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Motivated by the observation of the decay B —+ K*p by the CLEO Collaboration, we have
systematically analyzed the two-body weak radiative decays of bottom and charmed hadrons. There
exist two types of weak radiative decays: One proceeds through the short-distance 6 —+ sp transition
and the other occurs through W exchange accompanied by a photon emission. EfFective Lagrangians
are derived for the R'-exchange bremsstrahlung processes at the quark level and then applied to
various weak electromagnetic decays of heavy hadrons. Predictions for the branching ratios of
B + D* p, As —+ Z, p, =t, —+ =,p, and:-s —+ =',p are given. In particular, we find 8(B —+
D' p) = 0.9 x 10 . Order of magnitude estimates for the weak radiative decays of charmed
hadrons, D —+ K* p, A+ ~ Z+p, and:- —+ = p, are also presented. Within this approach, the
decay asymmetry for antitriplet to antitriplet heavy baryon weak radiative transitions is uniquely
predicted by heavy quark symmetry. The electromagnetic penguin contribution to A& —+ Ap is
estimated by two different methods and its branching ratio is found to be of the order of 1 x 10
We conclude that weak radiative decays of bottom hadrons are dominated by the short-distance
6 —+ 8p mechanism.

PACS number(s): 13.40.Hq, 12.39.Hg, 14.20.—c, 14.40.—n

I. INTRODUCTION

The recent observation of the weak radiative decay
B ~ K*p by the CLEO Collaboration [1] with the
branching ratio (4.5 6 1.5 + 0.9) x 10 s confirms the
standard-model expectation that this decay mode is dom-
inated by the short-distance electromagnetic penguin
transition b -+ 8p. Naively, it is tempting to think that
B ~ D*p will be the dominant weak radiative decay
of the B meson as it is not suppressed by quark mixing
angles. However, owing to the large top quark mass, the
amplitude of b ~ 8p is neither quark mixing nor loop sup-
pressed. Moreover, it is largely enhanced by QCD correc-
tions. As a consequence, the short-distance contribution
due to the electromagnetic penguin diagram dominates
over the R'-exchange bremsstrahlung. This phenomenon
is quite unique to the bottom hadrons which contain a
heavy b quark; such a magic short-distance enhancement
does not occur in the systems of charmed and strange
hadrons. For example, it is known that the mechanism
8 ~ dp plays only a minor role in the radiative decays of
kaons and hyperons.

In Ref. [2] we have systematically studied the flavor-
conserving electromagnetic decays of heavy mesons and
heavy baryons. Various photon coupling constant are re-
lated through the usage of heavy quark symmetry. For
example, the B*B*pcoupling, which is very difFicult to
measure in practice, is related to the B*Bp coupling
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via heavy-quark spin symmetry. The coupling constants
appearing in the Lagrangians depend only on the light
quarks and can be calculated in the nonrelativistic quark
model. Consequently, the dynamics of the electromag-
netic transitions for emission of soft photons and pions is
completely determined by heavy quark and chiral sym-
metry, supplemented by the quark model. The purpose
of this paper is to extend our previous work to the weak
radiative decays of heavy hadrons.

At the quark level, there are three different types of
processes which can contribute to the weak radiative de-
cays of heavy hadrons, namely, single-, two-, and three-
quark transitions [3]. The single-quark transition mech-
anism comes &om the so-called electromagnetic penguin
diagram. Sine the penguin process c ~ up is very sup-
pressed, it plays no role in charmed hadron radiative de-
cays. We will thus focus on the two-body radiative decays
of bottom hadrons proceeding through the electromag-
netic penguin mechanism b ~ sp:

There are two contributions &om the two-quark tran-
sitions: one &om the W-exchange diagram accompanied
by a photon emission &om the external quark (see, for ex-
ample, Fig. 1), and the other &om the same W-exchange
diagram but with a photon radiated from the W boson.
The latter is typically suppressed by a factor of m~k/Miv.
(k being the photon energy) as compared to the former
bremsstrahlung process [4]. For bottom hadrons, the
dominant decays which occur through the quark-quark
bremsstrahlung bd ~ cup or bu —+ edp are
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FIG. 1. TV-exchange diagrams contributing to the
quark-quark bremsstrahlung process 6+ d —+ c+ u + p in-
duced by the four-quark operator 0& defined in Eq. (2.6).

D wK' p A+ wZ+p (1.3)

Note that some decay modes in (1.1) also receive con-
tributions &om W-exchange bremsstrahlung, but they
are suppressed by quark mixing angles. Finally, the
three-quark transition involving W-exchange between
two quarks and a photon emission by the third quark is
quite suppressed because of very small probability of find-
ing three quarks in adequate kinematic matching with the
baryons [3,5].

To summarize, the two important mechanisms for
weak radiative decays of heavy hadrons are W-exchange
bremsstrahlung and the electromagnetic penguin transi-
tion 6 ~ sp. Since the effective Lagrangian for the lat-
ter is known, the calculation for the radiative amplitude
induced by the penguin diagram appears easier at first
sight.

The W-exchange bremsstrahlung effect is usually eval-
uated under the pole assumption; that is, its amplitude
is saturated by one-particle intermediate states. When
dealing with weak radiative decays of heavy hadrons,
one encounters two predicaments. First, the hadronic
matrix elements for the processes (1.1) are evaluated at
q = 0 for a real photon emission, whereas heavy quark
symmetry and the quark model are known to be more
reliable at zero recoil kinematic point where q is max-
imuin. (The quark-model wave functions best resemble
the hadron states in the &arne where both hadrons are
static. ) Second, the intermediate states appearing in the
pole diagrams for the processes (1.2) or (1.3) are very far

B m D p i Ab m Z,p, =„~=,p, =',p, (1.2)

where we have followed the convention that a B meson
contains a b quark and that "g (:-&) denote antitriplet
(sextet) heavy baryons. For charmed hadrons, the
Cabibbo-allowed decay modes via cu —+ sdp or cd + usp
are

&om their mass shell. For example, the four-momentum
squared of the D pole in the decay B —+ D'p is m&
(see Fig. 3). This means that the residual momentum
of the D meson defined by P„=mDn„+ k„must be of
order m~, so the approximation k/m~ (( 1 required by
the heavy quark efFective theory is no longer valid. Also,
the quark-model prediction for the photon coupling con-
stants is presumably reliable only when both hadrons are
nearly on their mass shell. The question is then how to
extrapolate the hadronic matrix elements &om zero re-
coil to maximal recoil, and the photon couplings &om
the on-shell point to off-shell? In principle, one can treat
the intermediate state as an on-shell particle and then as-
sume that ofF-shell effects of the pole can be parametrized
in terms of form factors. Such form factors are basically
unknown, though they are expected to become smaller
as the intermediate state moves away from its mass shell
due to less overlap of initial and final hadron wave func-
tions. Consequently, based on heavy quark symmetry
and the nonrelativistic quark model, at best we can only
predict the upper bound of the decay rates for the radia-
tive decays in the category of (1.2).

We will present in this paper a different but more pow-
erful approach to the W-exchange bremsstrahlung pro-
cesses. The fact that the intermediate quark state in
these processes is sufficiently off shell (see, e.g. , Fig. 1)
and the emitted photon is hard suggests that the possibil-
ity of analyzing these processes by perturbative @CD.As
a first step in this direction we study the tree amplitudes
responsible for these processes and derive a gauge invari-
ant effective five-point interaction for the quark-quark
bremsstrahlung bu ~ cd' or bd —+ cup.

The physical mass of a heavy hadron differs &om the
heavy quark mass by an amount of order AQCD ~ This dif-
ference is due to the presence of the light quark(s). It is
therefore reasonable to assign a constituent mass of order
Aq~D to the light quark(s) inside a heavy hadron. In ad-
dition, the light quarks move, on average, with the same
velocity as the heavy quark. We will make the simplify-
ing assumption of neglecting the relative Fermi motion.
Thus, the heavy quark and the light quark(s) in a heavy
hadron move with equal four-velocity. This momentum
parametrization has the advantage that the resulting ef-
fective interaction is local and manifestly gauge invariant.
In Sec. III we will show explicitly for the meson case that
the effective Lagrangian and the pole model approaches
are indeed equivalent, but the former is much simpler
and provides information on the form factors.

Armed with the effective Lagrangian for the W-
exchange bremsstrahlung we are able to study various
radiative decay modes of bottom and charmed hadrons
listed in (1.2) and (1.3), bearing in mind that this ap-
proach presumably works better when both the initial
and Anal hadrons contain a heavy quark. We will use
the factorization method, which is known to work well
for nonleptonic weak decays of heavy mesons, to evaluate
the mesonic matrix elements. As for the baryon radia-
tive decays we will demonstrate that heavy quark sym-
metry leads to a nontrivial prediction for antitriplet to
antitriplet heavy baryon transitions: The ratio of parity-
conserving and parity-violating amplitudes is uniquely
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predicted. Baryonic matrix elements will be calculated
using the MIT bag model.

This paper is organized as follows. I ocal effective La-
grangians for the quark-quark bremsstrahlung processes
are derived in Sec. II. We then apply this approach to
weak radiative decays of heavy mesons in Sec. III and to
various bottom decays in Sec. IV. Discussion and con-
clusion are presented. in Sec. V. Some preliminary results
have been reported earlier [6].

II. EFFECTIVE LACRANCIANS FOR W'EAK
RADIATIVE DECAY'S

In this section we will present the efFective Lagrangians
for the penguin transition b + s + p and for the R'-
exchange bremsstrahlung processes b+u -+ c+d+p and
b+d m c+u+p.

The efFective Lagrangian for the short-distance b ~ Sp
transition including QCD corrections reads [7]

Gp e
C,s(b ~ sp) = F2Vtt V~;so . F[mg(1+ ps) + m, (1 —ps)]b,

2 28m2
(2.1)

( )
—16/23(F ( ) + 116[1( 10/23 1)

+ yg (p —1)])
with

(2.2)

where 0 - E = 0~ F~", and we have neglected contribu-
tions which vanish for a real photon emission, V~ is the
quark mixing matrix element, F2 = Fq(xq) —F2(x,) =
F2(xt) with x; = m2/M~~, and

ated with highly ofF-shell intermediate states mentioned
in the Introduction is easily overcome at the quark level.
The propagator of the highly virtual quark can be re-
duced to a constant by energy-momentum conservation.
The above photon emission reactions are then described
by an effective five-point local interaction which is also
gauge invariant. To begin with we note that the relevant
QCD-corrected effective weak Hamiltonian is given by

(8x + 5x —7)x (3x —2)x
12(x —1)3 2(x —1)4

Gy'R,~ = V,bV„'q(c+0+ + c 0 ) + H.c. ,
2 2

with

(2 4)

p =
2

——1+ n, (m&) ln
~ 2 ~

. (2.3b)
o..(m,') 23, (M~2 5

~, (Mw2) 12~ ' ( m~~p
It is easily seen that F2 is a smooth function of the top
quark mass. For mq ——174 GeV and Ag~D ——200 MeV,
we find F2(xt, ) = 0.39 and F2(xq) = 0.65, so that the
radiative decay b ~ sp is enhanced by QCD corrections
by a factor of 2. The radiative decays B ~ K*p and
B ~ Pp, mediated by this penguin mechanism, have
been studied extensively in the literature. In Sec. IV
we will apply the effective Lagrangian (2.1) to the decay
Ag —+ Ap.

We next turn to the TV-exchange bremsstrahlung pro-
cesses bd —+ cup and bu —+ cd'. The difficulty associ-

and

Oy ——Og +Og (2.5)

c~ (ms) 0.85, c (ms) 1.38 . (2.7)

We Brst consider the photon emission process bd -+
cup. The amplitudes mediated by the operator O~ (see
Fig. 1) are

O~ = (cb)(du), O~ = (cu)(db), (2.6)

where (qqq2) = qp„(1.—ps)q2. The Wilson coefficient
functions c~, evaluated at the scale p = mg, have the
values

Aq ——ee,u, p" p" (1 —p5) u~8gp„(1 —p5)v„,—m,
1

A2 —eebu. 7"(1 —ps) /"ubvd /v(1 ps)v
b mQ

(2.8a)

(2.8b)

A3 ——eegu, p" (1 —p5) ug8gp p„(l —ps) v
d+ —mg

1
A4 —ee„u,p (1 —p5)ug8gp„(l —7s) p"v„,

(2.8c)

(2.8d)

where k is the photon momentum.
We will parametrize the quark momenta in terms of

velocities; this is more suitable when dealing with heavy
quark symmetry:

pg = mdiv, pg = m(gv, p~ = mev, pg = m~v

(2.9)
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Since the 6 quark is heavy we have set the velocity of the
d quark to be the same as the b quark so that they will
move together to form a bound meson state. Likewise,
v„- = v = v'. At this point we wish to emphasize that
the light quark masses appearing in (2.8) and (2.9) are
of the constituent type. This is attributed to the fact the
typical Fermi momentum of the quarks in a hadron is of
order AqcD. Consequently, although the current quark
masses of the light u and d quarks are only of order 10
MeV, their ofF shellness is of order AqcD. We thus choose
to have the light quarks close to their mass shell, so that
pq ~ mqv with v = 1 and mq being the constituent

quark mass. Obviously, this parametrization (2.9) does
not provide a complete description of the Fermi motion
inside the bound state. Nevertheless, it does take into
account its average eKect by giving a constituent mass
of order AqcD to the light quarks. This parametrization
greatly simplifies the calculation by eliminating the pho-
ton's coupling to the convection currents and making the
effective interaction local and manifestly gauge invariant.

With the momentum parameterization given by (2.9),
it is easily seen that the contributions &om the convection
current add up to zero and the amplitude arises entirely
&om the magnetic moments of the quarks:

A —A1 + A2 + A3 + A4

e, u, a" k» (1 —ps) ubo~p (1 —ps) v„—eb
' u, p" (1 —ps)(T""kpubegp„(1 —ps) v„m' mf mQ mb

—eg
' u~p" (1 —ps)ubvdo~"kgb„(1 —ps)v„+ e„u,p (1 —ps)ubvdp„(1 —ps)a""kAv„

md mQ
(2.10)

where m; = mb+ md and mf ——m, + m„. The amplitude corresponding to Fig. 2 induced by the operator O~ can be
obtained from Eq. (2.10) by the substitution ub ++ v„. The above amplitudes can be further simplified by considering
the commutator and anticommutator relations

1r CX

2 $&p,v) QA J —&pvAag Q5 ) (2.1 la)

(2.lib)

We find that for the photon emission process bd ~ cup we can simply replace the operator 0~ in (2.4) by 0+ so that
the effective Hamiltonian is given by

ff (bd b cup) = V,iiV„*~(c+0+ + c 0 )
2 2

(2.12)

with

0~(bd —b cup) =
2 2 ~

e, + g
~
(F„„+'F„)0~ —

~

e + eb
~

(F„—iF„„)0~", (2.13)p — e ( mf m ) - . p f mf m (
- . p

m, —m& ( m, mg) " ( m mb)

where

0~+" ——cp"(1 —ps)bdp" (1 —ps)u + cp" (1 —ps)udge (1 —ps)b, (2.14a)

1 aP
+p,v = 2+@.veep+ (2.14b)

Similarly, for the TV-exchange bremsstrahlung bu ~ cd' we have

0+(bu ~ cd') =
2 2 ~

e, —eg
I (F» +iF„)0~+"+

~
e„

e /' my my) - . „„) m,
m, —m& ( m, mg) q m„

—ee
'

~
(Pe —ice )Oee ), (2.15)

mb)

where now m, = mb + m„, mf ——m + md.
Strictly speaking, terms in (2.13) and (2.15) propor-

tional to 1/m, and 1/mb should have been dropped since
we have not included corrections of the same order to
those proportional to 1/m„or 1/m~. These 1/m, and
1/mb terms are kept mainly for phenomenological rea-
sons. We encounter a similar situation in the electromag-
netic decays of heavy hadrons [2,8] in which the com-

I

mon practice is to retain the 1/mg contributions due
to the heavy quark's magnetic moments but to neglect
the 1/mg corrections to the matrix elements of the light
quark's electromagnetic currents. Numerically, the 1/m,
terms are especially significant because m, is not very
large and the c quark carries 2/3 units of charge. The ef-
fective Lagrangians (2.13) and (2.15) are the main results
in this section. We will apply them and (2.1) to the weak
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U CI

(2)

proceeding through the W exchange accompanied by a
photon emission. The general amplitude of weak radia-
tive decay with one real photon emission is given by

&[B(p) ~ P*(~)~(I')1

+s"[s~(ma ™s.) —(&+ &)~&' I:lf2(&') (3.1)

(3)

FIG. 2. Same as Fig. 1 except for the operator O~ defined
in Eq. (2.6).

where e and c* are the polarization vectors of the photon
and the vector meson P', respectively, the first (second)
term on the right-hand side (RHS) is parity conserving
(violating), and k2 = 0. The decay width implied by the
amplitude (3.1) is

1 (mz~ —m2~. )
s

I'(B ~ P'~) = „. . " (If.l'+4lf. l')

radiative decays of heavy mesons and heavy baryons in
Secs. III and IV, respectively.

(3.2)

A. Effective Lagrangian approach for H ~ D' p

III. APPLICATIONS TO HEAVY MESON
DECAYS

As shown in the Introduction, the radiative decay
modes of interest for B mesons are B ~ It*p, B, ~ Pp
which receive short-distance contributions &om the elec-
tromagnetic penguin b ~ Sp transition, and B m D*p

Since the radiative decay B ~ K*p has been discussed
extensively in the literature we will only focus on the
second-type mode, namely, B ~ D* p. Our goal is to
see if the tree-level W exchange with a photon emission is
comparable with the short-distance b —+ Sp mechanism.
We shall use the factorization method (for a review, see
Ref. [9l) to evaluate the hadronic matrix elements It.
follows &om Eq. (2.12) that

~(Bo ~ D"&) = -(D*o&]Z.,]Bo)

v.bv„*„u, , ', (D*'lcq„(1 —q, )ulo&(oldq„(1 —q, )blB')

( mf m; my m; ), . „„f mf m, mfx E" e~ + eg
' +e„+eg

'
~
+ iI""" e~ + eg

' —e„
mc mg m„mb j ( m mg m

m, l
eb

mb)
(3.3)

with~

a, = —,'(c —c+), (3.4)

and m; = mb + m~ = m&, mf = m, + m„- mD, . The one-body matrix elements appearing in (3.3) have the
expressions

(ol&„IP(p)) = if p„, (3.5a)

(0]V„]P'(p,s*)) = i fvmI, s„* . (3.5b)

Therefore,

In the conventional vacuum insertion method a2 is equal to (2c+ —c )/3, while it is (c+ —c )/2 in the large-N approximation
in which the Fierz-transformed contributions characterized by the color factor 1/N, are dropped [9]. The leading 1/N, expansion
is known to work well for nonleptonic weak decays of charmed mesons. In bottom meson decays, the magnitude of az determined
from the measured B —+ @K,@K' rates is in agreement with that predicted by the large-N, approach [10—12]. However,
contrary to that expected from the same approach, the sign of a2 is found to be positive by recent CLEO measurements of
B m Der, Dp, D'z, D p decays [11—13]. Thus we take az to be that given by (3.4).
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(D*'(pD) Icy„(1 —p. )ulO) (Oldp„(1 —~, ) t IB'(pB)) =- f—BfB,mD. e„'pB„.

With the substitution of (3.6), (3.3) has the ainplitude structure indicated by (3.1). We find

(3.6)

(e„e,l mD, (eq eb l mBmB,1=2ile + + + 2 2(m„m, ) mB i m~ mb) mB —mD,
(3.7a)

with

e, l mD, (e~ eb) mBmB,
2 2m) mB (mq mb) mB —mD,

(3.7b)

G~ V bV„*qa~fBfv* .
2/ 2

(3.S)

Substituting (3.7) into (3.2) gives the decay rate

m2r(B' -+ D"&) = G~—fBfB.I&.b&.*dl mD mB
I

'- —,* 1(c- —c+)'

2m2D, (1 1) 2(1 11 mD, ( 1 1
x e„2'

I 2 + 2 I
+em I 2 + 2 I

+2e„eg *
I

+
mB 4 ) (md b ) mB i,m mb mdm, )

(3 9)

In order to have a numerical estimate we adopt the
following mass parameters:

m~0 ——5279.0 MeV, mD. o = 2006.7 MeV,
m„= 338 MeV, (3.1o)
m~ ——322 MeV, m, = 510 MeV,

from the Particle Data Group (PDG) [15], and m, = 1.6
GeV, mb = 5.0 GeV. Using fB* ——200 MeV, fB = 190
MeV, V,b = 0.040 [16], and w(B ) = 1.50 x 10 i2s [15]
we obtain the branching ratio

8(B m D* p) = 0.92 x 10 (3.11)

It is evident that the weak radiative decays of the B
mesons are dominated by the electromagnetic penguin
diagram. The suppression of B + D*p relative to B ~
K*p is mainly attributed to the smallness of the decay
constants fB. and fB occurred in weak transitions.

In the factorization approximation the three decay am-
plitudes B + D* p, B* m D* p) and B* m D p
are all related since fJ = f~ by heavy quark symme-
try. However, the branching ratios for the latter two
reactions are expected to be much smaller than that for
B ~ D* p as B* has a dominant electromagnetic de-
cay.

B. Pole model approach for B -+ D' p

Before proceeding further we would like to compare our
present formalism with the conventional long-distance
pole mechanism which has been applied to the decay
B ~ K*p before [17]. Note that the intermediate B
state is absent in Fig. 3(d) as the BBp coupling is pro-
hibited. If we just focus on the low-lying intermediate
states in the pole diagrams depicted in Fig. 3, the am-
plitudes of the first three pole diagrams are

M- = (D"(~)I&-ID'(p)), , (D'(p) I~~IB'(p))
mg mD

1

(3.12a)

(3.12b)

(3.12c)

where the amplitudes M and Mg are parity conserving, while M is parity violating. Since the intermediate pole
states are far &om their mass shell we write the photon couplings in Fig. 3 as

The result (3.9) was also obtained by Mendel and Stiarski [14] in a di6'erent approach except for the Wilson factor a2 being
replaced by (2c+ —c )/3 in the latter work.

The values of the constituent quark masses are given on p. 1729 of [15].



51 EFFECTIVE LAGRANGIAN APPROACH TO WEAK RADIATIVE. . . 1205

gDD'p(g ™B)gD('g )gDD p gB'By(q ™D)= gB. (q )gB'BP gD D'y(g mB) gD' (g )gD D
2 2 2 2 2 2 2 2 2

(3.13)

where gDD ~, g~ ~~, and gD-~. ~ are on-shell photon coupling constants which can be calculated in the nonrelativistic
quark model. In Eq. (3.13), gD, gB. , and gD. are form factors accounting for off-shell eKects. They are normalized
to unity when mesons are on shell; for example, gD(mD) = 1,gB. (mB. ) = 1.

For P, P* = (Qq) we find &om Eqs. (2.19) and (2.30) of Ref. [2] that

(D* (g) ll o~lD (p)): xgD(mB)gDoD o~ep~~pe k p E' (3.14a)

(B' (q)ll:o~lB (p)) =igB.(mD)gB. oBo e„~~pe"k"p e' (3.14b)

(D' (q)ll:,~lD' (p)) = gD*(mB)gD. oD o~(k~s~ —k„s~)e*"(p)m'D (3.14c)

Because the intermediate state is far from its mass shell,
we have introduced the form factors defined in Eq. (3.13).
In the heavy quark efFective theory, the on-shell P*Pp
and P*P*p coupling constants are related to each other
and are given by [2]

constituent quark model, P is given by [2]

mq

Therefore,

(3.16)

t'mp- ) X/2

(mp j
mp. l'1/2

=—e
( mp )

(end + end')

(e,p+ gp'), (3.15a)

(mp l'~
gP'P

(mp )
1/2(mp ~'

Emp. )

(e~d + end')

(e p+ egp'), (3.15b)

gp. p.~= —2(e~d —end')
—:e(e~p —eg p'), (3.15c)

where e~ is the charge of the light quark q (not q) and
eg is the charge of the heavy quark Q. The coupling
P' (or d') is fixed by heavy quark symmetry to be 1/mg,
while P (or d) is independent of heavy quarks and cannot
be determined by heavy quark symmetry alone. In the

f e„
gDoD. o~ = e

l (m~
(eggB'B, =el
(mg
f e„

gD"oD op = e
l(m~

e, )+ 7mc)
eb)+

mb )
e, )
mc)

(3.17a)

(3.17b)

(3.17c)

where the small difFerence between m~ and m~- has been
neglected. Note that it is important to keep the contri-
bution &om the magnetic moment of the charmed quark
since it is not particularly heavy. In general, it is ex-
pected that the forin factors appearing in Eq. (3.14) be-
come smaller as the hadron is more away from its mass
shell owing to less overlap between initial and final meson
wave functions.

Using the factorization method we obtain

(D'(p)ll'-~IB'(p)) = Vb&:~(c —c+)fDfBmB-
2 2

(3.18)

B D D
-0
B

*0 *0

and use has been made of p = m~&. Likewise, we obtain

(D*'(g) Il'-iv IB"(&))

(b)

2 2
V bV„'„(c —c+)fD fBmDmB (eB .eD), (3.19a)

B D D

&D"(p) ll'-~ IB'(p) )

(c)

FIG. 3. Possible pole diagrams contributing to the radia-
tive decay D ~ D

2 2
V bV„'~(c —c+)fDfBmD" (p. eD) . (3.19b)

Putting everything together and using the relation
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):8;(g)s:(g)= —g~-+ "."
A

(3.20) also works for bottom baryons. The general amplitude
of baryon weak radiative decay reads

we finally find A(B; ~ Byp) = iuy (a + bps) o „„8"k "u;, (4 1)

fD m~2 2fi(0) = 2g gD D' pgD(mg)fD. m~ —mD
W

where a and b are parity-conserving and -violating am-
phtudes, respectively. The corresponding decay rate is

mD mg 2+, , ga'~, ».(mD)
mg~ mQ»

(3.21a) P(B, m ByY) = ' (Ial'+ Ibl') . (4.2)
1

8m
~

m, )

f2(0) = -g D 2
g) ggD» t mB J (3.2ib)

A. Penguin-induced baryon radiative decays

Comparing (3.21) with (3.7) yields

2mD 2
gD(mg) = 2, gg (mD) = 1

mg

2mD»
gD. (m~) =-

mg mo»

(3.22)

where use of the heavy quark symmetry relations mg. ——

mg, mD. = mD, and fD. = fD has been made. We
note that in the effective Lagrangian approach there is an
additional term proportional to (eq/mq —eq/ms) in f2
What is the counterpart of this term in the pole model?
Evidently, it must come &om a p-wave 1+B resonance
state [see Fig. 3(d)]: The E1B (1+)B (0 )p transition
coupling is proportional to (eg/m~ —es/ms) provided that
B(1+) is a p-wave spin-singlet, while B(1+)—D' weak
transition is parity violating. We thus see that both ap-
proaches are consistent with each other. However, the
effective Lagrangian approach is simpler and it also pro-
vides the information on the form factors, as shown in
(3.22).

IV. APPLICATIONS TO HEAVY BARYON
DECAYS

In this section we will first focus our attention on the
short-distance penguin effect in the decays Ap ~ Zp and
Ap —+ Ap and then turn to the weak radiative decays of
the antitriplet bottom baryons, namely, =z ~ = (:-',)p
and A& —+ Z, p. Since the weak rad. iative decay of B
mesons is dominated by the short-distance b ~ Sp tran-
sition, it is natural to expect that the same mechanism

The electromagnetic penguin transition b ~ s + p at
the quark level is well understood in @CD, and its eff'ec-

tive Lagrangian is given by (2.1). However, its hadronic
matrix elements depend on the nature of the bound
states, and there are no known methods to calculate
them &om first principles. In this section we will use
two difFerent methods to estimate the rates for the de-
cay Ag —+ A + p. In the first method, both the b and
8 quarks are treated as heavy. Heavy quark symmetry
then gives model independent prediction. Although we
are able to compute the correction of order m, /m~ and
1/m„higher order corrections are needed for a realistic
comparison with experiment. They are in principle well
defined in @CD; but it is impossible to compute them
all. In the second method, only the b quark is treated
as heavy so the form factors of tensor currents needed
are related by heavy quark symmetry to those of vector
and axial vector currents, which are then evaluated in the
MIT bag model. The MIT bag mod. el includes the m, ef-
fects to all orders, but the reliability of the model is hard
to assess. It is clear that neither of the two approaches
is very satisfactory. Together, however, they provide a
more or less consistent order of magnitude estimate of
these weak radiative decays.

In the first method we treat the s quark as a heavy
quark and then take into account the 1/m, and @CD
corrections. Despite that the efFective mass of the s quark
in hyperons is only of order 500 MeV, it is not small
compared to the @CD scale and we thus expect to see
some vestiges of heavy quark symmetry. In the heavy
8 quark limit, the hyperon A behaves as an antitriplet
heavy baryon B3, while Z as a sextet baryon B6. Prom
Eq. (2.1) we obtain

A(A& ~ hyperon+ q)sD = i I"2VtgV~*, mgs~k (hyperonlso~„[(1+ p5) + '(1 —pz)]blA&) .
2 8m. 2 mb

(4.3)

Using the interpolating fields [18]

Bs(v) 8) = u(v) 8)f~6~
Bs(v, 8) = B„(v,8)P„"6„,

(4.4a)
(4.4b)

tively, which combine with the heavy quark h„of velocity
v to form the appropriate heavy baryon, and the relations

where P„and PI„' are the 0+ and 1+ diquarks, respec- (0I&- &.'I0) = C(v. v') (4.5a)
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(0IC&.'I0} = 0 (4.5b)

vrhere ((v.v') is a universal baryonic Isgur-Wise function
normalized to unity at the zero recoil v . v' = 1, we find

We will follow Ref. [19] to treat the 1/m, corrections
to Ab ~ A p. First, f'rom the relationship between the s
quark field and the effective field h,„', ,

(A(v', a')] sopv(1 + ps)b~A&(v, s))

= u~o „„(16 ps) uJ„((v . v'), (4.6a)

we get

Fl
im. v'.z, + „( )

2 2m. (4 8)

(Z (v', s')]so„„(l+ ps)b]A~(v, s)}= 0 . (4.6b)

Therefore, no weak B3—B6 transition can be induced by
the 6 —+ 8p mechanism in the heavy quark limit. So, the
6rst prediction we have is

ao„„(.1 + ps)b -+ h(', ) 1 — o.„„(1+ ps)h&s) .
2m~ )

(4.9)

I'(A,' -+ Z'&) g& r(A,' -+ A'&) . (4.7) Applying the result [19]

( I

(A(v', s') ]h„',)i PI'h( ) ]As (v, s) } = A((v . v') " "u~(v', a') p"I'u~, (v, a),1+v v'
(4.10)

with the new parameter A being

A = m~, —mb ——mp, —m = m~ —m, = 700 MeV, (4.11)

we obtain

(A(v', a') ~h(', )t Po„„s"k" (1 6 ps)h( ) ~As(v, a)) = hA((v v')u~(v', s')cr„„s"k" (1 6 ps)u~, (v, s), (4.12)

mp
v +

m+b
(4.i3)

It follows from Eqs. (4.3), (4.6), (4.9), and (4.12) that

Gy e m. A
o, = I"2mr, VgsV, *,

~

1+ ' — h
~
((v v'),

2 8vr2 ms 2m, )
(4.14a)

Gy e . ( m. A
h

I
C(v - v') .

2 8a2 m~ 2m,

(4.14b)

with h = (mp/mp, —v v')/(1 + v . v'), where use has
been made of aL, (u) = —

~

ln(w+ g(u2 —1) —1 ~, (4.16b)l8 f
29 (/~2 —1

with u = v - v'. There is no obvious choice for the nor-
malization scale in Eq. (4.15). It is expected that there
will be no large parameters in the function (o (u, p) if the
renormalization scale is low [19]. However, since pertur-
bation theory will break down at very low scales, we thus
choose p m, so that cr, (p) 1, and C(p) 1.23. For
the decay Ab ~ Ap, u = 2.63. It is easily seen that the
1/m, correction to the Ag —+ Ap amplitude is about 50%
for m, = 510 MeV, which is quite sizable. This implies
that it is important to include higher order 1/m, correc-
tions. However, this is beyond the scope of this paper.

In order to estimate the decay rate of Ab ~ Ap we
employ two recent models for ((v . v'):

Including @CD corrections gives rise to [20]

&(v-v') =C(p)&o(v v' p) (4.15)
(o(u) = 0.99 exp[ —1.3(u —1)] (soliton model [21]),

(4.17a)

where

(n. (ms) ) ~ ' (cr.(m. ) ) ~ (o..(m, ) )
(n. (m, )) (cr.(m. )) ( n. (p) )

(4.16a)

In the heavy 8 quark limit, a A is made of just a strange
quark and a scalar diquark with (ud) quantum numbers. Con-
trary to some claims made in the literature, it is not necessary
to include a Clebsch-Gordan coefBcient 1/~3 in Eq. (4.6a).

~
3.3+1.2/~

co(~) =
I

(MIT bag model [22]) .
&~+ 1)

(4.17b)

e(Ab ~ A'~) = i.04 x 10-'~q. (~)]'
= (0.8—1.5) x 10 (4.18)

Hence, (o(ur = 2.63) ranges from 0.09 to 0.12. Substi-
tuting (4.14) into (4.2) using the good approximation
V&qV~; = —VqV;, and the lifetime w(Aq) = 1.07 x 10 s
[15],we find
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Since there is only one strange quark in =p but two
strange quarks in Op and:-, it is not clear to us how
to generalize the above heavy 8 quark method to the ra-
diative decays =p —+ =p and Op —+ Op.

In the second method, only the b quark is treated as
heavy. Since gob = b in the static limit of the b quark we
have the relation

(Als'~o'(I +»)~IA~) = (Als~'(I +»)blAs) . (4.19)

(A(p) ls~~(1 —»)~IAs(p'))

= uA[fx(q )p) +i f2(q )cr»q" + fs(q )q„
(gx(q')—V~ + tg2(q') ~~-q" + gs(q') q, )»]uA

(4.21)

reads

fi(q') = gi(q') = Ex(q') + E2(q')
mp~

(4.22)

f2(q') = g2(q') = fs(q') = gs(q') = E2(q') .
mp~

It follows from (4.3), (4.19), and (4.20) that

a = E2msVgsV;,
l

1+ '
l
[Ei' (0) —E2' (0)],

2 8vr2 ms)
(4.23a)

In the heavy b-quark limit, there are only two indepen-
dent form factors in the p~ and p„p5 matrix elements
[23]:

(A(&) ls~ (1 +»)blAs(&))

[ '( )+N '(. )] (+ ) . ( )

Recall that Fq ——1 at zero recoil and E2 ——0 if both A~
and A are treated as heavy. The relationship between
Eq 2 and the standard form factors de6ned by

a recent CLEO xneasurexnent [25]. Assuming a dipole q2

dependence of the form factors

E (
,

)
E;(0)

(1 —q2/m2)' ' (4.24)

where m, is a pole mass, the from factor ratio R-:
E2 /Ei is found to be

R = —0.33 + 0.16 + 0.15 (4.25)

by CLEO for m, = 2.11 GeV [25]. From Tables IV and
VI of Ref. [24] we find

—0.34 MIT bag model,
—0.23 nonrelativistic quark model .~ ~ ~

~

(4.26)

It is clear that while both models' predictions are con-
sistent with experiment, the bag model gives a better
agreement.

As for the Ab ~ A form factors, our strategy is as
follows. We will use the bag xnodel to compute fi ' at
zero recoil, and then employ the heavy-Bavor-symmetry
relation

f~' (q ) = f d r]vv(r)v. (r)+vv(r)v. (r)], (428)

where u(r), v(r) are, respectively, the large and small
components of the 1Sq/2 quark spatial wave function.
Numerically, we find fi '

(q ) = 0.95 (see, e.g. , Ref. [28]
for the technique). It follows from (4.22), (4.25), and
(4.27) that

E. '
(qA. )/Ex (qJ'. ) = E. '

(qA. )/Ex '
(qA. ) (4.27)

where q~ ——m~ v —q and q~, ——m~, v —q, together
with the CLEO data for R, to determine F~ 2 at q

(mA, —mA), which can be extrapolated to q2 = 0 using
Eq. (4.24). In the MIT bag model [27], fi at zero recoil
is given by

(4.23b)

where E(0) here means E(q = 0).
In principle, the Isgur-Wise form factors Ei 2(0) can

be obtained by first computing the form factors f; and g,.

at zero recoil in a quark model and then extrapolating
to q = 0 under some assumption on their q depen-
dence. In the literature, form factors f; and g; have been
calculated for A ~ A transition in two diferent quark
models: the nonrelativistic quark model and the MIT
bag model [24]. The model calculation can be tested by

This is because the quark model calculations are presum-
ably most reliable at zero recoil where both baryons are static.

Beyond the heavy quark limit, the pole masses m, v and
m, ~ for forxn factors f, and g, , respectively, are difFerent. In
general, the pole mass is taken to be the mass of the nearest
spin-one meson with the right quantum number. For A —+ A
transition, m~ ——m~ (q —

)
——2.11 GeV, m~ ——mD ~~+)

2.536 GeV, while for Aq -+ A: mv = mx), (1 ) = 5.42 GeV,
mg ——m~ (~+)

—5.86 GeV.
Note that the definition of the form factors f, and g;

in [24] follows that in [26] and is different from ours. In
terms of our notation, the bag model predictions shown in
Table VI for A ~ A form factors evaluated at q = 0
with dipole approximation are fi ——0.46, f2 = —0.19/m4i. ,

gx
——0.50, gz ———0.05/m4i. , while the nonrelativistic quark

model predicts fx ——0.35, f2 = —0.09/m~, , gi = 0.61,
gq ———0.04/m)i, . The difference between f, and g, is at-
tributed to 1/m corrections. The form factor ratio calculated
in (4.26) comes from the form factors fi and fq

A small and negligible correction to (4.28) is shown in Eq.
(5a) of[24].
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Fi '
( ) = 1.02, F2' (q ) = —0.34, (4.29)

where only the central values are presented. Since the
form factor ratio is measured by CLED using the dipole
q dependence, it is natural to employ the same dipole
behavior for E; ' for the sake of consistency. Note that
the dipole form

to assess its reliability. For example, quark model pre-
diction for the form f'actors f; and g; depend on the
model content; the form factor q dependence is very
sensitive to the choice of the pole behavior: monopole or
dipole. Nevertheless, we see that both approaches pro-
vide a consistent order of magnitude estimate; that is,
~(As m AV) 1 x 10

(1 —q2 /m.') 2

(1 q2/m2) 2 (4.30) B. Heavy quark symmetry predictions for -~ -+-
plays the role of the baryonic Isgur-Wise function ((v v').
Using m, = 5.42 GeV we find G(0) = 0.092, in accor-
dance with ((2.63) = 0.09 0.12. Putting everything
together we Gnally obtain

8(A~ ~ A+ p) = 0.4 x 10-' (4.31)

This model result is close to the previous prediction
(4.18).

We should accentuate the nature of the above two cal-
culations. The first method is model independent; but
since the efFective s quark in the baryon is only of order
500 MeV, it is questionable to apply the heavy quark
efFective theory to hyperons, as evidenced by the siz-
able 1/m, corrections shown above. The second method
takes care of the m, efFects to all orders, but it is hard

Oi„„——cp„(1—»)bdp„(1 —»)u,
02„„——cp„(1 —»)udge„(1 —»)b,

(4.32a)
(4.32b)

and apply the interpolating field (4.4a) to the antitriplet
heavy baryons to get

Before embarking on quark model calculations for the
radiative decays =& —+ =,p, =',p, and A& ~ Z, p, we
would like to see what we can learn &om applying the
heavy quark symmetry to these decays. It turns out that
for the antitriplet to antitriplet radiative transition =& ~
:- p, heavy quark symmetry implies a nontrivial model
independent prediction for a/b, the ratio of the parity-
conserving and parity-violating amplitudes.

Let us denote

(:-,(v')
~
Oi» ~:-,, (v) ) = (0

~ up (v', s') (P„c„c„p„(1 —»)b„dp (1 —» )ub„Pt u; (v, s)
~
0)

= uy(v', s') p„(l —») u;(v, s)(O~P„dp„(l —»)ug„~o) .
1+ P 1+ 1

2 " 2

Lorentz invariance implies that

(Oly- d~-(1 —~ )uy.'IO) = A(v. v')v-+ B(v. v')v.' .

(4.33)

(4.34)

Therefore,

(:-,(v')~Oi»~=z(v)) = uy(v', s')p„(1 —»)u;(v, s)[A(v v')v„+ B(v v')v„'] . (4.35)

Likewise, the matrix element of 02„ is

(=-.'(v') IO2~-I=-s(v)) = GX(v' s')~~(1 —») (OI&- ud&.'IO) 7-(1 —»)u'(v s) . (4.36)

Again, Lorentz invariance demands that

(Oig„udgt i0) = A'(v . v') P+ B'(v . v') g'+ C'(v v') g' g+ D(v v') . (4.37)

Our next task is to recast (4.35) and (4.36) into a more suitable form. Since Oi„„and 02„„are multiplied by F'
and F"" [see (2.15)], only the antisymmetric part will contribute. Thus we write

(:-,(v') ~Oi„~~=&(v)) = zuy(v', s') [A(p~v„—p~v„) + B(p~v„' —p„v~)](1 —»)u;(v, s) .

By virtue of the equation of motion gu(v, s) = u(v, s), two useful relations can be derived:

(4.38)

We have checked explicitly that heavy quark symmetry alone does not lead to any useful predictions for other decays such
~0 ~10 0 0as=b —+= P, Ab —+Z P.
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Z z
(&~v- —~-v~) (1 —») = —-&~-(1+») + —&o~-(1 —»)P 2

(4.39a)

(4.39b)

which can be further simplified by applying the analogue of Eq. (4.13) to the =b ~ =, transition. As a consequence
of (4.33) and (4.39) we obtain

(:-,(v')]Op„~-b(v)) = ——
~

A+ B '
~

uy(v', s')[o„~(1+»)— ~„~(1—»)]u'(v, s) .
C b

As for the matrix element of 02„„,(4.36) leads to

(4.40)

(:-,(v') ~02„~~:-b(v)) = uy(v', s')[A'(p„gp„—p gp„) + B'(7„$'p„—p„g'p„)](1—»)u;(v, s)
= iud(v', s')fA'[(1+ g)o„„+(1—g)o„ps)] + B' o„[(1+yf') —»(1—g')])u;(v, s) . (4.41)

Applying the analog of (4.13) again to (4.41) leads to

(:-,(v')~02„„~:-b(v)) = z.
~

A'+ 'B'
~

uy(v', s')o„(1+»)+ =
(1 —») u;(v, s) .

m= j m~f

Finally, substituting (4.40) and (4.42) into (2.15) we obtain

(4.42)

C C

I mf my ( m;xuf(v, s )o F e, —e& +
l

e„—eb
m md, ( m

mg mf ( m,+ 'm, mg 4 "m„

m, b m=,
mb j m:-s

(4.43)

F om (4.43) we see that although the 3 ~ 3 + p transition depends on the unknown parameters A, B, A', and B', a
umque tree-level prediction the ratio of a/b based on heavy quark symmetry is nevertheless accomplished:

6 ~O ~0-"g ~=c&

fQf mf

e —eg~f mf
C

—eg —'

—eb —'
(4.44)

This ratio can be tested by measuring the asymmetry parameter n as will be discussed later.

C. Bag model calculations for -b —+ =, (=' )p and Ab —+ Zap

Recall &om Sec. II that the effective Hamiltonian responsible for the weak radiative decays of heavy baryons is
given by

'R,~(bu -+ cd') = V,bV„*q(c+0++ c 0 ),
2 2

(4.45)

where [cf. Eq. (2.15)]

with O~" ——O~" + O2, and

Of. = dg(F„~iF„„)O~"+ d;(F„„—iF„„)O~", (4.46)

(e„eb l ed;=m;~ (m„mb j m,. —mf
( e, eg ) e

f —mf 2 2(m~ mg j m; —my

and m; = mp + m„, mf ——m + m&. Writing

f ( ') ]o1,21B'(v) ) = ~up (v', s') (o1,2 + 61,2») o ui (v y s)

(4.47a)

(4.47b)

(4.48)
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we get

(By(v') IO~ IB;(v)) = uy—(v', s') {dy(a~ + b~) —d;(a~ —b~)
+[dy(a~ + b~) + d;(a~ —b~)]gb)o . Ilu;(v, s), (4.4S)

where a~ = aq + aq, b~ ——bq + b2, corresponding to the parity-conserving and parity-violating matrix elements of O~+".

It follows from Eqs. (4.45) and (4.1) that

GF
V,bV„'d(c+[dy(a+ + b+) —d;(a —b )] + c [dy(a + b ) —d;(a+ —b+)]J,

2

Gy
V,bV„'d(c+[dy(a+ + b+) + d;(a —b )] + c [dy(a + b ) + d, (a+ —b+)]) .

2

(4.50a)

(4.50b)

u~o. 'ut = C u~o-"p u~ =i,f q ) f 5

for vy —v; = 0, it follows from (4.48) that

, , = —'(B, g IO,*",IB, 1.),
bi, 2 = (By & IOi—;.IB' t) .

(4.51)

(4.52a)

(4.52b)

We shall employ the MIT bag model [27] to evaluate
the four baryon matrix elements a~ and b~. Since the
quark-model wave functions best resemble the hadronic
states in the frame where both baryons are static, we thus
adopt the static bag approximation for the calculation.
Because

For the decay =& ~ = p we find finally

4m
ai —— b2 ———— r dr (v, ub + u, vb) (vd u„—udv„),

3 p

bg ———a2

2 r dr[(3u, ub —v, vb)(udu + vdv„)
p

+(u~vb —v~tLb) (udv~ —vdu~)] (4.55)

(=. t I bi.blub2db2b(Lrt+a'2 —LTt —02+) I b t) = —,', .

(4.54f)

Matrix elements aq q and bq 2 in the MIT bag model
can be expressed in terms of four-quark overlap bag in-
tegrals (see, e.g. , Ref. [28] for the method). To do this
we need the spin-color wave functions of the baryons in-
volved such as

Consequently,

—1 1a+ ——
~ I~, b~ ——~ 2I~,

with

(4.56)

[(bus —bsu)y~ + (12) + (13)],
6

(4.53)
(4.57a)

4'
I+ —— r dr [(u,vb + 3v, ub) (vdu„—udv„)

3 p

+(3tL,tLb —V,Vb) (tL„tLd + V„Vd)]

Zo = [eddy, + (12) + (13)],
3

where abc', = (2aLb~c~ —a~btc~ —a~b"ct)/V6, abcyx =
(at'b"c~ —a~b~c~)/v 2, and (ij) means permutation for
the quark in place i with the quark in place j. As an
example of the bag model evaluation we look at the decay
:-ob~ " p. With the wave functions given by (4.53) we
find

(4.57b)

From Eqs. (4.50) and (4.56) we obtain

GFa = — V,bV„'dc (dyI —d;I+),
2

(4.58a)

4' R
I = — r dr[(3u, vb+ v, ub)(vdu„— udv„)

3 p

—(3u~ub —vevb) {u~ud + v~vd)]

(=. & Ibt.b»b2db2-~t l=b t) = s (4.54a) b = — V,bV„'dc (dyI + d;I+) .
Gy

2
(4.58b)

(=, t lb, b b „b „'I= t) = 0,

(=. & Ibi.b»b2db2-(~i+~2- —~i-~2+) l=b &) = o

(='. & Ibi bt-b'2db2b~i l=b t) = i'2

(= t Ibt, bt~b2db2bLT2]=b t) = i2,

(4.54b)

(4.54C)

{4.54d)

(4.54e)

Several remarks are in order. (i) We have explicitly
confirmed that the operator 0++ does not contribute to
the baryon transition matrix elements as the baryon-color
wave function is totally antisymmetric. This is ascribed
to the fact that 0+ is symmetric in color indices, as can
be seen by applying the Fierz transformation to the ef-
fective operator for the amplitude (2.10) and by noting
that the photon interaction is color singlet. From Eq.
(4.43) we conclude that A = 4A' and B = 4B'. (ii) In
the isospin symmetry limit we have I+ ———I, so there
is only one independent bag integral for the decay ampli-
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tude of:"b ~ = p. In the same limit we 6nd that mf is given by

fluff TA f
C 17K d YA

T7Lf m f
Cm dm

+ e ' —eb~
(4.59)

e ' —eg~

Comparing this with (4.44), it appears that the bag
inodel does not predict correctly the ratio a/b. This
seeming inconsistency comes &om the static bag approx-
imation we have adopted. In the rest kame of the initial
baryon one can show that the ratio of the masses mi and

mir = (1+vg/c)
I 1 —vy/c )

(4.6O)

The ratio a/b is in principle a function of the quar/
masses, the bag parameters and the velocity vf. But
in the static bag approximation, we always have r = 1.
In order to get the heavy quark symmetry prediction for
a/b, we thus need to utilize a moving bag to describe
the recoil efFect of the final baryon state. The net e8'ect
should be that (4.58) is modified to

Gy e
a = — V gV„'~c I

2
" m' —m2i f

Gp e
6 = — V gV„*~c I

2 m- —mi f

mf
(mc mg j
( e, eg l

mf (m. m~)

( e„+m, !

( e„—m, !(m

eb 5 m=.
mba m=,

!
eb) m=

mb j m=L

(4.61a)

(4.61b)

as implied by Eq. (4.43). Later we will use (4.61) rather than (4.58) to compute the decay rate and branching ratio for
the decay =b —+ =,p. (iii) Experimentally, the ratio a/6 can be determined by measuring the asymmetry parameter
n when the initial baryon is polarized with the polarization vector 8;:

where

dI'(B; m Byp) 1= —I'(B, m Byp)(1+ ns; pg),4'

2 Re(a'6)
I&I'+ Ibl'

(4.62)

(4.63)

For completeness we shall write down the results for the remaining two decay modes of the bottom baryon. For
~0 ~I0

p we get

4m
dt' [tlc tlb (3tL~ tld, —V~ V g ) + 2Vctlb (tL~ Vg + V~ tL(g ) —VcV b (tL~ tld + V~Vd ) ]3~3 p

4m
~l — LL2 — t dT[Vctlb(5tluVd —Vutld) —tlcVb(3V~tld + tL~Vd) + (tlcVb + VcVb)(3tl~tld —V~Vd)]

6 3 p

As a result,

a/ ——2I/, b~ ——p 2I/1 1

with

(4.64)

(4.65)

4tr
I+ = T dr[3(tlctlg + V VQ) (3ctl~tlb —V~Vb) + (3tlbV~ + Vbtl~) (tLQVc Vgtlc)]

3 3 p

4m.
P dr[(3tlctld —VcVg)(tl~tlb + V~Vb) + (tlbV~ —Vbtl~)(5tldVc —Vgtlc)]

3 3 p

(4.66a)

(4.66b)

The resulting amplitudes for the decay &
—+ =' p are plitude is the same as that of:"& ~ =' p except for a

diferent overall normalization factor. More precisely,
a = — V bV„'~c (dgI' —d;I+),

2

b = — VbV„'~c (dyI' + d, I+) .
2

(4.67a)

(4.67b)

a(Ab m Z, P) = ~2a(:-b -+ =',P),
b(Ab m Z, P) = 2'(:-b m =',P) .

(4.68a)

(4.68b)

As for the transition A& ~ Z p, we And that its am- Finally, we come to numerical estimates. For the bag
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parameters we use [27]

m„= m~ ——0, m, = 0.279 GeV,
m = 1.551 GeV, mb ——5.0 GeV,

(4.69)

sion that the weak radiative decays of bottom baryons are
indeed dominated by the electromagnetic penguin mech-
anism.

V. CONCLUSIONS

x„=2.043, x, = 2.488, x = 2.948,
xb ——3.079 ) B = 5.0 GeV

where B is the bag radius. The eigenvalues x~'s are de-
termined by the transcendental equation

tanx =
1 —mR —(~' + m'R')'~2 (4.7o)

Numerically, the relevant bag integrals are found to be

I+ ———I = 2.443 x 10 GeV

I+ ——3.720 x 10 GeV
I' = 1.267 x 10 GeV

(4.71)

Putting everything together and using m=, = 5809 MeV
[29], m.— = 2573 MeV, we finally obtain the decay rates

C

I'(:-& ~ ",p) = 3.95 x 10 GeV,
I'(:-t, -+ =' p) = 3.54 x 10 GeV

I'(Ai, —+ Z p) = 6.65 x 10 GeV,

(4.72a)

(4.72b)

(4.72c)

the branching ratios

8(=-,' ~ =-.'q) = 6.4 x 1O-',
8(:-q -+ =',p) = 5.7 x 10

8(A~ m E,p) = 1.2 x 10

(4.73a)

(4.73b)

(4.73c)

n(=-,' -+ ='.~) = -O.47,
a(:"q m =',p) = —0.98,
a(Ai, -+ Z, p) = —0.98 .

(4.74a)

(4.74b)

(4.74c)

Note that the prediction of n for the decay mode =b ~
p is based on heavy quark symmetry [cf. Eq. (4.44)].

Since the baryonic matrix elements are evaluated un-
der the static bag approximation which amounts to a
maximal overlap of wave functions, the decay rates and
branching ratios given by (4.72) and (4.73) for =& ~ =',p
and Ab —+ Z p ought to be regarded as the most opti-
mistic estimates, and the respective decay asymmetry pa-
rameters as order of magnitude estimate. Nevertheless,
the sign of n given in (4.74) is more trustworthy. Finally,
a comparison of (4.73) with (4.18) leads to the conclu-

for r("&) v(A&) = 1.07 x 10 s [15], and the decay
asymmetry

8(D m K' p) = 1.1 x 10
8(A+ + Z+p) = 4.9 x 10

(5.1)

(5.2)

Nonpenguin weak radiative decays of heavy hadrons
are characterized by emission of a hard photon and the
presence of a highly virtual intermediate quark between
the electromagnetic and weak vertices. We have argued
that these features should make possible to analyze these
processes by perturbative @CD.

In this work we have found in tree approximation that
these processes are describable by an efFective local and
gauge invariant Lagrangian. This Lagrangian leads to a
unique heavy quark symmetry prediction for the asym-
metry parameter in the decay =b + = p. Other inter-
esting results are obtained by making use of the efFective
Lagrangian in conjunction with the factorization approx-
imation for heavy meson decays and the MIT bag model
for heavy baryon decays. In particular, the branching
ratio for B ~ D *p is found to be 0.9 x 10 . This
is very important for the experimental interpretation of
the inclusive measurement of B ~ p+anything and its
relation to the penguin dominated decay B —+ K *p.
In Sec. IV we have presented two difFerent methods for
estimating the rates of Ab —+ Ap. Both approaches pro-
vide a consistent order of magnitude estimate, namely,
8(Ab -+ Ap) 1 x 10 . We conclude that weak ra-
diative decays of bottom hadrons are dominated by the
short-distance 6 ~ sp mechanism.

The factorization method has been known to be re-
liable for nonleptonic decays of heavy mesons. So the
prediction for B ~ D* p based on this method should
also be reliable. For the heavy baryon sector we have
to resort to the static bag approximation even though
the initial and final heavy baryons move with substan-
tially difFerent velocities. This is a serious drawback in
our work. The bag results obtained in Sec. IV can only
be regarded as order of magnitude's rough estimates. It
remains an important theoretical question how to incor-
porate the relative motion between two bags in the MIT
bag model.

Cabibbo-allowed weak radiative decays of charmed
hadrons give rise to strange hadron in the final states.
The constituent s quark, whose mass is of order 500 MeV,
is not very heavy. We can make rough estimates of the
branching ratios for the aforementioned decays by treat-
ing the s quark as heavy and applying the formalism de-
veloped in this paper. Even though the 1jm, corrections
are expected to be (50—100)%, they should not alter the
order of magnitudes. In this way we find

It should be stressed that except for the bag quark masses
used in (4.69), all the light quark masses employed in the
present paper are of the constituent type [see Eq. (3.10)j, as
explained in Sec. II.

8(:",m = p) = 3.1 x 10
n(A+ + Z+p) = —0.86,

n(:- m = p) = —0.86,
(5.3)
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where we have used the lifetimes for D, A, :" kom the
PDG [15]. The branching ratio for D -+ K'o+p is quite
sizable. These decays should be searched for experimen-
tally.

Finally, we observe that in the weak radiative decays
of bottom hadrons the highly virtual quark's squared in-
variant mass is of order m& or smaller. It is therefore ap-
propriate to employ the renormalization group improved
weak interaction Haxniltonian (2.4) with a renorxnaliza-
tion scale p = mg as a starting point. If one wishes to
use a renormalization scale smaller than mg, one must
reanalyze the one loop corrections in a heavy quark ef-

fective theory including diagrams with the photon inside
the loop. However, we have not considered such an anal-
ysis.
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