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Angular distribution functions in the decays of Q' and Q"
directly produced in unpolarized pp collisions
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We calculate the combined angular distribution of the two photons and of the electron in the
triple cascade process pp + g', @"~ yg + pi ~ (gp2) + pi ~ (e e ) + p2 + pi (J = 0, 1, 2) when

p and p are unpolarized. The answer is given in the Q', vP" rest frame or the pp c.m. frame. By
measuring this angular distribution one can determine the magnitudes as well as the relative phases
of the angular momentum helicity amplitudes in the radiative decay processes g', Q" —+ yz + pi
and yz —+ Q + pz (J = 0, 1, 2) as well as the relative magnitudes of the angular momentum helicity
amplitudes in the processes pp -+ Q'g" and Q -+ e+e

PACS number(s): 13.40.Hq, 12.39.Pn, 14.40.Gx

Recently we have shown [1] that by studying the angu-
lar distribution of the two photons in the cascade process
originating from unpolarized pp collisions, namely,

Pp ~ 4' 4' ~ X&+'7i ~ (A'2) +'Yi (J = 0 1 2)

one can extract the magnitudes of all the angular mo-
mentum helicity amplitudes as well as the cosines of the
relative phases of these amplitudes in the radiative de-
cays g', it" ~ y~ + pi and yg ~ g + p2. By including
the angular distribution of the electron (e ) in the fi-
nal decay process g -+ e+e we now show that we can
determine the relative phases unambiguously by deter-
mining both their cosines and the sines. This is very
important [2,3] since previous potential model calcula-

tions have shown that the angular momentum helicity
amplitudes in the radiative decays are in general com-
plex and hence their relative phases are nontrivial. Our
Gnal result expresses the combined angular distribution
of the 6nal stable products e, p1, and p2 in terms of
the angles measured in the pp c.m. &arne or the @',@"
rest frame. This is the kame where the analysis of ex-
perimental results should be most convenient. A brief
derivation of our result follows.

Since all calculations and results are the same for the
g' and g" cases, henceforth, we shall refer to both as @'.
The amplitude for the sequential process can be written
as a product of the amplitudes for the individual pro-
cesses, so we can write the probability amplitude in the
g' rest frame as

—1,0,1 —J—++j
T„'„'""= ) ) g (e ni, e+n2lCl@o)g

b, cr V

xy (ga, 72KI&lx»)g g (x~i' piplAI&'~)g g (&'blBls»i p~2)g

In Eq. (1) the greek symbols following the particle symbols represent either the helicities or the Z component of the
spin if the particles are at rest. Only the two photons p1 and p2 and the electron positron pair are finally observed.
The transition amplitude depends on the helicities of these particles and those of the initial particles, namely, A1, A2,
p, K, ni, and n2. In Eq. (1) we sum over the helicities and the spin indices of the unobserved intermediate particles.
The symbol Q' attached to the bra or the ket vector indicates that each individual amplitude is evaluated in the g'
rest kame. The symbols B, A, E, and C represent the appropriate transition operators. Except for the last matrix
element (e ni, e+nzlC[@o), the individual amplitudes are equal to their values evaluated in the rest &arne of the
decaying particles or the created particle for the case of @' formation &om pp collisions.

For the matrix element of the process y~(J = 0, 1, 2) m @ + p2, we find

q (0o &2~1@lx~~)q = x~(po. , e', 0' oKIU&(V' x)&U~(4', x)lxz, ~)„
= yg(pg O', P';oKlElyg, v)„, .

U~(A, B), is the unitary operator corresponding to the I.orentz transformation of the helicity type [4] which takes us
&om the B rest &arne to the A rest &arne, and the state vector lpga, o', P'; or) is the two-particle @p helicity state
in the y& rest &arne with (pox, 0', P') giving the three-momentum of @ in that frame. In Eq. (2) we have made use
of the fact that the transition operator E is invariant under Lorentz transformations. We will choose the positive
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Z axis of our coordinate system along the direction of motion of yg in the @ rest frame. The X and Y axes are
arbitrary in our discussions of this paper. The experimentalist can choose them according to his or her convenience.
In the yJ rest kame the index v is the Z component of the total angular momentuIn of yJ. So after expanding the
@p two-particle helicity state in the c.m. frame, in terms of the angular momentum states [4], we find, in the usual
way [5,6]

(pg„0', P';or~E~ygv) = )
J'M'

2JI + 1
DM, „(Q', 0', re'—)x(J'M'; oK~E~-Jv)~

D„„(re',O', P')E—„. (3)

The relations between 0', P' and the angles (O', P') representing the direction of g in the @' rest frame are given later.
The matrix-elements for the processes Pp ~ g' and g' +y~ +-v in the vP' rest frame are easily evaluated in terms

of the angular momentum helicity amplitudes and the Wigner D functions:

q (pAi, pA2~B~Q'h)g = /3/4~Dq„(P, 0, re)Bp,—q, ,

where (0, P) gives the directions of p momentum in the pp c.m. &arne or the g rest frame, and

(4)

A=Ay —Ag

the symbol Bpy/2 represents the angular momentum helicity amplitudes of this process. We also have

~ (g, v, p, p~A~q'h)„= g3/4~A.'„D,'. „(O, O, O)

= /3/47rA „hp (6)

since yJ is moving along the positive Z axis.
For the matrix element of the final process g ~ e+e, the situation is more involved. We have

~ (e ~i e+~zlCI@o)~ = ~(e ~i e+~2IUA'(&' @)CU~(g' XJ)UA(XJ g)l@~)y
= @(e ol e c2~U~(Q', Q)CUz(g', @)U~(@',Q)UA(i/', yJ)UA(yz, g)~@rr)q

= ~(e ~i e'~2ICUA'(&' q)UA(q' »)UA(» q)leo)~ . (7)

In the first equality of Eqs. (7) we made use of the fact that the single-particle state ~@o)y was also part of the
two-particle helicity state of Eq. (2). It was obtained by successively performing two unitary operations corresponding
to two Lorentz transformations, the first taking the @ state from its rest frame to the» rest frame and the second
taking it &om the yg rest frame to the Q' rest frame. In the last equality of Eqs. (7) we now make use of the fact
that

UA(g', yJ)U~(yJ, g) = U~(p', Q)U~ (8)

where U~~ is a unitary operator corresponding to a pure rotation, usually called a "Wigner rotation. ." Using Eq. (8)
and the unitarity of U~, Eq. (7) now leads to

O (e ~i "~2ICly~)~ =~(e ~i "~2ICU~wlqo)~
(e ~i e ~2IUIi UR CUIi~ lgo)

= g(e n„e+o.,~U~ C~go)g

since

URt CV~~ ——C .

Using the expansion of the two-particle helicity state in
terms of the angular momentum states, we can write the
right-hand side of Eq. (9) as

I

g rest &arne and R~ is the (3 x 3) rotation matrix and
C, , are the angular momentum helicity amplitudes.

The Wigner-rotated unit vector B~ e~ can be ob-
tained in the following way. If R represents the (4 x 4)
matrix whose spatial part gives the (3 x 3) matrix Bvt
mentioned above, we know, from the definition of Eq.
(8),

y(e ni, e+o'2~UR C~i/ia)y = +3/47rD

x(B~'eg)C. . . (11)

where ey is a unit vector in the direction of e in the
where the A's are the (4 x 4) Lorentz transformation ma-
trices. Now we note that the electron is extremely rela-
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tivistic in the Q rest frame and its four-momentum vector
p, can be represented to a very good approximation as

p,~
=

2
(l, eg),Mg

where p, , is the four-momentum vector of e in the g'e@i
frame:

p, , = E, , (l, e), (15)

& 'p.„=A '(xJ M)A '(0', x~)A(4' @)p.„
= A '(xj 0)A '(0', x~)A(0' W)A '(0' 4')p.,

(14)

TABLE I. Expressions for the nonzero coefBcients Pz'
in terms of the angular momentum helicity amplitudes A„
(J = 0, 1, 2; v = 0 -+ J). The expressions for p~,

a ' are
identical except for the fact that the helicity amplitudes A„
are replaced by E„ in the expressions for Pz' '. In all cases
Po' ' = 0 for odd L2. We also assumed the following nor-
malization conventions: g IAvl = P IR„I = 1 .

J=oPo'= ~
P,"= g2/3

J=1P = —2/3
(IAo I

2
I
A& I')

P = —.'(2IA I' —IA I')
22 —2

po
P, ' = iim(AgAo)
P, = Re(AgAo).

p = ~ (1 +w'eI)

= A '(x~, 0)A '(0' x~)p.„,
= A (XJ, Q)A '(@',Xg)E, , (l, e') . (16)

The spatial part of the right-hand side of Eq. (16) gives,
within a normalization factor, the rotated unit vector
e = R~ ey in terms of the angles (0",P") measured in
the @ frame. The explicit relations will be given later.

The transition probability amplitude of Eq. (1) now
becomes

2POO 2

p = Q2/»(IAol' —2IA~I'+ IA21')

p."= —g2/»(2IAol'+ IAil' —2IA. I')
P,"= g2/105(6IA, I' —4A, I'+ IA, I')

Po = ~ ( I
Ao I'

I
A &

I I
A2

I

')
Po' ——~,'„(6IAo I' + &IA. I' + IA. I')

pg' ——~ [v 31m(AgAo) —~21m(A2A,")]
Pq

——~ [~2im(AqAo) + ~31m(A2A~)]
p2 = i~21m(A2Ao)

pz
———

~z [Re(A&Ao) —v 6Re(A2A~)]

p2 = +8/7Re(A2Ao)
Pg

——~ [~6Re(AgAo) + Re(A2A;)]

P~ = /6/7Re(AgAo)

xD' (B~'ep) D„+~ „(P',O', —Q')

xDq„($, 0, —Q) . (17)

The C and the P invariances of the transition opera-
tors lead to the following relations [4] among the angular
momentum helicity amplitudes:

A =A, =(—1) A, (v=0 + J),
E =E, , =(—1) E
C =C(, , ) =v2C,
When p and p are unpolarized, the normalized function
describing the angular distribution of the two photons
and of the electron in the final state can be written as

(18)

and

C PC, , =C, , =C
Making use of the symmetry relations of Eqs. (18) we
relabel the independent angular momentum helicity am-
plitudes as follows:

+1/2 +1 +1/2

) ) T~i~~v~T+~i~~v~J — J A1A2 Al &2 )

nl, n2 P, , rz gl, g&

where NJ is a normalization constant so chosen that the
angular distribution function TV integrated over all the
directions of the three particles will give the value one.
Afll, er a lengthy algebra, using Eqs. (17)—(20) and making
use of the Clebsch-Gordan series relation for the Wigner
D functions, namely,

j1+i 2

,D ', , = ) (jq j2mqmzl J, mq + mz) (jq j2m2m2] J, m2 + m2)D
J=li 1 —i 2 I

we obtain the normalized angular distribution function in the form
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0,2 0~2J0-+d, d'

L1,L3 L2 d, d'
(22)

where

d = Min(Lq, L2, J),
d' = Min(L3 L2, J),
~0 = l&0I'+ l&~ I' = 1

(I» I' —21&0I')
2

« = Icol'+ le~I' =1
(IC I' —2ICol') .

2
(23)

It should be noted that Co is expected to be of the order of m, /E, of Cq and therefore should be negligible compared
to Cq. The coefficients Pd' ' and pd,

s ' are given in terms of the angular momentum helicity amplitudes A„and E
of the radiative decays @' —+ yg + pq and yI ~ @ + p2, respectively:

pI&Is
d

d, d+2, ...,2J—d

) [+(s+d)/2+(s —d)/2 + ( 1) +(s+d)/2+(s —d)/2]

X JJ;,— L2d 11;
s —s —2

)2
Igd (24)

The explicit expressions for the nonzero Pd' ' are listed for J = Q, 1, and 2 in Table I.
The symbol Pdd',

' ' is a function of all the angles describing the directions of @, e, and of p in various frames.
The direction of pq is opposite to that of yq in the @ rest frame and the direction of p2 is opposite to that of g in
the yJ rest frame:

P' ' '=~1 — 1 — [(D'O'D'+D 'D'D'
dd' 2 2 dO d'0 dd' dO d'0 dd'

+( ) ( dO d'0 —d, d' + —dO d'0 d—,d')]— (26)

The arguments of the Wigner D functions, Ddo, Ddd, , and Dd, o are, respectively, (P, 0, —P), the direction of p in the
Q' frame; (gV, 0', —qV), the direction of @ in the yI frame; and e = R~+ey, the direction of e in the @ frame rotated
by the adjoint or inverse of the Wigner rotation matrix.

We will now express all angles in terms of angles measured in the @' frame. The angles (O', P') measured in the yI
rest frame are related to the angles 0' and gV measured in the vP' frame by the relations

cos0' = (cos 0' —1)—+ cos0' 1 —p22 1 —(p2/pi)2 + cos20'[(p2/pz)2 —p ]
) (1 —Pzcos20')

(28)

Since 0 & 0' & vr, sin0' has to be positive and so it will be given by the positive square root:

sin0' = +gl —cos20',

where cos0' is given by Eq. (28). In Eq. (28), Pq is the parameter v/c of g in the yI rest frame and P2 is v/c of the
yg in the g' rest frame. Simple algebra gives



51 ANGULAR DISTRIBUTION FUNCTIONS IN THE DECAYS OF. . . 1181

M2+ M~2

M~2, —M2

M~~, + M2

If the direction of e = R~ ey (where e@ is the direction of e in the @ frame) is given by the spherical polar angles
0" and gV', then these angles are related to the angles of e, (0",gV'), measured in the @' frame by the relations

IIcosP" = —,(p2P2sing' + cosg'cosP'sing" cosP" + cosg'sing" sing" —sing'cosg" p2), (31)

sing" = —,(cosP'sing" sing" —sing'sing" cosP"),
rj'

(32)

cosg" = [
—pip2(Pi + Pqcosg') + pi(sing'cosP'sing"cosP" + sing' sing'sing"singV') + pipq(PiP2 + cosg')cosg"] —,(33)

fl

I
sing" = +pl —cos20" =—

7l
(34)

where

g' = [(p2P2sing' + cosg'cosP'sing"cosP" + cosg'sing'sing"sing"
—sing'cosg" p2) + (cosP'sing" singP —sing'sing" cosP") ] (35)

q = [pip2 (1 + Pi P2cosg') —pi@i (sing'cosP'sing" cosP" + sing'sing'sing" sing") —pip2 (Pq + Picosg')cosg"] .

The constants p, (i = 1, 2) are related to P; (i = 1, 2) by the relations

(36)

(37)

A little algebra starting from Eqs. (30) shows

M2+ M~2

2M Mx
M~2, + M2

2M' M~
(38)

It is useful to note that, in Eq. (26),

DMo ——/47r/(2L+ 1)YqM . (39)

Since the spherical harmonics in Eq. (22) are linearly independent one can completely determine the relative phases
as well as the relative magnitudes of the angular momentum helicity amplitudes or equivalently of the radiative
multipole amplitudes in the processes @' —i yJ + pi and yg -+ vP + p2 (J = 0, 1,2). For example, when enough data
exist to perform the required numerical integrations one can use the equations

dOdB"dB'Yl„g(0, p)YI*, (0",p")D„~,(Q', 0', p')WJ(0—, Q; 0', p'; 0",Q")

4~ I 3(2J + 1)
1 — 1 — +4vr/(2Li + 1)+4m/(2Ls + 1). [ pI gI2 IgI2] (4O)2) &

i2I2+ 1) 4 4vr s

So one can measure the coeflicients P&' ' and p&,
' ' for all possible values of Li, L2, Ls, d, and d'. From these we

can determine the relative magnitudes as well as the relative phases of the angular momentum helicity amplitudes
A„and E„(J= 0, 1, 2; v = 0 ~ J). We also get the relative magnitude of Bo and Bi as well as that of Co and Ci.
For example, from Eq. (22) one finds that
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0,2 0~2J O~dm

L1 L2 d

(41)

dOWJ ——

0,2 Om2 J 0—+d'rn

L3 L2

(42)

So by measuring the (LqL2d) coefficients of P&~
' in

f dO WJ and the (LsL2d') coefficients of Po&,
' ' in

f dAWJ one makes the following determinations.
The J = 0 case is trivial. For the J = 1 case

the measurements of the (LqL2d) coefficients yield the
following: Measuring (220) gives po . Then (000) to-
gether with (020) yield ]Ao] and ]Aq] . Next (200)
determines n2. Finally (221) gives R, (AqA2). A simi-
lar procedure for the (LsL2d') coefficients in Eq. (42)
gives the corresponding values of the E amplitudes and
el, Measuring the coefficients of Pzz in Eq. (22) gives
Im(AgAo) Im(EgEo).

For the J = 2 case the measurement of the (Lz, L2, d)
coefficients in Eq. (41) give the following results. Mea-
suring the (000), (200), (020), (220), (040), and (240)
coefficients of P&z' ' gives po, po, cr2, [As~2, ]Aq]2,
and ]A2] . Next the (221) and the (241) coefficients de-
termine R, (AqAo) and R, (A2A&). Finally the (222) and
the (242) coefficients would each determine R, (A2Ao).
Measuring the (LsL2d") coefficients in Eq. (42) gives
the corresponding values of el„and the E amplitudes.
The (L&, Ls, L2, d, d') coefficients of Pzz, ' ' in Eq. (22)
determine the sine of the relative phases. Measuring any
four of the coefficients (22111), (22311), (22312), (22321),
and (22322) will determine the sines of the four relative
phases between Ao and Aq, A~ and A2, Eo and E~, and
Anally Ep and E2.

The integral of the angular distribution function TVJ
with respect to 9" and P" gives the angular distribution
function of the two p photons pq and p2 discussed in [1].

Our results are interesting. Previous studies [5] have
shown that by studying the angular distribution of p
and of e in the cascade process pp -+ yg —+ g + p m
(e+e )+p, when p and p are unpolarized, we can only get
the relative magnitudes of the angular momentum helic-
ity amplitudes and the cosines of the relative phases be-
tween the amplitudes in the radiative decay yg —+ g+ p.
One cannot specify the relative phase unambiguously
since the sine of the relative phase cannot be determined.
Only by studying the angular distribution [7] of the de-
cay products of yJ formed by polarized pp collisions can
one determine the relative phases unambiguously. Here
we have shown that even with unpolarized pp collisions
we can, in principle, determine the magnitudes as well as
the phases of the angular momentum helicity amplitudes
in the radiative decays @' -+ yJ + pq and yg ~ @+p2 if
we can measure the combined angular distribution of pq,
p2, and e in the cascade process

PP + 0 + XJ+'Yl ~ (O'Y2) +'Yl ~ (e e ) +'Y2+'Yl

Since our angular distribution function is given in terms
of angles measured in the pp c.m. kame, it will be espe-
cially useful to the experimentalists for direct comparison
with measurements.
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