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Heavy meson decays into light resonances
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We analyze the Lorentz structures of weak decay matrix elements between meson states of ar-

bitrary spin. Simplifications arise in the transition amplitudes for a heavy meson decaying into

the light one via a Bethe-Salpeter approach which incorporates heavy quark symmetry. The phe-

nomenological consequences of our results on several semileptonic, nonleptonic, and Qavor-changing

neutral-current-induced decays of heavy Qavored mesons are derived and discussed.

PACS number(s): 12.39.Hg, 11.30.Cp, 13.20.He, 13.25.Hw

I. INTRODUCTION

Decays of the b quark into light u, d, s quarks offer
ways of testing the standard model and probing new
physics. Thus the b —+ u decays give a direct determina-
tion of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element lV bl while the flavor-changing neutral-current-
(FCNC-)induced transition b ~ s allows one to extract
knowledge of the yet to be discovered t quark, and is
sensitive to new physics beyond the standard model. Al-
though the charmed channels b —+ c dominate the total
decay rate of the B meson, the much rarer decays of the
b quark into light Havored quarks provide important in-
formation about the parameters of the CKM matrix; in
those rare decays there is so much available phase space
that it is possible to produce many light meson reso-
nances (p, d, f, ... wave) in the flnal state, not just the
ground state mesons. Thus those rare processes tell us
something about the hadronic structure of light meson
resonances, apart &om giving us information about weak
interaction elements; hadronic matrix elements in weak
decays have certainly attracted much theoretical atten-
tion since it is hard to calculate them directly from the
first @CD principles. The main purpose of this paper is
to explore and understand the Lorentz structures of tran-
sition matrix elements of the weak current between me-
son states of arbitrary spin. Most of the recent progress
in the heavy quark effective theory has been concentrated
in the area of heavy hadron to heavy hadron transitions
[1—7], but a few results have appeared in the literature
about heavy to light hadron transitions in their ground
states [2,8]. It is our aim here to extend the arguments
to the heavy to light meson resonances of arbitrary spin.

We will begin by outlining a general rule for count-
ing the number of form factors representing independent
Lorentz structures in Sec. II, and we present explicit
forms of those elements for processes 0 ~ J' and 1 m J'
before detailing the general case J ~ J'. It is widely
accepted that the heavy quark limit is a reliable approx-
imation for treating mesons and baryons containing a
b quark, as long as the momentum of the light degrees
of IIreedom is small compared to the mass of the heavy
quark. Therefore in Sec. III we take that limit for the
initial B mesons and show how the number of form fac-
tors is reduced. The expressions for decay rates (in terms

of those form factors) are worked out in Sec. IV and our
conclusions are stated in Sec. V. An Appendix contains
some useful technicalities about sums over polarization
tensors.

II. HADRONIC MATRIX ELEMENTS

We begin with considering the matrix elements of a
vector (or axial vector) current between a spin 1 = 0
meson state of momentum p and a meson resonance of
momentum p' with spin J'. For the simple case when
J' = 0, it is well known that there are just two Lorentz-
invariant form factors parametrizing the matrix element:

(p' 01&~lp 0) = fi(p p')p&+ f2(» J')p'„

—= a+(q')(p+ p')&+ a-(q')(p —p')„(&)
where q = p —p', and we have made no assumptions about
current conservation at this stage. Before we present the
results for any J', let us take the J' = 1 case as an
example of the proliferation of form factors when J' and
J grow. Here, in addition to the vectors p„and p', we

have available the final vector meson polarization vector
P'*(p'), satisfying P'„p'" = 0. Allowing also for the Levi-
Civita tensor [9] (since we have made no assumptions
about parity as yet), we arrive at four form factors:

(p', 1l&i Ip, 0)
—= [a+(q')(p+ p')„+ a (q')(p —p')„]p

+f(q )4 „+to(q )c, p, 4* p p'.
Naturally, if we impose parity conservation, then either
one or three of the above structures disappear.

For higher spin J', we may represent the final meson
by a Lorentz tensor of rank J', namely, P&* &(p');
it is of course transverse to p', symmetric, and traceless.
Because the final result must be a Lorentz vector, the in-
dices of the polarization tensor may either be completely
saturated with p to form the scalar gV&* &p"' . p~&',

or we may leave one index free, P&* &p"' p"".
As well we should allow for a Levi-Civita tensor coupling
to the polarization tensor in the form

(y&*lviu2" u~ )p . . .Ip )p~p.lP

Altogether then we can construct the vectorial matrix
element
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{»',J' & 11&,lp, 0) = ' '(C')(4'i*„,. ..„„lp"' . p"")(» + p') + '- (&')(&i*„„„lp"' p"")(p —p')

+f" '(V')(4(*„„,. ..„„lp"' »"")+ 1e' '(V')~pp, p(4"l"'"' ""lp» . )» p' .

Some remarks are in order at this stage.
(1) Except for the j' = 0 case where the number of independent form factors is two, there are at most four form

factors for arbitrary higher spin J' when J = 0.
(2) The number of form factors depends of course on the angular momentuzn which the current carries. The

transverse part of a vector (or axial vector) current will carry spin 1, while the longitudinal part corresponds to spin 0
and is not relevant for conserved currents. Thus we may associate three pieces of (2) with orbital angular momentum
J'+ 1, J', and J' —1 for the transverse current, and one orbital piece J' for the langitudinal current. In the special
case J' = 0, one transverse form factor and one longitudinal form factor survive.

(3) Keeping these points in mind and following the authors of Ref. [10], it is appropriate to express the vectorial
matrix element for general J' in the form

M2 —M'2
{p' J'l&~l»0) = +o '(~')(&l*„,. ..„„lp"' "»"")—

+&1 '(V')(4l'„, . . .„„lP"' "P"") '(P+P')P—
k

where the last two terms are not present when J' = 0.
With the experience gained &om the work presented

in the previous paragraph, we may now analyze matrix
elements between initial spin-1 state and a final state of
arbitrary spin. For the 1 + 0 case, all results for 0 + 1
discussed previously are retained except that one should
replace the final polarization vector by the initial one and
exchange momenta (crossing).

When both final and initial spins are 1, we have two
polarization vectors: the initial P„and the final P'„*; the
matrix element is a bilinear of them. From them we can
first construct scalar invariants such as

(4~p'")(4'.*p ) (4v4''*") & "4' 4'p p»ps.

can be massaged to show that these new terms are not
independent of the previous ones.

Now we proceed to matrix elements for 1 —+ J' & 2.
Besides the polarization vector P„of the initial meson,
we have the Lorenz tensor of rank J', P& &

for the
final meson. When this polarization tensor occurs in the
contracted vector form

we can repeat the earlier analysis (1 ~ 1) and obtain ten
form factors. In addition we should consider the possi-
bility that two indices remain uncontracted:

In combination with either p~ or p', each of the above
three scalars generates two form factors; so at the ma-
ment we have six in all. Next, allowing the polarization
vectors to carry the Lorentz index of the current, we gain
two more form factors:

4~(4'.*p") (4» '")4'„'.

Finally, using the Levi-Civita tensor we get two more
structures,

E~~p~(5 Q p and E~~p~g Q p

In all there are therefore ten form factors in the case
J = J' = 1. Although one can contemplate structures
like

(4'.p )~" ~'4 ppp,
' (0 p")~" ~'4'ppp, '

the identity

~ ~@~& ~ vP~&+ P ~s~&+ v ~Pj &+ & ~P~v

&om which we can build two more vectorial covariants,
P"y' „and e~ ~~/ y' „ppp' . Hence the number of form
factors rises to twelve. As far as the counting is con-
cerned, this ties in very nicely with the classical analysis
based on angular momentum addition.

(1) Letting S = 1 correspond to the transverse current
and coupling it to J = 1, we obtain total spin 2, 1, 0.
To these we may add orbital angular momenta L = J'+
2, J'+1, J', J' —1, J' —2, L = J'+1, J', J' —1, and L = J',
respectively. Consequently„ there are 5+ 3+ 1 = 9 form
factors when J' & 2.

(2) Setting S = 0 for the longitudinal part, there is
only total spin 1 (of the initial meson). So here we get
three form factors, associated with L = J'+ 1, J', J' —1,
provided that J' & 1.

Adding (1) and (2), the total (maximum) number of
form factors is 12 —but is of course reduced to a smaller
number when J' & 1.

We are now in a position to outline the general rule for
counting how many independent form factors are needed
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to describe a vector (or axial vector) current between
spin-J and spin-J' meson states. The analysis is best
carried out in the channel of the current. First, we de-
compose the current itself into a transverse part (S = 1)
and a longitudinal part (S = 0). Second, we compose the
spins of the two mesons into the set

J + J', J + J' —1, . . . , ~

J —J'~

(4)

where the spin-parity projector y represents the Lorentz-
covariant wave function of the external meson. The struc-
ture of spin-parity projectors for resonances of higher
spin have been worked out by us [6,7], and here we just
list the results:

and ask what angular momentum values I are needed to
give total spin S. For S = 0, I necessarily equals the
total mesons' spin, while for S = 1 there is a threefold
possibility for I (assuming the total mesons' spin exceeds
0). Hence the total number of I values, and thus form
factors, equals the sum N of No and Nq where

L

Ko ——1+ 2Min(J, J'), S = 0,

2Min( J,J')
~& —1+ P [1+2Min(1

~

J J ~+k)+1] S=1,

leading to

N =- 4(2J'+ 1) for J' ( J,

N = 4(2J + 1) —2 for J' = J,

N = 4(2J + 1) for J' ) J.

These structures may be given a Lorentz covariant form.
We shall not write them all out as they are not needed in
the present investigation. We will just content ourselves
by stating what they reduce to at a special kinematical
point, zero recoil, where Mp' = M'p and M, M' stand for
the masses of the mesons in the initial and final states.
In this limit only three structures survive for the element
(J'~ J~~ J): namely,

for J'= J —1,

„,l(p+ p')p fo„r, J' = J,

for J' = J+ 1.(AP1"-P,J )

III. HEAVV TO LICHT TRANSITIONS

It has been demonstrated that Bethe-Salpeter ap-
proach is as useful as the so-called tensor method of the
heavy quark efFective theory for treating hadronic matrix
elements [2,5,7]. We shall use this approach, incorporat-
ing heavy quark symmetry, to investigate weak decays of
a heavy meson into light resonances in this section. In
analogy with the interpolating field method, we shall con-
sider the Bethe-Salpeter amplitude Q = (O~TQ q~ ~p} for
the meson state in momentum-space,

where we have adopted the standard notation + IJ,
and d„„(p) is given in the Appendix. The parity of the
meson resonances is given by (—1) + and CP = —1 for
the singlet and +1 for the triplet. When a heavy meson
contains an on-shell heavy quark, one has further

(~pi vl.)P"
For heavy mesons, it is conventional to organize the

terms as eigenfunctions of projectors corresponding to
the total angular momentum of the light degrees of &ee-
dom. Even though we really have no detailed knowledge
of the configuration of the light degrees of &eedom, the
decoupling of the heavy quark spin tells us the two com-
ponents in a doublet generated by the heavy quark spin
operator tie in with those of the light degrees of free-
dom. Using this line of argument the spin-parity opera-
tors have been presented by Falk [4] and are related to
ours through Clebsch-Gordan coeKcients. We will return
to this issue soon. The matrix element for the heavy to
light transition takes the form [11]

(X,(p) ill j„iX(v))

The overlap integral M involves the light degrees of &ee-
dom in both heavy and light hadrons and embodies the
spin and parity of the light meson:
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is a Lorentz tensor with parity
(—1)r++, which contains all the nonperturbative physics
of the matrix element, carrying also the symmetry prop-
erties of the external current I . In particular, this sym-
metry has been used in phenomenological studies of rare
B decays [12,13], where loop diagrams of the standard
model result in a current of o„p" structure. However,
as far as the multispinor is concerned, we can always
decompose M into M = P (3 D, with D being one of
I' = I, p5, pp, ppp5, op~, and attribute all momentum de-
pendence to B. Thus we can always rewrite the overlap
integral in the form

(12)

Evidently for S = 0 resonances, only the contribution
corresponding to D = p5 to the overlap integral M sur-
vives, while the part D = pp is associated with S = 1.
Based on this, we shall construct the most general form of
M in terms of the tensors P and V, which are symmetric,
transverse, and traceless.

A. s wave —+ J'

First, let us examine decays of a heavy meson of the
(0, 1 ) doublet into a light resonance of higher spin.
The spin-parity projector for the heavy meson is spin 0,
i.e., y = p5 and p - V, so we need only find the general
form for the overlap integral with no Lorentz index. For
a final resonance which is a spin singlet, we remain with

M ' (,p)=ps G, "( .p)+G2 "( .p) p v"' . " 'Pi„„„,l(p). . .

Gs " (v p) + G4 " (v p) p p"' v"' . v""Pi„, „L,, l(p). ...

To explain why that is all, we note that P(~, ...~,} is transverse to p and traceless so that only products of v"
and p~ may be contracted with it. Hence a product involving v~ purely gives the first two form factors in Eq. (13).
Furthermore, since p"p" = g" —io.",and bearing in mind the symmetry property, two p matrices are not permitted;
only one p~ is allowed, its position being irrelevant. Hence we have the second two terms (which are absent when
L' = 0).

We turn now to the spin triplet. For J' = L' + 1 resonances, we shall build up the Dirac bispinor M usingL' 1 ~ ~ ~ L IV +
(p) and v and Dirac matrices. Notice that V + has the same properties as P in Eq. (13), except for the(uS 1".VI. I }

rank which does not matter. This leads us to

M~ '+l(, )= G, ""( )+G, ""
( ) P ""' . ""V„„+'„.„, ()L'

Gs " '
(v p) + G4

'+'
(v p) p p"v"' . . v" 'Vi„+' l(p).

The analysis for J' = L' resonances of the spin triplet instead goes as follows. On the face of it we can construct the
Lorentz scalars

) v~~ e „„d Vi q l (p) v~ ' v~~
m

k without v~&

A

k without v»

A

p" ) P v""e „„d"VL —,(p)p"' v"' .v"c'
m

k without v~&

A
I I
VL — (p) p"' v"' vAppg K (P,1" k".P, g v'}-m

k without v&I

and terms with an additional P. However, using identities

7&pvAcr ='/5(gvA'7n + gAcr'Yv grrv 7A 7v fAYo')'
and
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&P, VACr = 2&5OAa)PV

all of these structures can be reduced into four independent forms: namely,

M( 'l(v, p) = ps G, " (v p) + G2 " (v p) p VI„ „ , I(p)v"' v""v"

3L I SL l

+~s G.' "'(v p)+«' " (v p) P VI'„, .. ., ,.I(p)v"' "v""~".

Apart from the change in the value of S the structure of M(v, p) is exactly the same as that for resonances of spin
singlet in Eq. (13). Following a similar procedure it is straightforward to work out the results for spin triplet of
J' = I ' —1; these read

L' SL I'('-p)+ G. " '('-p) S ." '""V,'„;.'.„„,(p)

3L I SL I

+ Gs ' '
(v p) + G4

' '
(v p) p p"'v"'. v""VI l(p),

in which only the first two form factors contribute when
I'=1.

Compared with the general problem, discussed in Sec.
II, the simplification resulting from the heavy quark ap-
proximation is twofold: in the first place the decaying
1 meson shares the same complexity as a 0 meson;
given the state of the light degrees of &eedom of the
(0, 1 ) doublet, the overlap integral is actually deter-
mined by the state of the light resonance; in the second
place a set of four "universal" form factors are sufficient
to parametrize all matrix elements of bilinear operators
qI'6„ for each 2 + IJ configuration. However, given a
particular current, it is possible for some of them to be
absent.

B.p mave ~ J'

Here it will prove convenient to mix the Pq and Pi
states of the heavy decaying meson to track the spin of
the constituent light degrees of freedom. The way to do
this has been delineated in Ref. [4], and in our case we
state the decomposition much more explicitly. Given our
spin-parity projectors for the p wave,

& Ps(-,'P~ — ', y~)y"—&

where p„—:P + ~g„and the constraint, p"y„= 0

applies to the components of (1+, 2+) doublets. In fact
when we take the trace according to Eq. (10) with the
spin-parity projector of (0+, 1+), the vector factor (p„—
v„) in the y can be absorbed into M" (v, p), leaving us
a scalar matrix in Dirac space. The ensuing analysis is
thus exactly the same as the (0, 1 ) doublet, and we
do not repeat it here. With respect to the projector for

the y doublet, we construct

(M.)'. ='[ep)]; [~.(p,.)] .,

for I' = 0 and like before, the scalar Mo can be expressed
in terms of two unknown functions. When L ' = 1, we
have

(M")~ = p" I~.(p)1; [~".(p v)1.".
which formally has the the same structure as the M in
Eq. (13). In addition to those four form factors, we need
two more to describe

( &1)
V

~('&2)
V

~('&1)

&('&o)

= rs4'. ,

= WvA'7

s[P (Ppp )(p v )]
= —(p —v ),

making a total of six. A similar analysis for I' & 2
produces the forms

we arrange them into a pair of doublets corresponding
with two distinct states of the total light angular mo-
mentum. Thus the doublet of higher spin (1+,2+) is

(M"). = p" X(~, ~. l(p)]; [~"' ""(p v)]:-

x(') = A
+5 Pv PA f Pg 'Ug

and the lower spin doublet (0+, 1+) is

to each of which belong four form factors. Therefore we
knish up with eight form factors. (As discussed before,
there are four unknown functions for the Erst M above
and another four for the second when I' & 1, but only
two when L' = 1. However, if I' = 0, only the two form
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factors from the first M contribute. )
In summary, we have boo universal form factors for

the transition &om heavy p wave to light s wave, six
form factors to light p wave, and eight to light d wave or
states of higher spin.

C. L wave ~ J'

. We are now in a position to complete our analy-
sis for the general case. We rearrange the four states
Lp+ i ) LI ) Lg —i y

and I p into a pair of doublets:

(0)
X(v ...v~)

—&(.
"
, ..~l&"

(v, v~) 2L+ 1 g &( -.I,". P)& (&v v )
k

(4)
~(v "v ) j +gL ~(vz .. .A'. . .~1 Al)l Y

1

1 ~ ~ ~(vg" kl "v~AI~ &~~& ~& )
)

5 1
'P(vi vl. I ~(v", " ul. I + 4'(v, vl, I . "

g2
(The "mixing angle" is uniform for all L.) For the higher spin doublet (L, L + ].) we have the following (L' + 1) fold
structures, when L' & L:

(M"'"' ') = p ' .p"' [g(„,. ..„,) (p)] [M"'"'" '
(p, v)]

(M"' "').= a"'"'p"" p" [X(„~„)(p)]p[~"' ""b»v)]:.r

As before, each of these objects corresponds to four form
factors, except the last one which just has two form fac-
tors. Altogether then there are 4L'+ 2 form factors. On
the other hand, if L' & L it is easy to work out that the
number of the form factors is 4(L+ 1). Turning next to
the doublet of lower spin (I —1, L), we can surely absorb
the factors such as (p„„—v „) into the overlap integral
and thereby consider the case of a Lorentz tensor of rank
L —1. This leads us to the conclusion that the number
of independent form factors is 4L' + 2 if L' & I —1, but
4I ifL'&I —1.

The situation for heavy to heavy transitions is simpler.
Since the spin-parity projector for the final resonance is
also a Rarita-Schwinger object (p"P(~ I= 0), form fac-. ..

2S+1I I (2S+1I &

tors G3 ~' and G4
' do not contribute, and

2S+1I t 2S+1I I

Gi " and G2
' collapse into one form factor

for an on-shell heavy quark (P = M').

IV. EXCLUSIVE DECAY RATES

Before applying our formalism to specific heavy to light
matrix elements, we must describe to what extent the for-
mal heavy quark symmetry relations between form fac-
tors lead to simplifications phenomenologically in weak

decays. The applicable region of heavy quark symme-
tries in decays is determined by the average momentum
transfer Q~ of the light degrees of freedom. It is estimated
heuristically by [14] that

q' „=(M —m, )'.

Here q is the momentum transfer of mesons, M and m are
the masses of initial heavy and final light mesons, respec-
tively, and A A@cD sets the scale for the light degrees
of freedom. The relations developed in Sec. III will cer-
tainly hold in the region where q q „or Q~ && M,
but actually, the suppression factor A/M allows us to
continue q away from the maximum by about 1.0 GeV.
In semileptonic and rare dileptonic B decays, this region
may correspond to high energy lepton pairs. Prom a phe-
nomenological point of view, leptons of large energy in B
decays are particularly useful for extracting information
about the underlying physics. By looking at the /v~ of
large q in semileptonic decays, we can separate of the
b ~ u decays from the b -+ c decays [15] and likewise
by measuring I/ pairs of q larger than the masses of Jjg
and @' in rare B decays (b ~ s) we obtain signals of
short-dist, ance physics dominated by top quark contribu-
tions [16]. We shall present the invariant mass spectrum
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A. Semileptonic B decays into light mesonic
resonances

The amplitude for B ~ X~/v~ contains hadronic and
leptonic currents

G~
&.~L P.(p) lq~" (1 —»)~l&(v))

2
' (17)

in which L~ = u~p~(l —»)v„, . The Lorentz-invariant
form factors in Eq. (2) for V —A currents are related to
our G, by

of lepton pairs in the first part of this section.
In the second part, we shall examine two-body heavy

meson decays such as those into K resonance plus char-
monium or photon, where q is fixed kinematically in
each process. Heavy quark symmetries only make ap-
proximate sense in such decays where the value of v p (v
the velocity of the M meson and p the momentum of the
m meson) does not change much between processes and
is not too large compared with m. However, it has been
argued that phenomenological models for soft processes
still work when Q~ is about 1.0 GeV [14,17]. In this case,
relations between form factors may remain roughly ap-
plicable. The attempt of applying them to rare radiative
B decays and nonleptonic decays with the assumption
of factorization is also made below. But we ought to re-
member that rare radiative decays experience a relatively
large recoil and factorization suffers from uncertainties
due to nonperturbative @CD. Therefore we do not ex-
pect those decays are entirely suitable cases for applying
heavy quark symmetry.

We shall now evaluate rates for various exclusive pro-
cesses including semileptonic, rare dilepton, rare radia-
tive, and nonleptonic decays. We shall restrict ourselves
to pseudoscalar decays into the light resonances of spin
J. Thus we make the substitutions J ~ 0 and J' ~ J in
the earlier formulas. As expected, all of these exclusive
rates are written formally in terms of four form factors.
Here are the results and relevant discussions case by case.

(~) (g( ") (2s+1I ) (2s+1 r ))
M +G2 G4

M

~ G(
+ I'g) + G(

+ Lg)

f(J) 2 [yG" ~) + ( . )G ~)]
M

M 2 (18)

where the upper sign applies to J = L and the lower
one to J = L + 1. As our G functions do not scale as the
heavy mass when v.p is close to the mass of light mesons,
we can easily read off the scale of form factors a+(), f (

and g( ). With ground-state mesons in the final state for
example, one deduces [8]

(o-) + (o-) G('s. )

a —a = 2/MG

G(s)
+Ms

(1 ) (1 ) 2 lG( Sa) + G( S1)]

{i ) + (i )
+

(20)

f( ) = 2/M[ —G ' + (v p)G '
],

G(s)
M

g( ) (21)

(Above, a logarithmic dependence of the form factor on
the heavy mass, arising &om the anomalous scaling of
quark currents in the effective theory, is expected. Note
also that ratios of these combinations have scaling prop-
erties which are independent of J.) However, the relative
contribution of these form factors to the decay rates will
not necessarily follow such scaling behavior when kine-
matical factors are taken into account. Making use of the
general formula for polarization sums in the Appendix,
we arrive at the differential distribution of the decay rate:

I

2J(g~)2 (G~)', (M, l ( q' ) r&l'
dq2dO~dQ' (47r) (2J) ( ~2) ( M 2 EM J (M')

P,', [~' —(k. p)'] ~a,("+P 'f(')

( (~)
+ J [&'+ (k. p)'] + lg l

+ 4(k p)Re(f ) g *) (22)

where q2 is the squared invariant mass of the (Lv~) pair,
O~ the solid angle of the charged lepton in the lv~ frame
in which q = 0, 0' the angle of the final meson in the rest
frame of the initial meson, and A = M [(v.p) —M; ]. k
is the relative momentum of the (lv~). The ratio k p/A
turns out to be cos8~ in the (lv~) frame in which vr—

l

0~ is the polar angle of the charged lepton with respect
to the direction of motion of the decaying meson. The
form factor a in Eq. (2) makes no contribution in the
limit of massless leptons. We notice that the contribution

(J) . ~ 0of a+ is suppressed near the zero recoil point, v . p =
M;, where the heavy quark approximation is supposed to
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work well; the differential distribution is then dominated
by two form factors f( ) and g(~), or equivalently by

3 4
As these form factors depend only on q, we integrate

over all angles to obtain the invariant mass distribution
of the /v)..

dI'

48vrs(2J)! ( i/2) ( M ) (M;)
4

M ~+ +2~f

J+ 1 ( f(~)
+ ~g(J) (23)

It is worthwhile presenting the difFerential forward—
backward asymmetry in 0~ of the charged lepton, which
is de6ned by

J' dI'(cos 8 ) —j dI'(cos 8 )~FB( 2) 0

Jo dI'(cos0~) + I dl (cos0~)

The angular integral in the numerator picks out the A: p
term in Eq. (19) and Aa+ in the normalization can be
ignored when L ~ 0; this leaves

f(~)
Re g(')*

PB

J+1 q'M, ' )
1+

Supposing the charmed quark is very heavy compared
to the momentum of light degrees of freedom, we can
apply all of the above results to semileptonic D decays.
In this case we may make use of exclusive process of the
Cabibbo favored c ~ 8/v decay to determine the values
of the desired form factors. First of all, we notice that a

2S+1L 2S+1Lsubset of our G3 and G4 can be expressed
in terms of f ( ) and g( ), which may be found by fitting
the angular and q distribution of the data. Further,

2S+1L 2S+1La linear combination of Gz and G2 can be
extracted if a+ is accessed experimentally. Now in order

to determine a experimentally one must include the
lepton masses, whose effect is unfortunately suppressed
by a factor of m& /q and is thus diKcult to measure in the
e and p channels, especially at relatively large q . The
contribution of the p mass, for instance, has been found
to be less than 5% in semileptonic D ~ K(K*) decays

[18]. On the other hand, it is impossible to measure a
in the v channel of D decays because of the phase space.
Evidently, this missing form factor makes it hard for us to

2S+1L, (2S+1Iseparate Gz &om G2
' as far as semileptonic

D decays are concerned. (But we are optimistic that
these form factors may be separated in the T channel of
B meson decays [19].)

f(' ) = 2M~ VM(1+ bG. )G4

(& ) — G( s)
g = —

4 ) (25)

in which we de6.ne a dimensionless parameter,

G('s, )

('Sl)M~. G4
(26)

v-pwMg ~

which takes a value of bG. ——0.14 6 0.18, being efFectively
negligible at the present level of the measurement. There-
fore the data of form factors in semileptonic D —+ K*
decays imply that the heavy-flavor-independent bG. is po-
tentially zero. This suggests that form factors of the end
point for the K* channel may be well approximated. by

Experimentally, individual form factors have been
studied extensively during the past few years for semilep-
tonic D ~ K*, D, -+ P, D ~ K, and D, ~ (ri+ g')
decays in the e and y, channels [20—22]. The form fac-

tor a+ has been measured in D ~ K decays and the(o-)

average value of CLEO, E687, and E691 is a+ (0)
0.76 + 0.02 [23]. Here we shall examine D —+ K' decays
in some detail and extract the corresponding values of

( Sl) 3s
Gs( ') and G4

' . At fixed target experiments [21], three

form factors Ai, A2, and V (proportional to f, a+(i-) (~ )

and g( ), respectively) have been determined by fitting
to the angular and q distribution of the data. As far
as A2 is concerned, there appears to be considerable dis-
agreement among experimental results, but as this form
factor is kinematically suppressed in the regime close to
zero point, it is not vital in the following discussion. Us-
ing the measured form factors Aq and V at q2 = 0 of
Ref. [21], for which E691, E687, and CLEO groups are in
agreement and the assumption of the nearest pole dom-
inance for the q dependence of form factors, which is
used by all of these groups, we evaluate the averaged form
factors at q, Aq ——0.61 + 0.04 and V = 1.22 + 0.20,

corresponding to fD ———(1.69+0.ll) GeV and g~
(x-) (~-)

0.88+0.15 GeV . Since the range of q in this decay is
only about 1 GeV, small compared to heavy pole masses,
M(D,*) = 2.11 GeV and M(D, i) = 2.54 GeV, the result-
ing form factors are not sensitive to the assumed q de-
pendence. (This variation in q becomes more prominent
in the case of higher K resonances. ) These numerical re-

( Sl)suits tell us that G3D' ——0.081 + 0.098 GeV / and
's)G4~' ———(0.60+0.10) GeV ~2 at v p = M~. . Trans-

lating them into form factors of B decays by multiply-
ing the logarithmic dependence on the heavy quark mass

[n. (ms)/n. (m, )] ", we have that G,~' = 0.089 +
0.108 GeV and G4&' ———(0.66 + 0.11) GeV
where n, (mb) = 0.19 and n, (m ) = 0.29, [24] have

been used. Correspondingly, we find f& ———(3.13 +(~-)

0.18) GeV and g& ——0.58+ 0.10 GeV . (The masses
of mesons are M~ = 0.892 GeV, MD ——1.87 GeV, and

S
Mii = 5.28 GeV. ) Here the magnitude of Gs ' turns

( Sl)out to be small compared to G4
' . We may rewrite

Eq. (21) as
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f(& )

(]—
)

K 7

g

upon setting bG. ——0. The preliminary measurements,
but with fairly big errors [22], of D+ ~ Pp+v„also show
evidence of this relation. In the quark model of Altomari
and Wolfenstein (also Gilman and Singleton) [25,26], we
find

(Aw-Gs 2m
=M..

which vanishes when m, = M~. /2, a good approxima-
tion of m, = 0.45 GeV used in Ref. [26]. On the other
hand, we should point out that the bG. parameter for
B —+ D* decays equals one in the on-shell limit of heavy
quark efFective theory [27].

As we shall soon see, such form factors extracted from
D decays can be used directly in rare dilepton B ~ K*
decays. Indeed since p and K* are in the same SU(3)
octet, the above form factors will help us in determin-
ing V„b in B -+ p when corrections of SU(3) breaking
are taken into account. In the same manner, but more
straightforwardly, form factors at v - p = m~ determined
in Cabibbo suppressed D ~ p decays will help to fix V„b.

B. Rare dilepton B decays into light meson
resonances

The efFective Hamiltonian relevant to flavor-changing
one-loop processes b ~ sll is given by [29]

Gs r' o
~

[sr„big"(1 —p5)l
2 &47rswi

+sl"„b lp" (1+p )l], (28)

with effective vertices

r" = A(B)p„(1—ps) —im~s~F2o„„q (1+ps)/q .

In this Hamiltonian, heavy particles, R'+ bosons, and the
top quark are integrated out and their masses together
with @CD corrections are absorbed into coefficient func-
tions,

A(B F2): ) V*VqgAq(Bq F2)
q=u, c,t

(29)

which are dominated in the standard model by the top
quark contributions except for the long distance effect
which proceeds mainly through CKM favored cc interme-
diate vector meson states. Here Vq, and Vqb are elements
of CKM matrix and Aq(Bq, F2q) are given in Ref. [29].
The process b ~ Bvv is induced by pure V —A currents
and only the A term in the above Hamiltonian survives.
The efFective quark current sI'~ 6 in question has twoA(B)

different Dirac structures, but is still a spin-1 object; so
its hadronic matrix element must assume the form of
Eq. (2). We shall reserve form factors a~, f, and g for
V —A currents and express the additional tensor current
in terms of extra a~, f, and g. According to Eq. (10) and
Eq. (14), the trace with —ia~„q"(1+ps) gives

(2S+1L, )-(~)
+ Mz —

2 '( M

(2S+1L, )
3

q 2

(2S+1g )l

M —M G~

M

(2S+1I )
3 ("+'I~)

(30)

(2S+1I ))

Conservation of the current produces the constraint

(M —M)a + a +f()=0.
Therefore there is a &eedom to eliminate one of the four
form factors, and this is reflected by disappearance of
Gj in Eq. (30). To be consistent with the semileptonic
decays, we shall use a+, f, and g in this section. Prom
Eq. (30), we can easily read ofF their scaling behavior in
the heavy mass near the zero recoil region, remembering

2S+1Lthat G( ) scales only with the light mass. For the
case of B' decays to the ground state R meson in the final
state, we G.nd

-(o ) ('s. )8=a+ —— G2

2(-(~ ) + -(~ )) f(x-)
M2 M2

G(3S1)

(31)

(32)

(33)

g++g = f( ) ——(M——Ma. —q )g = Gs
1 2 2 2 (q-) 2 ( S1)
2

g —g = f(' ) + —(M —M . + q2)g('
2

= —2VMG(
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agreeing with that of Ref. [8](where form factors s, li,
and g~ were used [30)).

As we have pointed out Eqs. (18) and (30) imply a
connection between exclusive semileptonic and rare dilep-
tonic decays of the heavy meson, through Bavor indepen-

2S+1Ldent G( ~) functions. At the endpoint, using the h~
parameter of Eq. (26), we rewrite form factors of the
B ~ K* decay as

(i ) 2M' gM
( g )G( s )

(34)

(i )
2+M ( Mlc* ) (as, )

(M —Mlc. )2 ( M

Recalling similar relations for V —A form factors in
S

Eq. (25), we may eliminate G4
' and obtain

f(l )
M —M~.

M (a-)
(M M-.)2('+'

Electively they decouple as the product of r = Mlc. /M,
and bG is quite small.

In the last subsection, we determined form factors

f& and g&, as well as Gs&
' and G4&

' . Now
(a-) (a-)

we are able to evaluate additional ones via Eq. (35)
at v . p = Mlc. , the results turn out to be f&

(a) =
—(0.72 + 0.14) and g&

——0.163+0.024 GeV 2, respec-
tively. As explained previously, we are not able to deter-

mine G2&, or a+, in this way because of the miss-

ing form factor a . But the two kinds of form factors
entering semileptonic D decays will allow us to predict
rare decay distributions close to the zero recoil point. To
see this, let us examine the formula of the mass spectrum
and difFerential forward-backward charge asymmetry.

The dilepton invariant mass spectrum is given by

dI'

dq2

2'(J~)' (G~)' r

48~'(2J)' & ~&) &4~sw) 0 M J kM*)

x, , Z( + + &swF2a~ )+ (Af( )+mss~F, f(~))

2 2

—(Af + mss~F2f ) + Ag ) + mbs~F2g( ) + A; (36)

Just as with semileptonic processes the contributions of a+ and a+ are suppressed near the zero recoil point;
2S+1L

consequently, the same two form factors Gs and G4 ) via f( ), g( ), f( ), and g( ) determine the end point
spectrum. Likewise, the forward-backward charge asymmetry of dilepton production is

FB
2

( 1 (p g) ) Af( ) + mss~~F2f( )

I
1+ J+i, M, q

+ ~Ag + mssvt, F,g ) [' + A;: B
(37)

and has the potential to be fairly large in the standard model, following the argument of the authors of Ref. [31].
For mq/Mgr ) 2, as suggested by the Collider Detector at Fermilab (CDF) value of m&, the contribution of the
Z-exchange diagrams becomes important and the coefficient of the left-handed leptonic current grows as m~, leading
to a substantial asymmetry. (The asymmetry in inclusive B ~ A, ll processes has also been investigated in great
detail in Ref. [32].) Our scheme discussed here permits the asymmetry in exclusive B decays into K resonances to be
studied in a model independent way.

As far as the B ~ K*I+1 channel is concerned, the b~ parameter defined in Eq. (26) contains the whole dependence
on hadronic form factors of the forward-backward asymmetry at the end point,

XF'(B ~ Z* l+l-)

(v.p)'
(M~- ) e.pwMg ~

~
(1 —r)A+ s~F2

~

—
~

(1 —r)B + s~F2
~

+ rRe[swF2 ( B) ]1+ bG

I
(1 —r)A+ s2~F, I' +1(1—r)B+ s2~F, 12
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Actually there is a contribution independent of bt-, but it
is suppressed by r = MIr. /M (where we use the limit of
m~ = M); as a result, the asymmetry is mainly propor-
tional to z &

. Thus a small bG. parameter will enhance1+
the forward-backward asymmetry. Considering that bG
seems negligible according to present measurements, we
expect there will be a considerable asymmetry at the end
point of the B ~ K* /+l channel. Given the input of
the bG. determined in D —+ K* decays and coef5cients
A, —B„B„andI"2 evaluated at m& ——150, 174 (of the
CDF group), and 200 GeV, and using the formulas in Ref.
[29] including QCD corrections, we obtain the results

C. Rare radiative B decays into K meson resonances

The rare radiative decays induced by the penguin dia-
grams of the standard model are mediated by an efFective
Hamiltonian [34]

H,g = Cams&„'so""q„.(1+ps)b, (39)

where mg is the mass of the bottom quark, e„* the photon
polarization vector,

and C7 is a Wilson coeKcient. The exclusive decay rate
here reads

= —(87 + 13, 89 + 12, 88 + 14)%,

respectively. They are not sensitive to the variation of
the top mass in this range. We anticipate that planned
experiments of rare dileptonic B decays will provide de-
tailed measurements enabling us to test these predictions.

We conclude the subsection with some comments.
(1) Sometimes the spatial components of the hadronic

current are parametrized alternatively in the literature in
terms of one longitudinal and two transverse helicity am-
plitudes in the massless lepton limit [18,26]. The trans-
verse helicity amplitudes are linear combinations of our
functions G3 and G4. The numerator of the formulas for
the forward-backward asymmetry in both semileptonic
and rare dilepton processes depends only on transverse
amplitudes, or G3 and G4.

(2) It is well known that there is helicity suppression
of the longitudinal helicity component in D —+ K and
B —+ D decays. For the difI'erential decay rate into higher
spin K resonances close to the end point an analogous
efFect occurs insofar as the contributions a+ and a+(J) -(J)
become part of the longitudinal amplitude. As a result,
two form factors dominate the invariant mass distribu-
tion and normalize the forward-backward charge asym-
metry.

(3) Combining these kinematical factors with the
heavy quark limit allows us to employ the transverse
amplitudes extracted from semileptonic decays in order
to reduce uncertainties of form factors for exclusive rare
dilepton processes. Hence we can make predictions that
largely avoid model dependence of hadronic form factors,
as we have done for B' m K* decay. Conversely when ex-
periments for rare decays are carried out at ongoing and
planned B meson facilities, they will substantially impact
upon the semileptonic processes.

(4) The authors of Ref. [33] reported lattice QCD data
for one of the form factors in B —+ K* decays (propor-
tional to f ~ l) at the end paint. Their results support
the scaling law of the heavy quark limit and agree within
25% with our numerical value fi & = 0.72+ 0.14 in the
leading order of the heavy quark efFective theory.

(v p)'
M2

2

(4o)

with v p = (M + M; )/2M. There is but a single form
factor H( ), and this is related to our form factors G;:

(2S+1L )
H(J) + G("+'L )

4

with the upper (lower) sign for J = L, (J = I p 1)
The ground state version of such a relation was obtained
in Ref. [8]. It is interesting and important to check out
the average momentum transfer of light degrees of free-
dom: For the lower lying K resonances considered in Ref.
[13], it is easy to estimate Q~ at about 600 MeV with
A = 330 MeV. This heuristic argument suggests that the
above relation probably holds in radiative decays.

D. Nonleptonic B decays into K meson resonances
plus charmonia

Now we consider the two-body hadronic decays B —+
K'(cc), in which charmonia (cc) could be J/g, @',yq„q„
etc. The effective Hamiltonian relevant to processes b ~
scc is given by [35)

H, g = Csp" (1 —ps) b cp„(1 —ps) c, (41)

with

G~C = (cg + c2/3)V;, V,g.
2

Here V, and V,g are elements of CKM matrix and cq
and c2 are Wilson coeKcients. Assuming factorization
and using decay constants f~q„= (O~cp~psc~(cc)I ) for
the pseudoscalar charmonium such as g„and fvP~ =
(O~cp„c~(cc)~) for the vector charmonium like J/g, re-
sults in
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H.~(t ~ s(cc)~) = &f~q&s~"(1 —»)~

a. (l -+ s(cc)v) = &fv 4,s~"(1 —»)~.

(42) When (cc) is a vector, the form factor a does not
contribute to the amplitude because P„q" = 0. It is
straightforward, though tedious, to calculate the decay
rate using Eq. (2); the result reads

r(a ~ Z'(cc)~) =
- 1——1

2

(v p)'+ Mg()

16'(2J)! qM')
8M (v p) 1!zl 1 tv p Mi~ M f

l
J M;

(44)

where all form factors are fixed at v p = (M + M,.
Mv)/2M. Some decays into lower lying K resonances
plus J/@(@',yq ) are investigated in Ref. [36]. The value
of v . p is in a range of 1.4 2.0 GeV, which, unfor-
tunately, does not overlap the range of 2.6—3.0 GeV in
radiative decays.

For the sake of completeness, we present the exclusive
decay rate for B ~ K'(cc)~ which depends only upon the
longitudinal part of the matrix element, namely the Eo-
term of the parametrization in Eq. (3). Making use of the
general formula for polarization sums in the Appendix,
we arrive at the decay rate

r(a ~ Z'(cc) ) ™(M2 M2)
( )'

(v p)'
M2

(45)

with v p = (M +M; —M&)/2M. This longitudinal form
factor Fo may be related our to our set G; via

G(' +'L J)
M --:(M M )~(

(M,' —M . „)G,""'"&
+MG ' —MG ']

where the upper sign applies to J = L and the lower one
to J = L + 1. This form does not arise of course in the
light leptonic processes.

V. CONCLUSION

In this paper we have outlined the general Lorentz
structure for matrix elements of current operators be-

tween meson states with arbitrary spins with particular
focus on a pseudoscalar (or scalar) meson decaying into
resonances of higher spin. The matrix element for these
processes resembles very closely the extensively studied
0 ~ 1 decays. Without reference to parity, three form
factors pertain to the transverse (conserved) part of the
current. One extra form factor is needed to describe the
longitudinal part. If the full angular distribution of the
exclusive rate can be determined experimentally then it
is possible in principle to extract each of the 4 form fac-
tors.

Using the heavy quark approximation for the decaying
heavy flavored meson, we may achieve a great simplifi-
cation in the matrix elements, reflected in a decrease of
the number of form factors; such matrix elements may
be expressed in terms of a set of universal form factors
which are independent of the mass and spin of the heavy
quark inside the decaying heavy meson, as well as the
Dirac structure of the current operator. Four of these
form factors, for instance, are suKcient to parametrize
any matrix elements between 0 and spin- J states. Im-
portantly, this allows us to link various decay processes
induced by difFerent currents: for example, semileptonic
decays via V —A and rare dilepton decays by an efFective
current (arising from one-loop diagrams). This proce-
dure enables us to make use of the end-point spectrum
to determine certain CKM matrix elements and to test
FCNC sector of B decays. At the phenomenological level,
we have formulated rates for various exclusive B decays
into light resonances of higher spin and expressed them
in terms of certain universal form factors. As more ex-
perimental measurements of B decays become available
in the near future, we may hope to determine these form
factors through di8'erent decay modes and thereby test
the heavy quark approximation. To be sure, all of these
results can be applied to D-meson decays too, as long as
we assume the charm quark is heavy enough compared
to the @CD scale. In this way one may use the heavy
flavor symmetry to relate universal form factors between
B-meson and D-meson decays.

A parallel analysis for baryonic states is currently being
undertaken.
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APPENDIX: POLARIZATION SUMS

We first carry out the polarization sums in the rest
frame of the spin J meson p' = 0. Representing such a
polarization tensor by a spacelike, symmetric, traceless
vector with J indices, P;;, the fundamental formula
1s

&1'''& J 21 ''2 J
(&)

+n;n'. (PJ' 2
—2'', ) + n,' n~PJ' . .

Then setting q = q' = p, one obtains

) i, iz p(~) y(~)'
&~2'''&J jj2 ''jJ

A

2'(J')' .(z-i) J+ '~
(2J)! 2J " 2J [p[2

This trick can be continued to free up all the indices, but
fortunately this will not be required in what follows.

Boosting the above results to an arbitrary frame is
easy: one simply makes the replacements

where n and n' are unit vectors along arbitrary vectors
q and q'. Setting q = q' = p we obtain the elementary
result

2' J~'

I lI p.I g/

~v ~ —&~-+ M„=4-(p)
(A) (A)

~iy. ig "~Pa " Pz &'
leading to

I I
P& Ip Mp2 Ip')

By differentiating the first formula with respect to q and
q we may peel ofF indices, one at a time. Doing this just
once for q and q', we get

) ~ p p WPP2'''PJ (p )p p 4~&2'''&J (p )
A

2 (J!) / 4 ) (J+I), (J —I) (pp ~&2p„)(pV ~I2p„)

where 4:—p + p' + q —2p q —2p' q —2p p' and q = p —p'.
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