)D;:(C)IX Y)

5 %{Z} ({8} {8} {337) &

Ox Oy (AIO)

x{((ixyx) GDIDES 00| Gxyx) GDN Gy yy) GDID ) 00y v wr) (G1)

1 1)(2 1
+Tx~Ty\/(22X+ )( iy + 1)

x{(ivyy ) 3DIDES o0 1 Grv) (31)

+Qx - Qy ((ixyx) DI 00 I ixyx) DN (v yw) GDID G o0yl v o) G1) },

(xX'y’|1Q" (Dii(C)Djj(C) -

Slox-oyiY <{18(} {18}|{n3 ) o)

{n}~

D4;(C)D(O)) X Y)

- ((ixyx) GVIDES 00yl ixyx) (31))

(A11)

x{((ixyx) GID 10 I ixyx) G DN (ivww) GIDE) 10 iy ) (31))

\/(2zx + 1)(2iy +1)

T
+L'x - 6

As has been explained in Sec. III, the evaluation of anti-
symmetric fourth order terms from £(%4) is greatly sim-
plified by the use of the operator Q)| Eq. (8), for which
we now give the explicit eigenvalues

oD = { 1, (I) = (44),(s),

W) T\ 3- 12 + ¢ +3p+3g+pg), (I) = (44).

(A13)

p and q are related to the dimension of the representation
{n} vian = 1(p+1)(g+1)(p+ g+ 2). The combination
of D functions where the spin indices are coupled to a

((ixyx) GDIDED 10| i) D) v wy) GV IDT oyl Gy ) (31)

+Qx - Qy<(z'xyx)<%1)|w§:0})(m,n(z'xyx)(%m<(iyyy)<§1>uD§;3)(m)||(iyyy)<%1)>}.

(A12)

—

second rank tensor,
1 [61)11(0)1)22(0)—61312(0)1)21(0)
~Di(C)D;;(C) + Dis(C)D3:(C)

leads to the same expressions as (A12) apart from the
replacement ox - oy — Sxvy.

For the sake of brevity, and because no other inter-
actions will be considered, we give the exchange matrix
elements only for the case where one of the interacting
baryons is a nucleon N; the other then is a hyperon Y,
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the hypercharge of which we also designate by Y. For ([ 1 Y = A,
C = A'B we make use of the relation i(l+7y-Tg) forY =3 forI= 4
0 =Z,
(V' N'ID{ ) (142 (C)INY)
[ 0 Y =A,
11-1iry-Tsg) forY =% forI=3
3 2 2
= 3 (NI oy ()T N'ID(T) ) (BT | 0 Y =%,
I,y,M 1 TfVY =
(A14) 0 Y =A,
0 for Y =% for I=0,
Again, with the conventions of de Swart [34] individual ll+7y-7T=) Y =5,
angular integrals are real, so we may omit the complex o
conjugation. Nonvanishing matrix elements must now - 0 Y =A
transfer hypercharge y = 1 —Y and this also restricts the 0 for Y =% for I =1,
possible isospins I occurring in the sum of (A14). (| 21— Lry -75) Yy ==,

We can give a compact representation of the non- -
vanishing exchange matrix elements once the different As usual, we follow our conventions for implicit sums:
isospin cases occurring are abbreviated by i,7 € {1,2,3} and k € {4,5,6,7}:

|
(Y N'ID5(C)INY) = 11— Jon - oy) Thy ()G DD 10yl iy wy) (21)2. (A15)

The combination of D functions where the spin indices are coupled to a second rank tensor
3D33(C) — D;;(C)
leads to the same expression as (A15) apart from the replacement (1 — on - oy) = 3Sny:
(Y' N'|Dgs(C)INY) = 1(1+ o - %) Thy (A1) ADIDS)) o0y I i) (1)), (A16)
(Y' N'|5QDy;(C)Di;(C)INY)
S i1+on-oy) 3 ( & &% ) o) Z<(%l)(%1)nnéfg,(00)||(iyyy)(%l»z Thy, (A17)
{n}vy
(Y' N'|3QP(Dii(C)D;5(C) — Dij(C)D;i(C))INY)
8} {8 I .
si1l-toy-oy) 3 ( & &5 ) ¢, Z«%l)(%l)nD({;’gxm)n(zyyyx%l»zwa- (A18)
{n}y
The combination of D functions where the spin indices are coupled to a second rank tensor
1[6D11(C)D22(C) — 6D12(C)D21(C) — Dii(C)D;;(C) + Dy;(C)D;:(C))

leads to the same expression as (A18) apart from the replacement %(1 — %0' N OYy)— —é—SNy.
The flavor-symmetry-breaking terms finally introduce other new structures which may, however, be related to
existing ones:

(Y’ N'|Dys(A)Dis(B)|INY) = (Y’ N'|Dgs(C)|N Y), (A19)

(Y' N'|Dii(A)Dyi(B)INY) = (Y' N'|Dyi(C)|N Y), (A20)

(Y' N'|3Dy3(A)Dis(B) — Dii(A)Dys(B)|NY) = (Y' N'|3D33(C) — Dyi(C)|NY) . (A21)
[

APPENDIX B Egs. (1)~(5), and (20). Only the cumbersome but numer-

ically small contributions from the term proportional to
In this appendix we list all interaction components of  fZ— f2 have been dropped. The parameters are those fit-
octet baryon interactions for the Lagrangian given by  ting the B = 0 sector, fr = 93.0 MeV, m, = 138.0 MeV,
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TABLE 1. Radial functions for the NN interaction.

R (fm) Uy Uso Urr Usorr Us Usrr UQQ UO'UQQ USQQ
0.10 722.1 0.3 0.3 15.9 0.0 0.2 0.0 0.0 0.0
0.20 680.9 0.3 0.3 15.2 0.0 0.6 0.0 0.0 0.0
0.30 618.1 0.3 0.2 14.1 0.0 1.2 0.0 0.0 0.0
0.40 540.9 0.3 0.2 12.8 0.0 1.8 0.0 0.0 0.0
0.50 457.0 0.2 0.2 11.3 0.0 2.5 0.0 0.0 0.0
0.60 373.2 0.2 0.1 9.8 0.0 3.0 0.0 0.0 0.0
0.70 295.1 0.2 0.1 8.3 0.0 3.3 0.0 0.0 0.0
0.80 226.3 0.1 0.1 6.9 0.0 3.5 0.0 0.0 0.0
0.90 168.5 0.1 0.1 5.5 0.0 3.5 0.0 0.0 0.0
1.00 122.2 0.1 0.0 4.4 0.0 3.4 0.0 0.0 0.0
1.10 86.6 0.1 0.0 34 0.0 3.1 0.0 0.0 0.0
1.20 60.1 0.1 0.0 2.6 0.0 2.8 0.0 0.0 0.0
1.30 41.1 0.1 0.0 2.0 0.0 2.5 0.0 0.0 0.0
1.40 27.8 0.0 0.0 1.5 0.0 2.2 0.0 0.0 0.0
1.50 18.6 0.0 0.0 1.1 0.0 1.9 0.0 0.0 0.0
1.60 12.5 0.0 0.0 0.9 0.0 1.7 0.0 0.0 0.0
1.70 8.3 0.0 0.0 0.7 0.0 1.4 0.0 0.0 0.0
1.80 5.6 0.0 0.0 0.5 0.0 1.2 0.0 0.0 0.0
1.90 3.8 0.0 0.0 0.4 0.0 1.1 0.0 0.0 0.0
2.00 2.6 0.0 0.0 0.3 0.0 0.9 0.0 0.0 0.0
2.10 1.7 0.0 0.0 0.3 0.0 0.8 0.0 0.0 0.0
2.20 1.2 0.0 0.0 0.2 0.0 0.7 0.0 0.0 0.0
2.30 0.8 0.0 0.0 0.2 0.0 0.6 0.0 0.0 0.0
2.40 0.6 0.0 0.0 0.2 0.0 0.5 0.0 0.0 0.0
2.50 0.4 0.0 0.0 0.1 0.0 0.4 0.0 0.0 0.0
3.00 0.1 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0
3.50 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

TABLE II. Radial functions for the NA interaction.

R (fm) UO Uaa’ U‘r‘r Uo‘ar'r US US'r-r UQQ Uo’aQQ USQQ
0.10 689.8 —-7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.20 650.8 —7.4 0.0 0.0 —-0.1 0.0 0.0 0.0 0.0
0.30 591.2 -7.3 0.0 0.0 -0.3 0.0 0.0 0.0 0.0
0.40 518.0 -7.1 0.0 0.0 —0.6 0.0 0.0 0.0 0.0
0.50 438.4 —6.8 0.0 0.0 —-0.9 0.0 0.0 0.0 0.0
0.60 358.9 —6.4 0.0 0.0 -1.2 0.0 0.0 0.0 0.0
0.70 284.7 —-5.9 0.0 0.0 —-1.6 0.0 0.0 0.0 0.0
0.80 219.1 —5.4 0.0 0.0 -1.9 0.0 0.0 0.0 0.0
0.90 164.0 —4.9 0.0 0.0 —-2.2 0.0 0.0 0.0 0.0
1.00 119.6 —4.3 0.0 0.0 —-2.5 0.0 0.0 0.0 0.0
1.10 85.4 —-3.8 0.0 0.0 2.7 0.0 0.0 0.0 0.0
1.20 59.8 —-3.2 0.0 0.0 —2.8 0.0 0.0 0.0 0.0
1.30 41.4 —2.7 0.0 0.0 -2.9 0.0 0.0 0.0 0.0
1.40 28.4 —2.3 0.0 0.0 -2.9 0.0 0.0 0.0 0.0
1.50 19.4 -1.9 0.0 0.0 —-2.9 0.0 0.0 0.0 0.0
1.60 13.3 —-1.6 0.0 0.0 —-2.9 0.0 0.0 0.0 0.0
1.70 9.1 —1.3 0.0 0.0 —2.8 0.0 0.0 0.0 0.0
1.80 6.3 —-1.1 0.0 0.0 —-2.7 0.0 0.0 0.0 0.0
1.90 4.4 -0.9 0.0 0.0 —2.6 0.0 0.0 0.0 0.0
2.00 3.1 —0.7 0.0 0.0 —2.4 0.0 0.0 0.0 0.0
2.10 2.2 —0.6 0.0 0.0 —2.3 0.0 0.0 0.0 0.0
2.20 1.6 —-0.5 0.0 0.0 —-2.2 0.0 0.0 0.0 0.0
2.30 1.2 —-0.4 0.0 0.0 —2.1 0.0 0.0 0.0 0.0
2.40 0.9 —-0.3 0.0 0.0 —-1.9 0.0 0.0 0.0 0.0
2.50 0.6 -0.2 0.0 0.0 —1.8 0.0 0.0 0.0 0.0
3.00 0.1 0.0 0.0 0.0 —-1.3 0.0 0.0 0.0 0.0
3.50 0.0 0.0 0.0 0.0 —-0.9 0.0 0.0 0.0 0.0
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TABLE III. Radial functions for the NX interaction.

R (fm) Us Uso U:.r Usorr Us Usrr UQQ UUO’QQ USQQ
0.10 628.7 12.3 94.5 100.5 0.0 0.1 0.0 0.0 0.0
0.20 592.6 11.5 89.2 94.9 0.0 0.5 0.0 0.0 0.0
0.30 537.6 10.4 81.1 86.4 0.0 1.0 0.0 0.0 0.0
0.40 470.0 9.1 71.1 76.0 —0.1 1.5 0.0 0.0 0.0
0.50 396.6 7.6 60.3 64.6 —-0.1 2.0 0.0 0.0 0.0
0.60 323.5 6.2 49.4 53.3 —-0.1 24 0.0 0.0 0.0
0.70 255.4 4.8 39.3 42.6 —0.2 2.7 0.0 0.0 0.0
0.80 195.4 3.7 30.3 33.1 —0.2 2.8 0.0 0.0 0.0
0.90 145.1 2.7 22.8 25.0 —0.3 2.8 0.0 0.0 0.0
1.00 104.8 1.9 16.7 18.4 —-0.3 2.7 0.0 0.0 0.0
1.10 73.9 1.3 12.0 13.3 —-0.3 2.5 0.0 0.0 0.0
1.20 51.0 0.9 8.4 9.5 —-0.4 2.2 0.0 0.0 0.0
1.30 34.6 0.6 5.9 6.6 —0.4 2.0 0.0 0.0 0.0
1.40 23.2 0.4 4.1 4.6 —0.4 1.7 0.0 0.0 0.0
1.50 15.4 0.2 2.8 3.2 —0.4 1.5 0.0 0.0 0.0
1.60 10.2 0.1 1.9 2.2 —0.4 1.2 0.0 0.0 0.0
1.70 6.7 0.1 1.3 1.6 —0.4 1.1 0.0 0.0 0.0
1.80 4.4 0.0 0.9 1.1 —0.4 0.9 0.0 0.0 0.0
1.90 2.9 0.0 0.7 0.8 —0.4 0.7 0.0 0.0 0.0
2.00 2.0 0.0 0.5 0.6 —-0.3 0.6 0.0 0.0 0.0
2.10 1.3 0.0 0.3 0.4 —0.3 0.5 0.0 0.0 0.0
2.20 0.9 0.0 0.3 0.3 —0.3 0.4 0.0 0.0 0.0
2.30 0.6 0.0 0.2 0.3 —-0.3 0.4 0.0 0.0 0.0
2.40 0.4 0.0 0.1 0.2 —-0.3 0.3 0.0 0.0 0.0
2.50 0.3 0.0 0.1 0.2 -0.3 0.3 0.0 0.0 0.0
3.00 0.0 0.0 0.0 0.1 —0.2 0.1 0.0 0.0 0.0
3.50 0.0 0.0 0.0 0.0 —0.1 0.1 0.0 0.0 0.0

TABLE IV. Radial functions for the NZ interaction.

R (fm) Uo Uga Urr an'-rf Us USTT UQQ UO”QQ UsQQ
0.10 552.2 —2.9 2.7 —4.1 0.0 0.0 0.0 0.0 0.0
0.20 520.3 —2.8 2.5 —4.0 0.0 —-0.2 0.0 0.0 0.0
0.30 471.7 —2.6 2.3 -3.7 0.0 —0.3 0.0 0.0 0.0
0.40 412.0 —2.4 2.0 —-3.3 0.0 —0.5 0.0 0.0 0.0
0.50 347.3 —2.1 1.7 -3.0 0.0 —-0.7 0.0 0.0 0.0
0.60 282.8 —1.8 1.4 —2.6 0.0 —0.8 0.0 0.0 0.0
0.70 222.8 —1.6 1.1 —2.2 0.0 —0.9 0.0 0.0 0.0
0.80 170.0 —1.3 0.9 —1.8 0.0 —-0.9 0.0 0.0 0.0
0.90 125.8 -1.1 0.6 —1.5 0.1 -0.9 0.0 0.0 0.0
1.00 90.5 —0.9 0.5 —1.2 0.1 —0.9 0.0 0.0 0.0
1.10 63.5 —-0.7 0.3 —0.9 0.1 —0.8 0.0 0.0 0.0
1.20 43.5 —0.6 0.2 —-0.7 0.1 —0.8 0.0 0.0 0.0
1.30 29.3 —0.5 0.2 —-0.5 0.1 —-0.7 0.0 0.0 0.0
1.40 19.4 —0.4 0.1 —-0.4 0.1 —0.6 0.0 0.0 0.0
1.50 12.7 —0.3 0.1 —0.3 0.2 —0.5 0.0 0.0 0.0
1.60 8.3 —0.3 0.1 —-0.2 0.2 —0.4 0.0 0.0 0.0
1.70 5.3 —0.2 0.0 —0.2 0.2 —-0.4 0.0 0.0 0.0
1.80 3.4 —0.2 0.0 —0.1 0.2 —-0.3 0.0 0.0 0.0
1.90 2.2 —0.1 0.0 —0.1 0.2 —0.3 0.0 0.0 0.0
2.00 1.4 —0.1 0.0 —-0.1 0.2 —0.2 0.0 0.0 0.0
2.10 0.9 —0.1 0.0 —-0.1 0.1 —0.2 0.0 0.0 0.0
2.20 0.6 —0.1 0.0 —0.1 0.1 —0.2 0.0 0.0 0.0
2.30 0.4 —0.1 0.0 —0.1 0.1 —0.2 0.0 0.0 0.0
2.40 0.2 0.0 0.0 0.0 0.1 —0.1 0.0 0.0 0.0
2.50 0.1 0.0 0.0 0.0 0.1 —0.1 0.0 0.0 0.0
3.00 0.0 0.0 0.0 0.0 0.1 —0.1 0.0 0.0 0.0
3.50 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

1239



1240

B. SCHWESINGER, F. G. SCHOLTZ, AND H. B. GEYER

TABLE V. Radial functions for the AA interaction.

R (fm) Uo Uao- U-,--,- Ucrcrrr Us Usrr UQQ UchQ UsQQ
0.10 600.8 12.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.20 566.2 12.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.30 513.4 11.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0
0.40 448.5 10.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0
0.50 378.1 9.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0
0.60 308.0 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.70 242.8 7.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0
0.80 185.3 5.9 0.0 0.0 -0.1 0.0 0.0 0.0 0.0
0.90 137.3 4.9 0.0 0.0 —-0.2 0.0 0.0 0.0 0.0
1.00 98.8 4.0 0.0 0.0 —-0.4 0.0 0.0 0.0 0.0
1.10 69.4 3.3 0.0 0.0 —-0.5 0.0 0.0 0.0 0.0
1.20 47.7 2.7 0.0 0.0 —-0.5 0.0 0.0 0.0 0.0
1.30 32.1 2.1 0.0 0.0 —-0.6 0.0 0.0 0.0 0.0
1.40 21.3 1.7 0.0 0.0 —-0.7 0.0 0.0 0.0 0.0
1.50 14.0 1.4 0.0 0.0 —-0.7 0.0 0.0 0.0 0.0
1.60 9.1 1.1 0.0 0.0 —-0.7 0.0 0.0 0.0 0.0
1.70 5.9 0.9 0.0 0.0 -0.7 0.0 0.0 0.0 0.0
1.80 3.8 0.7 0.0 0.0 —-0.7 0.0 0.0 0.0 0.0
1.90 2.5 0.6 0.0 0.0 —-0.7 0.0 0.0 0.0 0.0
2.00 1.6 0.5 0.0 0.0 —-0.7 0.0 0.0 0.0 0.0
2.10 1.0 0.4 0.0 0.0 —-0.7 0.0 0.0 0.0 0.0
2.20 0.7 0.3 0.0 0.0 —0.6 0.0 0.0 0.0 0.0
2.30 0.4 0.2 0.0 0.0 —-0.6 0.0 0.0 0.0 0.0
2.40 0.3 0.2 0.0 0.0 —0.6 0.0 0.0 0.0 0.0
2.50 0.2 0.2 0.0 0.0 —-0.5 0.0 0.0 0.0 0.0
3.00 0.0 0.0 0.0 0.0 -0.4 0.0 0.0 0.0 0.0
3.50 0.0 0.0 0.0 0.0 -0.3 0.0 0.0 0.0 0.0

TABLE VI. Radial functions for the ¥ interaction.

R (fm) Uo Uao- U-,--,- Uo-ar-r Us Usr‘,- UQQ Uo-o—QQ UsQQ
0.10 555.7 7.0 23.4 10.0 0.0 0.1 0.0 0.0 0.0
0.20 523.4 6.7 22.1 9.5 0.0 0.4 0.0 0.0 0.0
0.30 474.2 6.3 20.1 8.8 0.0 0.7 0.0 0.0 0.0
0.40 413.8 5.8 17.6 8.0 0.0 1.2 0.0 0.0 0.0
0.50 348.3 5.2 14.9 7.1 0.0 1.6 0.0 0.0 0.0
0.60 283.2 4.5 12.2 6.1 0.0 1.9 0.0 0.0 0.0
0.70 222.6 3.9 9.7 5.2 0.0 2.1 0.0 0.0 0.0
0.80 169.4 3.3 7.4 4.3 —-0.1 2.2 0.0 0.0 0.0
0.90 124.9 2.7 5.6 3.5 —-0.1 2.2 0.0 0.0 0.0
1.00 89.5 2.3 4.0 2.8 —0.2 2.1 0.0 0.0 0.0
1.10 62.4 1.8 2.9 2.1 —-0.3 2.0 0.0 0.0 0.0
1.20 42.4 1.5 2.0 1.6 -0.3 1.8 0.0 0.0 0.0
1.30 28.3 1.2 1.4 1.2 —-0.3 1.6 0.0 0.0 0.0
1.40 18.5 1.0 1.0 0.9 —-0.4 1.4 0.0 0.0 0.0
1.50 11.9 0.8 0.6 0.7 —-0.4 1.2 0.0 0.0 0.0
1.60 7.6 0.6 04 0.5 —-0.4 1.0 0.0 0.0 0.0
1.70 4.8 0.5 0.3 0.4 —-0.4 0.9 0.0 0.0 0.0
1.80 3.0 0.4 0.2 0.3 —-0.4 0.8 0.0 0.0 0.0
1.90 1.8 0.3 0.1 0.3 —0.4 0.7 0.0 0.0 0.0
2.00 1.1 0.3 0.1 0.2 —0.4 0.6 0.0 0.0 0.0
2.10 0.7 0.2 0.1 0.2 —-0.4 0.5 0.0 0.0 0.0
2.20 0.4 0.2 0.0 0.1 —-0.4 0.4 0.0 0.0 0.0
2.30 0.2 0.1 0.0 0.1 —-0.3 0.4 0.0 0.0 0.0
2.40 0.1 0.1 0.0 0.1 —-0.3 0.3 0.0 0.0 0.0
2.50 0.0 0.1 0.0 0.1 —-0.3 0.3 0.0 0.0 0.0
3.00 0.0 0.0 0.0 0.0 —0.2 0.1 0.0 0.0 0.0
3.50 0.0 0.0 0.0 0.0 —0.2 0.1 0.0 0.0 0.0
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TABLE VII. Radial functions with the ZZ interaction.

R (fm) UO Uaa U‘r'r Uo’a‘r‘r US US‘TT UQQ Uo’aQQ USQQ
0.10 508.0 25.2 23.1 1.1 0.0 0.0 0.0 0.0 0.0
0.20 477.9 24.2 21.8 1.1 0.1 0.0 0.0 0.0 0.0
0.30 432.2 22.7 19.8 1.0 0.1 0.1 0.0 0.0 0.0
0.40 376.3 20.7 17.3 0.9 0.1 0.1 0.0 0.0 0.0
0.50 315.7 18.5 14.7 0.8 0.1 0.2 0.0 0.0 0.0
0.60 255.6 16.2 12.0 0.7 0.0 0.2 0.0 0.0 0.0
0.70 199.8 14.0 9.5 0.6 -0.1 0.2 0.0 0.0 0.0
0.80 151.0 11.8 7.3 0.5 -0.3 0.3 0.0 0.0 0.0
0.90 110.3 9.9 5.5 0.4 —-0.5 0.3 0.0 0.0 0.0
1.00 78.1 8.1 4.0 0.3 —0.7 0.2 0.0 0.0 0.0
1.10 53.6 6.6 2.8 0.2 -0.9 0.2 0.0 0.0 0.0
1.20 35.7 5.3 2.0 0.2 -1.1 0.2 0.0 0.0 0.0
1.30 23.2 4.3 1.4 0.1 -1.2 0.2 0.0 0.0 0.0
1.40 14.6 3.5 0.9 0.1 -1.3 0.2 0.0 0.0 0.0
1.50 9.0 2.8 0.6 0.1 —1.4 0.1 0.0 0.0 0.0
1.60 5.4 2.3 0.4 0.1 —-1.4 0.1 0.0 0.0 0.0
1.70 3.1 1.8 0.3 0.0 -1.5 0.1 0.0 0.0 0.0
1.80 1.7 1.5 0.2 0.0 —1.4 0.1 0.0 0.0 0.0
1.90 0.9 1.2 0.1 0.0 —1.4 0.1 0.0 0.0 0.0
2.00 0.4 1.0 0.1 0.0 —-1.4 0.1 0.0 0.0 0.0
2.10 0.1 0.8 0.1 0.0 -1.3 0.1 0.0 0.0 0.0
2.20 —-0.1 0.6 0.0 0.0 —-1.3 0.0 0.0 0.0 0.0
2.30 —0.2 0.5 0.0 0.0 —1.2 0.0 0.0 0.0 0.0
2.40 —-0.2 0.4 0.0 0.0 —-1.2 0.0 0.0 0.0 0.0
2.50 —-0.2 0.3 0.0 0.0 -1.1 0.0 0.0 0.0 0.0
3.00 -0.1 0.1 0.0 0.0 —-0.8 0.0 0.0 0.0 0.0
3.50 0.0 0.0 0.0 0.0 —0.6 0.0 0.0 0.0 0.0

fxk = 113.5 MeV, mg = 495.0 MeV, with the higher
order terms, e = 4.12, x = 0, kK = 0, ¢ = 0, adjusted
to the VA split in the B = 1 sector. The Euler angle
wave functions are obtained by diagonalizing the rota-
tional and flavor-symmetry-breaking terms in the rigid
rotator approximation.

Tables I-VII list the different radial functions sub-
scripted by the commonly used mnemonic notation, indi-

cating the two-body spin or isospin operator combination
according to (A4), (A5), and (A10), which must be multi-
plied. In order to maintain uniformity of the tables there
often are superfluous columns in Tables I-VII, e.g., the
isoquadrupole-isoquadrupole interactions Ugq, Ussoq,
Usqq which can only be nonzero for the ¥¥ system.
For the X% system they then turn out to be numerically
small.
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