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A rigorous QCD analysis of the inclusive annihilation decay rates of heavy-quarkonium states
is presented. The efFective-field-theory framework of nonrelativistic QCD is used to separate the
short-distance scale of annihilation, which is set by the heavy-quark mass M, from the longer-
distance scales associated with quarkonium structure. The annihilation decay rates are expressed
in terms of nonperturbative matrix elements of four-fermion operators in nonrelativistic QCD, with
coefficients that can be computed using perturbation theory in the coupling constant n, (M) The.
matrix elements are organized into a hierarchy according to their scaling with v, the typical velocity
of the heavy quark. An analogous factorization formalism is developed for the production cross
sections of heavy quarkonium in processes involving momentum transfers of order M or larger. The
factorization formulas are applied to the annihilation decay rates and production cross sections of
S-wave states at next-to-leading order in v and P-wave states at leading order in v .
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I. INTRO DU CTION

Calculations of the decay rates of heavy-quarkonium
states into light hadrons and into photons and lepton
pairs are among the earliest applications of perturbative
quantum chrornodynamics (QCD) [1—4]. In these early
analyses, it was assumed that the decay rate of the meson
factored into a short-distance part that is related to the
annihilation rate of the heavy quark and antiquark, and
a long-distance factor containing all the nonperturbative
effects of QCD. The short-distance factor was calculated
in terms of the running coupling constant n, (M) of QCD,
evaluated at the scale of the heavy-quark mass M, while
the long-distance factor was expressed in terms of the
meson s nonrelativistic wave function, or its derivatives,
evaluated at the origin. In the case of S-wave decays
[5,6] and in the case of P wave decays int-o photons [7],
the factorization assumption was supported by explicit
calculations at next-to-leading order in o, However, no
general argument was advanced for its validity in higher
orders of perturbation theory. In the case of P-wave de-
cays into light hadrons, the factorization is spoiled by log-
arithmic infrared divergences that appear in the qQ an-
nihilation rates at order n, [7,8]. Logarithmic infrared
divergences also appear in relativistic corrections to the
annihilation decays of S-wave states [8]. These diver-
gences cast a shadow over applications of perturbative
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QCD to the calculation of annihilation rates of heavy-
quarkonium states.

In this paper, we present a rigorous QCD analysis
of the annihilation decays of heavy quarkonium. We
derive a general factorization formula for the annihila-
tion rates of S-wave, P-wave, and higher-orbital-angular-
momentum states, which includes not only perturbative
corrections to all orders in o.„but relativistic corrections
as well. Factorization occurs in the annihilation decay
rates because the heavy quark and antiquark can annihi-
late only when they are within a distance of order 1/M,
where M is the heavy-quark mass. Since, in the meson
rest frame, the heavy quark and antiquark are nonrel-
ativistic, with typical velocities v (( 1, this distance is
much smaller than the size of the meson, which is of
order 1/(Mv). Factorization involves separating the rel-
ativistic physics of annihilation (which involves rnomenta

p M) from the nonrelativistic physics of quarkonium
structure (which involves p Mv). A particularly el-
egant approach for separating relativistic from nonrela-
tivistic scales is to recast the analysis in terms of non-
relativistic quantum chromodynamics (NRQCD) [9], an
effective field theory designed precisely for this purpose.
NRQCD consists of a nonrelativistic Schrodinger field
theory for the heavy quark and antiquark that is coupled
to the usual relativistic field theory for light quarks and
gluons. The theory is made precisely equivalent to full
QCD through the addition of local interactions that sys-
tematically incorporate relativistic corrections through
any given order in the heavy-quark velocity v. It is an
effective field theory, with a finite ultraviolet cutoff of or-
der M that excludes relativistic states —states that are
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poorly described by nonrelativistic dynamics. A heavy
quark in the meson can fluctuate into a relativistic state,
but these fluctuations are necessarily short lived. This
means that the effects of the excluded relativistic states
can be mimicked by local interactions and can, therefore,
be incorporated into NRQCD through renormalizations
of its infinitely many coupling constants. Thus, nonrela-
tivistic physics is correctly described. by the nonperturba-
tive dynamics of NRQCD, while all relativistic effects are
absorbed into coupling constants that can be computed
as perturbation series in o., (M).

The main advantage offered by NRQCD over ordinary
QCD in this context is that it is easier to separate contri-
butions of different orders in v in NRQCD. Thus, we are
able not only to organize calculations to all orders in o.„
but also to elaborate systematically the relativistic cor-
rections to the conventional formulas. Furthermore, we
provide nonperturbative definitions of the long-distance
factors in terms of matrix elements of NRQCD, mak-
ing it possible to evaluate them in numerical lattice cal-
culations. Analyzing S-wave decays within this frame-
work, we recover, at leading order in v, the standard
factorization formulas, which contain a single nonpertur-
bative parameter. At next-to-leading order in v, the
decay rates satisfy a more general factorization formula,
which contains two additional independent nonperturba-
tive matrix elements. Our results for P-wave decays into
light hadrons are even more striking, as we have discussed
in Ref. [10]. At leading order in v, the factorization for-
mula for these decay rates is the sum of two terms. In
addition to the conventional term, which takes into ac-
count the annihilation of the QQ pair &om a color-singlet
P-wave state, there is a second term that involves anni-
hilation &om a color-octet S-wave state. The infrared
divergences encountered. in previous calculations are ab-
sorbed into the matrix element of the color-octet term.

Our presentation is organized as follows. In Sec. II, we
first review NRQCD in general, emphasizing the velocity-
scaling rules, which are used in separating contributions
of different orders in v. We then discuss the space-time
structure of the annihilation of heavy quarks and anti-
quarks and explain how the effects of annihilation can
be taken into account in NRQCD by adding local four-
fermion operators to the effective Lagrangian. In Sec. III,
we analyze the matrix elements of the four-fermion oper-
ators. We discuss their scaling with v, the constraints on
them that follow Rom heavy-quark spin symmetry, their
relations to Coulomb-gauge wave functions, and their d.e-
pendences on the factorization scale. In Sec. IV, we ap-
ply our formalism to the annihilation decays of 8-wave
quarkonium states through next-to-Leading order in v
and to P-wave decays at leading order in v . In Sec. V,
we sketch the derivation of our results in a more conven-
tional perturbative approach to factorization. In Sec. VI,
we develop an analogous factorization formalism for cal-
culating the production cross sections of heavy quarko-
nium. In the concluding section, we compare our for-
malism with previous approaches to the annihilation and
production of heavy quarkonium, and we summarize the
current status of calculations of annihilation and produc-
tion rates.

II. NRQCD

We begin this section with a brief discussion of the
various momentum scales involved in heavy quarkonia.
Nonrelativistic QCD (NRQCD) [9] is our major tool for
resolving the different momentum scales involved in their
annihilation decays. We review this effective Beld theory
and its application to heavy-quarkonium physics. Then
we discuss the space-time structure of the QQ annihila-
tion process and develop a general factorization formula
for the annihilation decay rates of heavy quarkonia in
terms of matrix elements of NRQCD.

A. Energy scales in heavy quarkonium

In a meson containing a heavy quark and antiquark,
there are several different momentum scales that play
important roles in the dynamics. The most important
scales are the mass M of the heavy quark, its typical
three-momentum Mv (in the meson rest frame), and its
typical kinetic energy Mv . The heavy-quark mass M
sets the overall scale of the rest energy of the bound state
and also provides the short-distance scale for annihilation
processes. The size of the bound state is the inverse of
the momentum Mv, while Mv is the scale of the energy
splittings between radial excitations and. between orbital-
anguLar-momentum excitations. Spin splittings within
a given radial and orbital-angular-momentum excitation
are of order Mv, but this scale plays no significant role
in the dynamics.

The typical velocity v of the heavy quark d.ecreases as
the mass M increases. If M is large enough, v is propor-
tional to the running coupling constant n, (M), and it
therefore decreases asymptotically like 1/ ln(M). Thus,
if M is suKciently large, the heavy quark and antiquark
are nonrelativistic, with typical velocities v (( 1. We as-
sume in this paper that the mass M is heavy enough that
the momentum scales M, Mv, and Mv are well sepa-
rated: (Mv ) « (Mv) « M . Quark potential model
calculations indicate that the average value of v is about
0.3 for charrnonium and about 0.1 for bottomonium [11],
and these estimates are confirmed by lattice QCD simu-
lations. Thus, the assumption (Mv ) « (Mv) « M
is very good for bottomonium, and reasonably good even
for charmonium. For lighter quarkonium states, such as
the ss system, our analysis does not apply.

Another momentum scale that plays a role in the
physics of heavy quarkonium is A@~D, the scale asso-
ciated with nonperturbative effects involving gluons and
light quarks. It determines, for example, the Long-range
behavior of the potential between the heavy quark and
antiquark, which is approximately linear, with a coefB-
cient of (450 MeV) [11]. We can use this coeKcient
as an estimate for the nonperturbative scale: Ag~D =
450 MeV. For both charmonium and bottomonium,
the first radial excitation and the erst orbital-angular-
momentum excitation are both about 500 MeV above
the ground state. Taking this value as an estimate for
the scale Me, we see that AgcD and Mv are compara-
ble for both charmonium and bottomonium.
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Our analysis of heavy-quarkonium annihilation is
based on separating the effects at the momentum scale
M from those at the lower momentum scales Mv, Mv,
and AQQD. The effects at the scale M are taken into
account through the coupling constants of four-fermion
operators in the Lagrangian for NRQCD. We assume
that n, (M) « 1, so that these coupling constants can
be calculated using perturbation theory in o., (M). The
assumption that n, (M) « 1 is well satisfied for bot-
tomonium, for which n, (M) —0.18, and reasonably well
satisfied for charmonium, for which n, (M) 0.24.

The effects of the lower momentum scales Mv, Mv,
and AQcD are factored into matrix elements that can
be calculated using nonperturbative methods, such as
lattice-QCD simulations. These matrix elements are or-
ganized into a hierarchy in terms of their dependence on
v . Our final expression for the annihilation rate there-
fore takes the form of a double expansion in n, (M) and
v . These expansion parameters are not independent for
quarkonium. The typical velocity v of the heavy quark is
determined by a nonperturbative balance between its ki-
netic energy Mv2/2 and the potential energy, which, for
suKciently large M, is dominated by a color-Coulomb
term proportional to n, (1/r)/r. Setting r 1/(Mv) in
the potential and equating it with the kinetic energy, we
obtain the identification

v n, (Mv). (2.1)

This equation can be solved self-consistently to obtain an
approximate value for the typical velocity v. The iden-
tification (2.1) has a simple, but important, iinplication
for calculations of annihilation rates. Since the running
coupling constant in QCD decreases with the momen-
tum scale, v is greater than or of order n, (M). Thus
relativistic corrections of order (v ) can be expected to
be more important than perturbative corrections of or-
der n, (M). In particular, there is little to be gained
by calculating perturbative corrections at next-to-next-
to-leading order in n, (M), unless relativistic corrections
at next-to-leading order in v are included as well.

~NRQCD —~light + ~heavy + (2.2)

The gluons and the ny Havors of light quarks are de-
scribed by the fully relativistic Lagrangian

order Mv or less. Of course, the relativistic states we are
discarding do have some effect on the low-energy physics
of the theory. However, any interaction involving rela-
tivistic intermediate states is approximately local, since
the intermediate states are necessarily highly virtual and
so cannot propagate over long distances. Thus, general-
izing standard renormalization procedures, we systemat-
ically compensate for the removal of relativistic states by
adding new local interactions to the Lagrangian. To lead-
ing order in I/A or, equivalently, 1/M, these new interac-
tions are identical in form to interactions already present
in the theory, and so the net effect is simply to shift bare
masses and charges. Beyond leading order in 1/M, one
must extend the lagrangian to include nonrenormalizable
interactions that correct the low-energy dynamics order
by order in 1/M. In this cutoff formulation of QCD,
all effects that arise &om relativistic states, and only
these effects, are incorporated into renormalizations of
the coupling constants of the extended lagrangian. Thus,
in the cutoff theory, relativistic and nonrelativistic con-
tributions are automatically separated. This separation
is the basis for our analysis of the annihilation decays of
heavy quarkonia.

The utility of the cutoff theory is greatly enhanced if,
as a second step, a Foldy-Wouthuysen-Tani transforma-
tion [12] is used to block diagonalize the Dirac theory
so as to decouple the heavy-quark and antiquark degrees
of freedom. Such a decoupling of particle and antiparti-
cle is a familiar characteristic of nonrelativistic dynamics
and is quite useful in our study of heavy quarkonium.
The net effect is that the usual relativistic field theory of
four-component Dirac spinor fields is replaced by a non-
relativistic Schrodinger Beld theory, with separate two-
co. ,iponent Pauli spinor fields for the heavy quarks and
for the heavy antiquarks. This field theory is NRQCD
[9]. The Lagrangian for NRQCD is

B. NRQCD Lagrangian
8);sh, = ——trG„G" + ) qiPq, (2.3)

The most important energy scales for the structure and
spectrum of a heavy-quarkonium system are Mv and
Mv2, where M is the mass of the heavy quark Q and
v (( 1 is its average velocity in the meson rest frame.
Momenta of order M play only a minor role in the com-
plex binding dynamics of the system. We can take ad-
vantage of this fact in our analysis of heavy-quark mesons
by modifying QCD in two steps.

We start with full QCD, in which the heavy quarks are
described by four-component Dirac spinor fields. In the
first step, we introduce an ultraviolet momentum cutoff A
that is of order M. This cutoff explicitly excludes rela-
tivistic heavy quarks from the theory, as well as gluons
and light quarks with momenta of order M. It is ap-
propriate to our analysis of heavy quarkonium, since the
important nonperturbative physics involves momenta of

where G„ is the gluon field-strength tensor expressed in
the form of an SU(3) matrix, and q is the Dirac spinor
field for a light quark. The gauge-covariant derivative is
D" = 8"+igA", where A~ = (P, A) is the SU(3) matrix-
valued gauge field and g is the QCD coupling constant.
The sum in (2.3) is over the ny flavors of light quarks.
The heavy quarks and antiquarks are described by the
term

, (. D'), (. D'l
&h--~ = @'

I
&D~+ M I & + X'

I
~D~ —

2M I »

(2 4)

where g is the Pauli spinor field that annihilates a heavy
quark, y is the Pauli spinor field that creates a heavy
antiquark, and Dq and D are the time and space com-
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ponents of the gauge-covariant derivative D~. Color and
spin indices on the fields @ and y have been suppressed.
The Lagrangian l:i;spy + Zh, ~ describes ordinary QCD
coupled to a Schrodinger field theory for the heavy quarks
and antiquarks. The relativistic efFects of full QCD are

I

reproduced through the correction term bC in the La-
grangian (2.2).

The correction terms in the effective Lagrangian for
NRQCD that are most important for heavy quarkonium
are bilinear in the quark field or the antiquark field:

', 0'(D')'0' —x"(D')'x

@t(D gE —gE D)@ + yt(D . gE —gE D)y
c3+ gt(iD x gE —gE x iD) erg + y (iD x gE —gE x iD) cry8M~-

+2M 0'(gB. ~)W —X'(P ~)X (2.5)

where E' = G ' and B' = 2e'~"G~" are the electric and
magnetic components of the gluon field-strength tensor
G"". By charge-conjugation symmetry, for every term
in (2.5) involving @, there is a corresponding term in-
volving the antiquark field y, with the same coefficient
c;, up to a sign. The operators in (2.5) must be regular-
ized, and they therefore depend on the ultraviolet cutoK
or renormalization scale A of NRQCD. The coefFicients
c;(A) also depend on A in such a way as to cancel the
A dependence of the operators. Renormalization theory
tells us that NRQCD can be made to reproduce QCD re-
sults as accurately as desired by adding correction terms
to the Lagrangian such as those in (2.5) and tuning the
couplings to appropriate values [13].

Mixed two-fermion operators involving yt and g (or gt
and y) correspond to the annihilation (or the creation) of
a QQ pair. Such terms are excluded from the Lagrangian
as part of the definition of NRQCD. If such an operator
annihilates a QQ pair, it would, by energy conservation,
have to create gluons (or light quarks) with energies of or-
der M. The amplitude for annihilation of a QQ pair into
such high-energy gluons cannot be described accurately
in a nonrelativistic theory such as NRQCD. Nevertheless,
as is discussed in Sec. II E, the efI'ects of such annihilation
processes on low-energy amplitudes can be reproduced
by adding four-fermion operators such as gtyy"@ to the
effective Lagrangian.

Operators containing higher-order time derivatives,
such as @tD~Q, are also omitted from the efFective La-
grangian as part of the definition of NRQCD. These op-
erators can be eliminated by Geld redefinitions that van-
ish upon use of the equations of motion. Because of
these field redefinitions, the ofI'-shell Green's functions
of NRQCD need not agree with those of full QCD, but
the two theories are equivalent for on-shell physical quan-
tities.

The coefficients c; in (2.5) must be tuned as func-
tions of the coupling constant o.„the heavy-quark mass
parameter in full QCD, and the ultraviolet cutoff A of
NRQCD, so that physical observables are the same as in
full QCD. The coefficients are conveniently determined
by matching low-energy scattering amplitudes of heavy
quarks and antiquarks in NRQCD, calculated in pertur-
bation theory in o., and to a given precision in v, with
the corresponding perturbative scattering amplitudes in

full QCD. It is necessary to use on-shell scattering ampli-
tudes for this purpose, because the equations of motion
have been used to simplify the efFective Lagrangian for
NRQCD by eliminating terms with more than one power
of Dq. The scattering amplitudes can be calculated us-
ing perturbation theory in o.„since the radiative cor-
rections to the coefficients in the NRQCD Lagrangian
are dominated by relativistic momenta. These coefB-
cients therefore have perturbative expansions in powers
of n, (M) [9,14]. The coefficients in (2.5) are defined so
that c, = 1+ O(n, ).

The explicit factors of M in (2.5) were introduced in
order that the coefficients c,. be dimensionless. These co-
efficients therefore depend on the definition of the heavy-
quark mass parameter M. Our definition of M is speci-
fied by the Lagrangian (2.4): 1/(2M) is the coefFicient of
the operator v/itD g If a diff. erent prescription is adopted
for M, then all the c s must be changed accordingly. The
simplest way to determine the mass parameter M is to
match the location of the pole in the perturbative prop-
agator for a heavy quark in NRQCD with that in full
QCD. In both NRQCD and full QCD, the kinetic energy
for a heavy quark of momentum p in perturbation theory
has the form E = p2/(2M~ i, ) —p /(8M i,) + . , where
Mp ] is the perturbative pole mass. In Appendix 8 1, the
self-energy of the heavy quark is calculated in NRQCD
to order o,, and to leading order in v . If we use a
regularization scheme in which power divergences are
subtracted, then the energy-momentum relation gives
M = Mz, i, [1 + 0(n, )]. The corresponding calculation
using a lattice regularization has been carried out by
Morningstar [15]. The perturbative pole mass can be
related to any other definition of the heavy-quark mass
by a calculation in full QCD.

C. Velocity-sealing rules

In principle, infinitely many terms are required in the
NRQCD Lagrangian in order to reproduce full QCD, but
in practice only a finite number of these is needed for
precision to any given order in the typical heavy-quark
velocity v. We can assess the relative importance of var-
ious terms by using velocity-scaling rules that were de-
rived in Ref. [14] and are summarized in Table I. This



51 RIGOROUS @CD ANALYSIS OF INCLUSIVE ANNIHILATION. . . 1129

TABLE I. Estimates of the magnitudes of NRQCD operators for matrix elements between
heavy-quarkonium states in terms of the heavy-quark mass M and the typical heavy-quark ve-
locity v. The estimates shown apply to matrix elements in a quarkonium state ~H) whose position
is localized to a region of size 1/Mv or less. If the states are normalized to (H~H) = 1, then the
product of the magnitudes of the operators gives the magnitude of the matrix element. [In order
to obtain estimates for matrix elements between momentum eigenstates that are normalized to
(H~H) = V, where V is the volume of space, one should multiply the estimates for localized states
of unit norm by (Mv) .]

Operator

x
Dg
D
gE
gB
gP (in Coulomb gauge)
gA (in Coulomb gauge)

Estimate
'0

(Mv) i
(Mv) i

Mv
Mv

M
M v

Me
Mv

Description
effective quark-gluon coupling constant
heavy-quark (annihilation) field
heavy-antiquark (creation) field
gauge-covariant time derivative
gauge-covariant spatial derivative
chromo electric field
chromomagnetic field
scalar potential
vector potential

table lists the fields and operators from which terms in
the NRQCD action are built, together with the approx-
imate magnitude of each for matrix elements between
heavy-quarkonium states that are localized in space. The
scaling rules were derived in Ref. [14] by analyzing the
equations of motion for the quantum field operators of
NRQCD. The typical heavy-quark velocity v is deter-
mined dynamically by a balance between the kinetic and
potential terms in the equation of motion for the heavy-
quark field, and v can be used as an expansion param-
eter in order to analyze the importance of other terms.
The scaling rules are certainly correct within perturba-
tion theory in o.„but, since they are based on the self-
consistency of the field equations, they should also be
valid in the presence of nonperturbative efFects.

There is an important caveat to the velocity-scaling
rules that involves ultraviolet-divergent loop corrections.
Loop corrections to an operator give rise to power ultra-
violet divergences, as well as to logarithmic divergences.
The logarithmic divergences modify the scaling rules by
factors of ln(A/Mv). The power divergences can con-
tribute factors of 1/v, and the scaling rules apply only
after such 1/v divergences have been subtracted. The
subtracted expression is the relevant one for the follow-
ing reason. The power-divergent contributions to a given
operator 0 that yield factors of 1/v have the form of
renormalizations of lower-dimension operators. When
the coefficients of NRQCD are tuned so as to reproduce
full QCD, the coefficients of the lower-dimension opera-
tors are adjusted so that their contributions to physical
quantities cancel the contributions of the 1/v power-
divergent loop corrections to the operator O. Conse-
quently, the inclusion of a given operator in the NRQCD
Lagrangian yields a net correction to any physical quan-
tity that is in accordance with the velocity-scaling rules,
up to logarithmic corrections.

The estimates for the magnitudes of gP and gA in Ta-
ble I hold in the Coulomb gauge. The Coulomb gauge is
a natural gauge for analyzing heavy quarkonium, because
it avoids spurious retardation efFects that are present in
covariant gauges, but cancel out in physical quantities

[16]. The Coulomb gauge is also a physical gauge, that
is, a gauge with no negative norm states. Thus, it allows
a sensible Fock-state expansion for the meson. The dom-
inant Fock state is of course ~QQ), but the meson also
contains the Fock state ~QQg), which includes a dynam-
ical gluon, and higher Fock states as well.

The estimates in Table I were derived assuming that
one can do perturbation theory in the typical heavy-
quark velocity. This perturbation theory relies on the
fact that soft gluons have a weak coupling to heavy
quarks, not because the coupling constant o., is small,
but because the interaction is proportional to the heavy-
quark velocity v. In the derivation of the magnitude of
gA in Ref. [14], dynamical gluons were assumed to have
typical momenta of order Mv, which is the inverse size
of the quarkonium. The perturbative estimate for the
magnitude of the operator gA is a., (k)vk for a dynam-
ical gluon of momentum k. For A: of order Mv, we can
set o., v and recover the estimate Mv given in Ta-
ble I. For k of order Mv, we can set o,, 1, and we
again obtain the estimate Mv . This estimate relies on
perturbation theory, which may be suspect because of
the strong coupling between gluons with momenta on
the order of Mv . However, such gluons necessarily have
wavelengths of order 1/(Mvz) or larger, which is much
larger than the typical size 1/(Mv) of the quarkonium.
For such long-wavelength gluons, the multipole expan-
sion, whose validity transcends that of perturbation the-
ory in the coupling constant, can be used to justify the
estimate for gA in Table I [17].

The velocity-scaling rules in Table I show that the
terms in blab;i;„, , in (2.5) all give contributions that are
suppressed by O(v ) relative to those from the leading
Lagrangian Zh, y. Recalling that mixed two-fermion
operators, such as gt(Dz)2y, and operators involving
higher time derivatives, such as gtD~~Q, are omitted as
part of the definition of NRQCD, we see that Sl:b;i;„, ,
contains all the two-fermion NRQCD operators of rela-
tive order v . The Lagrangian &/ight + ~heavy + ~~biiinear
can therefore be used to calculate NRQCD matrix ele-
ments between heavy-quarkonium states with an error of
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order v . If an error of order v is sufficiently accurate,
then the matrix. elements can be calculated by using the
Lagr»g»n &light + ~heavy ~

It is instructive to contrast the relative magnitudes of
the NRQCD operators in the case of a heavy quarkonium
with the relative magnitudes of the same operators in the
case of a heavy-light meson. (In the meson rest frame,
the Lagrangian for NRQCD is identical to that for heavy-
quark effective theory, which is the standard formalism
for treating heavy-light mesons [18].) In a heavy-light
meson, the typical three-momentum of the heavy quark
is of order AQcD and is independent of the heavy-quark
mass. The binding energy is also of order A@cD, and is
much larger than the heavy-quark kinetic energy, which
is of order A&&D/M. Thus, in a heavy-light meson, the
three-momentum and the energy of the heavy quark are
both of order A@cD, in contrast with the situation in a
heavy quarkonium, in which the three-momentum is of
order Mv and the energy is of order Mv ~ Consequently,
in a heavy-light meson, the eKects of operators of dirnen-
sion d are of order (AqcD/M)" relative to the effects
of the dimension-4 operator gati Dtg The lead. ing term
gati Dqg describes a static heavy quark acting as a source
of gluon fields. All efFects of relative order AQQD/M cail
be taken into account by adding the dimension-5 opera-
tors QtD2$ and gtgB o@.

D. Quarkonium in NRQCD

Several qualitative features of heavy quarkonium can
be inferred directly from the NRQCD Lagrangian by ex-
ploiting the heavy-quark velocity v as an expansion pa-
rameter. Expansions in powers of v are possible in ordi-
nary QCD, but they are complicated by the need to make
a nonrelativistic expansion of each individual Lorentz-
invariant operator in order to separate the various powers
of v. Relativistic e8'ects have been unraveled to a large
extent in NRQCD, with the leading v dependence of each
operator being specified. by the velocity-scaling rules in
Table I.

The most distinctive phenomenological feature of
heavy quarkonium is that, for many purposes, it is accu-
rately described by the quark potential model, in which
the heavy quark and antiquark are bound by an instan-
taneous potential. This model is a tuned phenomenol-
ogy, rather than a theory, but it is far simpler than a
full field-theoretic description based on NRQCD or QCD.
Its validity rests upon two essential ingredients of heavy-
quarkonium physics. The first is that the dominant ef-
fect of the exchange of gluons between the heavy quark
and antiquark is to produce an instantaneous interaction.
The reason for this is that the most important gluons
have momenta of order Mv and energies of order Mv .
Such gluons are ofI' their energy shells by amounts of or-
der Mv, which are much greater than the typical kinetic
energy Mv of the heavy quark. Consequently, the in-
teraction times of the gluons are shorter by a factor of
1/v than the time scale associated with the motion of the
heavy quarks, and the gluons' interactions are, therefore,
instantaneous as far as the heavy quarks are concerned.

The second essential ingredient underlying the quark
potential model is that the probability of finding dynam-
ical gluons (those that are not part of the potential) in
the meson is small. This is important because dynamical
gluons with very low energy produce efFects that are not
instantaneous and are not readily incorporated into the
quark potential model. In particular, gluons with ener-
gies of order Mv have interaction times comparable to
that of the heavy quarks, and their exchange therefore
leads to significant retardation eKects. The probability
for the Fock state ~QQg) of the meson can be estimated
by considering the energy shift of a quarkonium state
~H) that is due to the presence of a Fock-state compo-
nent ~QQg). In the Coulomb gauge, the only terms that
connect the dominant Fock state ~QQ) to the Fock state
~QQg) are terms that involve the vector potential A. At
leading order in v, the contributions to the energy shift
come from the term i gA . gt V'@/M in Eh,

d x igA gtV'g ~H). (2.6)

Using the velocity-scaling rules in Table I and taking into
account the relevant integration volume 1/(Mv), we ob-
tain the estimate AE Mv . This energy shift can be
written in a different way as the product of the prob-
ability P&& for the QQg state multiplied by the energy
E of that state. For gluons with momenta k of order
Mv, the energy of the QQg state is dominated by the
energy of the gluon, and we find that P& v . ForQQa
dynamical gluons with very low energies of order Mv or
less, the energy of the QQg state is of order Mv2 and we
obtain the estimate P&& v . For heavy quarkonium,

QQg states are therefore suppressed relative to the dom-
inant QQ state by a factor v in the amplitude, and by a
factor v in the probability. Hence, for most quantities,
efFects due to Fock states such as ~QQg) that contain
dynamical gluons are suppressed by powers of v . This
might be expected from the phenomenological successes
of the quark potential model. However, there are quan-
tities, such as the decay rates of P-wave states into light
hadrons [10],for which the efFects of the Fock state ~QQg)
are of leading order in v and the quark potential model
fails completely.

Another important feature of quarkonium structure is
its approximate independence of the heavy-quark spin.
This feature follows immediately from the structure of
the NRQCD Lagrangian, which exhibits an approximate
heavy-quark spin symmetry. The leading term Zh y is
completely independent of the heavy-quark spin. With
just this term, states that diH'er only in the spins of
the heavy quark and antiquark have identical properties;
heavy-quark spin is conserved and can be used to la-
bel the energy eigenstates. Spin dependence enters first
through the bilinear terms in (2.5) that contain Pauli
matrices, and they give corrections that are of relative
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order v . Thus, spin splittings for quarkonia should
be smaller than splittings between radial and orbital-
angular-momentum excitations, with the ratios of these
splittings scaling roughly as v . This familiar feature of
the spectra of charmonium and bottomonium reinforces
our confidence in the power-counting rules and in the
utility of a nonrelativistic framework for studying quarko-
nium.

The total angular momentum J, the parity P, and
the charge conjugation t are exactly conserved quantum
numbers in NRQCD, as well as in full QCD. Thus, the
energy eigenstates ~H) of heavy quarkonium can be la-
beled by the quantum numbers J . By the arguments
given above, the dominant component in the Fock-state
expansion of ~II) is a pure quark-antiquark state ~QQ).
The Fock state ~QQg), in which a dynamical gluon is
present, has an amplitude of order v, and higher Fock
states have amplitudes of order v or higher. Since our
primary interest is in processes in which the Q and Q in
the quarkonium annihilate, we concentrate on the state
of the QQ pair in the various Fock-state components.
For a general Fock state, the QQ pair can be in either
a color-singlet state or a color-octet state. Its angular-
momentum state can be denoted by the spectroscopic
notation + LJ, where S = 0, 1 is the total spin of the
quark and antiquark, L = 0, 1, 2, . . . (or L = S, P, D, . . .)
is the orbital angular momentum, and J is the total an-
gular momentum. A QQ pair in a + Lg state has par-
ity P = (—I)++i; if it is in a color-singlet state, it has
charge-conjugation number C = (—1)~+s.

In the Fock state ~QQ), the QQ pair must be in a
color-singlet state and in an angular-momentum state

+ L J that is consistent with the quantum numbers
J of the meson. Conservation of J implies that
mixing is allowed only between the angular-momentum
states (J —1)g and (J + 1)g. For example, a Si QQ
state can mix with a Dl state. However, such mixing
is suppressed because operators that change the orbital
angular momentum must contain at least one power of
V'. In general, up to corrections of order v, we can re-
gard the QQ component of the meson as being in a defi-
nite angular momentum state + LJ. Of course, if the
contribution of the dominant angular-momentum state
is suppressed in a given process, then the contribution of
the subdominant states takes on increased importance.
We will present examples of this phenomenon in the dis-
cussions of the decay and production of P-wave states.

We turn next to the Fock state ~QQg) of the meson,
which includes a dynamical gluon and has a component
whose amplitude is of order v. In spite of the fact that

In perturbation theory, ladderlike Coulomb-gluon ex-
changes between the quark and antiquark give a factor of
order o.,/v for each ladder rung. The spin-flip contribution is
down by v relative to this Coulomb-ladder contribution. For
example, in a two-loop calculation, the Coulomb ladder gives
a factor of order (a, /v), while the ladder with one Coulomb
exchange and one spin-Hip exchange gives a factor of order
V 0!s V —0!s

the dynamics of the soft gluon is nontrivial, NRQCD tells
us much about the quantum numbers of the QQ pair in
the QQg component whose amplitude is of order v. The
pair must of course be in a color-octet state. Heavy-
quark spin symmetry implies that the total spin quan-
tum number S for the QQ pair is the same as in the
dominant Fock state ~QQ). But NRQCD also tells us
that the orbital state of the QQ pair is closely related
to that in the Fock state ~QQ). The reason for this is
that the coupling of the soft gluon can be analyzed using
a multipole expansion, and the usual selection rules for
multipole expansions apply. The leading interaction that
couples the dominant Fock state ~QQ) to the state ~QQg)
is the electric-dipole part of the operator @tgA Vg in

y and this changes the orbital-angular-momentum
quantum number L of the QQ pair by +1. Higher mul-
tipoles bring in additional powers of v, as does second-
order perturbation theory. Thus, if the QQ pair in the
dominant Fock state ~QQ) has angular-momentum quan-
tum numbers + LJ, then the Fock state ~QQg) has an
amplitude of order v only if the QQ pair has total spin S
and orbital angular momentum 1+1 or I —1. For exam-
ple, if the dominant Fock state consists of a QQ pair in
a Si state, then the Fock state ~QQg) has an amplitude
of order v only if the QQ pair is in a color-octet state
with angular momentum quantum numbers Po, Pl, or
P2. If the dominant Fock state consists of a QQ pair in

a iPi state, then the Fock state ~QQg) has an amplitude
of order v only if the QQ pair is in a color-octet So or
D2 state.

E. Space-time structure of annihilation

As we will explain in this subsection, the annihilation
of a heavy QQ pair into gluons (or light quarks) occurs
at distances that are typically of order 1/M, that is, at
momentum scales of order M. Because of the large mo-
mentum scales involved, the details of the annihilation
process cannot be described accurately within a nonrel-
ativistic effective theory such as NRQCD. Nevertheless,
as we will argue in the next subsection, the efFects of
annihilation can be incorporated into NRQCD through
four-fermion operators in the term bC in the NRQCD
Lagrangian. To show that the required operators are
local, it is sufFicient to show that the interactions they
account for occur over short distances of order 1/M.
Strictly local operators are then obtained by expanding
the short-distance interaction in a Taylor series in the
three-momentum p of the heavy quark multiplied by the
characteristic size 1/M.

Now we wish to argue that the annihilation process is
indeed local, i.e. , that the annihilation does occur within
a distance of order 1/M. We note that any annihilation
must result in at least two hard gluons (or light quarks),
each with momentum of order M. This has two con-
sequences. First, the heavy quark and antiquark must
come within a distance of order 1/M in order to anni-
hilate. That is because the emission of a hard gluon
&om, say, the heavy quark puts it into a highly virtual
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state, which can propagate only a short distance before
the quark must annihilate with the antiquark. Thus,
the total annihilation amplitude can be expressed as the
sum of pointlike annihilation amplitudes, where the sum
extends over the possible annihilation points inside the
meson. The annihilation rate is the square of the total
annihilation amplitude, summed over all possible final
states. The second consequence of the hard gluons is
that there is no overlap between one annihilation ampli-
tude and the complex conjugate of another if the two
annihilation points are separated by a distance greater
than about 1/M. This might seem surprising, since the
gluons are, in effect, on their mass shells (that is, they
&agment into jets with invariant masses much less than
M). There is no highly virtual state to constrain the dis-
tance between the annihilation points for two amplitudes
that produce the same final-state jets. Nevertheless, the
annihilation points must be in close proximity to each
other in order for there to be an overlap between the fi-
nal states. In order to see why this is so, we note that,
in classical mechanics, we could trace the two final-state
jets back to the annihilation vertex, and there would be
no ambiguity whatsoever as to its space-time position.
In quantum mechanics, the uncertainty principle tells us
that we can know the position of the annihilation vertex
only to a precision of order 1/M, since the jet momenta
are of order M. Hence, in quantum mechanics, QQ an-
nihilation is not a pointlike process, but it is a localized
process, with a size of order 1/M.

In a field-theoretic calculation of the annihilation rate
at leading order in o.„the localization of the annihilation
process would manifest itself as follows. The annihilation
rate involves the imaginary part I'(P, p, p') of the scatter-
ing amplitude for a QQ pair with total momentum P and
initial and final relative momenta p and p'. Consider the
Fourier transform of I'(P, p, p') with respect to all three
momentum variables:

d4P d4 d4 I 'P (X—X') 'p ( — ) 'p' (
' — ')

xl (P, p, p'). (2.7)

Here, xq and x2 correspond to quark and. antiquark in-
teraction points in one annihilation amplitude, xz and
xz correspond to quark and antiquark interaction points
in the complex conjugate of a second annihilation am-
plitude, and A = (xq + x2)/2 and A' = (xz + x2)/2 are
average annihilation points for the first and second ampli-
tudes. The fact that I'(P, p, p') is insensitive to changes
in p and p' that are much less than M implies that, in
the Fourier transform, xq (xz) is localized to within a dis-
tance of order 1/M of x2 (x2). Similarly, the fact that I'
is insensitive to changes in P that are much less than M
implies that the first and second amplitudes have signifi-
cant overlap only if X and X' are separated by a distance
of order 1/M or less. Note that, if one puts a restriction
in the annihilation rate on one of the components of the
jet momentum, then I' becomes sensitive to that com-
ponent of P, and the annihilation vertices are no longer
localized along that direction. This is a consequence of
the uncertainty principle, which says that knowledge of a

component of the jet momentum along a given direction
reduces our potential knowledge of the position of the
annihilation vertex along that direction.

The radiation of soft or collinear gluons might seem
to violate this simple localization picture that appears
at leading order in the coupling constant. Gluon radia-
tion from the initial QQ pair is not a problem, since in-
frared divergences can be factored into the long-distance
matrix elements of the four-fermion operators that me-
diate the annihilation process in NRQCD, and collinear
divergences are controlled by the heavy-quark mass. We
must, however, worry about infrared or collinear diver-
gences from the radiation of gluons from the final-state
hard gluons. In the presence of such soft or collinear
radiation, the hard gluon can propagate almost on its
mass shell from the annihilation point to the emission
vertex. The energetic final-state gluon jet points back to
the emission vertex, rather than to the annihilation point,
which may be far away. In perturbation theory, infrared
and collinear divergences occur in individual Feynman
diagrams and produce a sensitivity to the heavy-quark
momenta in I'. However, the Kinoshita-Lee-Nauenberg
(KI N) theorem [19]guarantees that, when one sums over
the contributions of all nearly degenerate final states, as
is done in forming the inclusive annihilation rate, the
infrared divergences cancel between diagrams involving
real and virtual gluon emission. We can think of this
KLN cancellation as a consequence of a generalized form
of the uncertainty principle: we can localize the annihi-
lation point, provided that we do not require too much
knowledge about the final state that is, provided that
we do not distinguish between the various states that
contribute to the inclusive cross section.

The locality of the annihilation process is spoiled if
the final-state gluons form a narrow resonance, such as
a glueball. This is because the jets produced by the de-
cay of the resonance point back to the place where the
resonance decayed. If the resonance is narrow, this may
be far from the point where the heavy quark and anti-
quark annihilated. That is why perturbation theory can-
not be applied directly to the cross section for e+e an-
nihilation into hadrons in the region of the charmonium
or bottomonium resonances. In a field-theoretic calcula-
tion, the resonance partially spoils the KLN cancellation
of infrared and collinear divergences. While contribu-
tions from gluons that have exactly zero momentum or
are exactly collinear still cancel, the real and virtual con-
tributions no longer cancel for soft gluons whose energy
is comparable to the resonance width or collinear gluons
whose transverse momentum is comparable to the reso-
nance width. In the case of e+e annihilation, one can
deal with this problem by forming a suitable average of
the cross section over the resonance region [20]. In per-
turbation theory, the eA'ect of this smearing is to allow
virtual soft or collinear emission at one value of the e+e
center-of-mass energy v s to cancel real soft or collinear
emission at a slightly higher value of ~s, but the same
value of the energy of the resonating QQ pair. This so-
lution of smearing in the energy is not available to us in
the case of quarkonium annihilation. Fortunately, there
are no known narrow glueball resonances in the charmo-
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nium or bottomonium region, and so we do not expect
the resonance issue to be a problem in practice.

F. Annihilation into light hadrons

. f„(A)
~4-fermion ) d 4 +n (A) q (2 8)

Since the annihilation of a QQ pair necessarily pro-
duces gluons or light quarks with energies of order M,
the annihilation amplitude cannot be described accu-
rately within NRQCD. Nevertheless, the annihilation
rate, which is the square of the amplitude summed over
final states, can be accounted for in NRQCD. Since the
annihilation rate of the QQ pair is localized within a dis-
tance of order 1/M, the annihilation contribution to a
low-energy QQ -+ QQ scattering amplitude can be re-
produced in NRQCD by local four-fermion operators in
8Z involving g, yt, y, and @t. The optical theorem re-
lates QQ annihilation rates to the imaginary parts of
QQ + QQ scattering amplitudes. This relation implies
that the coefBcients of the four-fermion operators in bC
must have imaginary parts. These imaginary parts are
the manifestation of annihilation in NRQCD.

The four-fermion interactions that represent the efFects
of QQ annihilation in NRQCD have the general form

where the Q„are local four-fermion operators, such as
The naive scaling dimensions d of the opera-

tors can be obtained by counting the powers of M using
Table I. The factors of M~" 4 in (2.8) have been in-
troduced so as to make the coefficients f dimensionless.
The operators 0 must be regularized, and they there-
fore depend on the ultraviolet cutoK or renormalization
scale A of the effective theory. The natural scale for this
cutoff is M, since 1/M is the distance scale of the an-
nihilation process. However, all results are independent
of A, since the coefFicients f„(A) depend on A in such a
way as to cancel the A dependence of the operators. The
coefficients can be computed in full QCD as perturbation
series in n, (M), in which individual terms may depend
on ln(M/A).

If the analysis of annihilation rates were carried out
completely within full QCD, then the scale A would arise
as an arbitrary factorization scale that must be intro-
duced in order to separate the momentum scale M from
smaller momentum scales of order Mv or less. The fac-
torization scale A should not be confused with the renor-
malization scale p of the full theory. The coeKcients
f (A) are independent of p, if they are computed to all
orders in n, (p), although some p dependence is intro-
duced as usual by the truncation of the perturbation se-
ries. Unless we explicitly specify otherwise, we always
make the choice p = M in this paper.

The dimension-6 four-fermion terms in bd are

(~~4-fermion)g —8 2 +1 ( ~0) + 2 +1( ~l) + 2 +8( ~0) + 2 +8( ~1) )I

f1( S0) 1 f1( ~1) 3 fs( ~0) 1 fs( Sl) 3 (2 9)

where the dimension-6 operators are

&1('~0) = O'XX'4,
&1('~i) = 4'~x x'~4,
& ('~o) = O'T xx'T 0,
Ds( Si) = Q crT y y o.T g.

(2.10a)
(2.10b)

(2.10c)
(2.10d)

The subscript 1 or 8 on the operators and on their coeKcients indicates the color structure of the operator. The
arguments 2s+ I g indicate the angular-momentum state of the QQ pair which is annihilated or created by the
operator. Normal ordering of the four-fermion operators 0 will always be understood, so that matrix elements of Q
receive contributions only from annihilation of the Q and Q. The dimension-8 terms in the Lagrangian for NRQCD
include

fi('Pi), fi( P0)

f ('P ) ~ (.P )
('~o) ~ ( q )

S D91( 1 ~ 1) ~ (3g 3D )

fi('Pi) ~ (3P)

~1('~1)

(2.11)

The dimension-8 operators included explicitly in (2.11) are

»('P ) = 0 "(——,'D)x x'( ——;D)0,

Oi( P0) = —gt( —2D cr)gy (—2D - rr)g,
3

Gi( Pi) = —gt( —2D x a)y yt( —2D x a)@,
2

(2.12a)

(2.12b)

(2.12c)
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0,('P, )

&i('so)

pi( Si)

~.('Si, 'D. )

qt( i D(~~a))& &t( ~ D(~~i))q
1 . ++

2
~tXXt(--:D)'~ + H

1 . ++
/toy yto( —2D) g + H.c.

1— ~t-'xxt '(--)'D'D'~ + H

(2.12d)

(2.12e)

(2.12f)

(2.12g)

where D is the difference between the covariant deriva-
tive acting on the spinor to the right and on the spinor
to the left: ytDQ—:yt(DQ) —(Dy)tg. We have used
the notation T~'~~ for the symmetric traceless compo-
nent of a tensor: T(U) = (T'~ + T~')/2 —T""h'~/3. For
each of the operators shown explicitly in (2.11), there
is a corresponding color-octet operator C78 or 'P8, which
contains color matrices T inserted between gt and y
and between yt and g. This exhausts the list of the
dimension-8 operators that contribute at tree level to QQ
scattering in the center of momentum frame. There are
other dimension-8 operators, such as V(sty) (ytDQ)
or D(gtT y) . D(ytT Q), in which a derivative acts on
the product of gt and y or on the product of yt and

Matrix elements of operators such as these are pro-
portional to the total momentum of the QQ pair, and
therefore do not receive any contributions from the dom-
inant Fock state ~QQ) in the meson rest frame. They do,
however, receive contributions from higher Fock states,
such as ~QQg), in which the total momentum of the QQ
pair is nonzero.

According to the velocity-scaling rules in Table I, the
dimension-6 terms in (2.9) scale as v relative to the lead-
ing term l:g, „ in the NRQCD Lagrangian. Thus, if
we consider only the dependence on v, the terms in
(2.9) appear to be more important than the terms in
bl.b;~;„„which scale as v relative to the terms in

y However, the contributions from four- fermion
operators contain extra suppression factors, owing to the
operator coefBcients, whose imaginary parts are of order
o., (M) or smaller. Thus, the contributions to annihila-
tion widths from (2.9) are of order n, (M)v or smaller
relative to the scale Mv of the splittings between ra-
dial excitations and between orbital-angular-momentum
excitations. Similarly, the contributions to annihilation
widths from the dimension-8 operators in (2.11) are at
most of order n2(M)v relative to the scale Mv of split-
tings between energy levels. Thus, the annihilation decay
rates for heavy-quarkonium states are tiny perturbations
on the energy levels. This is certainly true empirically.
In the charmonium system, the ground state g has the
largest annihilation width, but it is less than 3/p of the
splitting between the g and the erst radial or orbital-
angular-momentum excitations. For bottomonium, the
annihilation widths are always less than 1%% of the corre-
sponding splittings.

In order to obtain an expression for the annihilation
rate, we recall that the decay rate is —2 times the imagi-
nary part of the energy of the state. The contribution to
the imaginary part of the energy that corresponds to an-

nihilation into light hadrons comes &om the expectation
value of —bd4 p, ; „, whose coefBcients have imaginary
parts. Thus, we see that the annihilation rate of a heavy-
quarkonium state H into light hadrons is

I (H M LH) = 2 Im (K~824 f„;„~K), (2.13)

I'(H -+ LH) = ) „" (HiQ„(A)iH). (2.14)
.2 Im f„(A)

Equation (2.14) is our central result for the annihilation
decays into light hadrons. It expresses the decay rate
as a sum of terms, each of which factors into a short-
distance coefficient Im f„and a long-distance matrix el-

ement (H~Q ~H). The coefficients Im f„ in (2.14) are
proportional to the rates for on-shell heavy quarks and
antiquarks to annihilate from appropriate initial con6g-
urations into hard gluons and light quarks, and can be
computed as perturbation series in n, (M). The matrix
elements (H~O„~H) give the probability for finding the
heavy quark and antiquark in a configuration within the

Radial and orbital-angular-momentum excitations of a
quarkonium may decay through the Hermitian part of the
NRQCD Lagrangian to lower-lying quarkonium states plus
light hadrous. An example is the decay of g(2S) into gvr7r.
Iu this example, the spectrum of states in NRQCD contains a
continuum of parer scattering states, each of which includes a
small admixture of the bare Q(2S) state, and a discrete state,
which is mostly the bare g(2S) state, but which also contains
a small admixture of bare $7rvr scattering states. The Q(2S)
Breit-signer resonance in, for example, the amplitude for
e+e ~ p+ p results from the contributions of the complete
spectrum of states. However, the resonance in the amplitude
can be reproduced by a single state, with complex energy,
that is an eigenstate of the nonlocal efFective Hamiltonian that
one would obtain by integrating out the light-hadron states
in NRQCD. One should identify the state ~H) in (2.14) with
such an eigenstate iu applying (2.14) to an excited quarko-
nium state that decays through the Hermitian part of the
NRQCD Lagrangian into a lower-lying quarkonium state.

where LH represents all possible light-hadronic final
states. The expectation value is taken in the rest kame
of the quarkonium, where its total momentum P van-
ishes. The state ~H) = ~H(P = 0)) is an eigenstate of
the NRQCD Hamiltonian. It has the standard nonrela-
tivistic normalization: (H(P') ~H(P)) = (2vr) 8 (P —P').
Inserting the expansion (2.8) into (2.13), we obtain
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meson that is suitable for annihilation, and can be eval-
uated nonperturbatively using, for example, lattice sim-
ulations. The dependence on the arbitrary factorization
scale A in (2.14) cancels between the coefficients and the
operators.

In some calculations of the matrix elements in (2.14),
such as lattice simulations, it may be useful to approxi-
mate the states IH) by eigenstates of the Hermitian part
of the NRQCD Hamiltonian. We note that corrections to
this approximation erst appear at third order in pertur-
bation theory in Imbd4 p, ; „, since second-order per-
turbation theory does not give an imaginary contribu-
tion to the energy. The corrections are therefore of order
(I'/Mv2) 2I'. This is of relative order n4(M) v2 or smaller,
since the leading terms in I' scale like Mv and are mul-
tiplied by short-distance coefficients of order n2(M) or
smaller. This level of accuracy is suKcient for most prac-
tical purposes.

Applying the velocity-scaling rules of Table I to the
matrix elements (HIO (A) IH), one finds that the expres-
sion (2.14) for the annihilation decay rate can be orga-
nized into an expansion in powers of v . Only a finite
number of operators contribute to any given order in v .
The coefficients f (A) can be calculated as perturbation
series in n, (M), and so (2.14) is really a double expansion
in n, (M) and v . The simultaneous expansion in n, (M)
and v is useful to the extent that these two parameters
are both small. Of course, n, (M) and v are not indepen-
dent for heavy quarkonium. According to (2.1), v can be
identified with n, (Mv), which is larger than n, (M). This
implies that it would be futile to consider corrections to
the coefficients Im f of relative order n, (M) unless ma-
trix elements (HIC7 IH) of relative order v have already

been included.
The relation between v and n, (M) implied by (2.1)

follows &om the dynamics of heavy quarkonium. The
factorization formula (2.14) is actually an operator equa-
tion, and it can equally well be applied to other problems
in which the relation between v and n, (M) is different.
An example in which v and n, (M) are independent is
the annihilation of a pair of heavy-light mesons, such as
D and D mesons, at small relative velocity v (( l. As
long as v is much larger than A@cD/M, which is the typ-
ical relative velocity of a heavy quark in the heavy-light
meson, it can be identified with the velocity of the heavy
quark and the scaling rules of Table I apply.

G. Electromagnetic annihilation

In addition to annihilating into light hadrons, heavy-
quarkonium states can also annihilate into purely electro-
magnetic Anal states containing only photons and lepton
pairs. The energies of the final-state photons and lep-
tons are of order M. In NRQCD, the effects of electro-
magnetic annihilation can be accounted for in the same
way as the effects of annihilation into light hadrons: by
adding four-fermion terms bd4 &, , „to the effective La-
grangian. The primary difference is that in the case of
electromagnetic annihilation, the final state, as far as
the strong interactions are concerned, is the @CD vac-
uum state Io). The four-fermion operators that repro-
duce the effects of electromagnetic annihilation therefore
differ from those in (2.9) and (2.11) by the insertion of
an operator Io)(OI that projects onto the @CD vacuum
state. The dimension-6 terms that must be added to the
Lagrangian are

lg 3+
(~«' ., ;..), , = '

M,
' 4'xlo)(olx'0 + M, 0' xlo) (Olx' 4 (2.15)

Note that color-octet operators, such as @tT ylo)(olytT g, are omitted because they cannot contribute to matrix
elements between color-singlet heavy-quarkonium states. The dimension-8 terms that must be added to the Lagrangian
include

(~~4-fermion) g—s
fEM('&o) 1 (--;D) ~~lo) (ol~ (——;D)

+ 'M, ' &'(—2D'~')~lo) (Ol&'( —2D'~')&

sS 1
gtcrylo) . (Olyto. (

—-'D) g+ H.c.
2

(2.16)

We have shown only four of the possible dimension-8 terms. In particular, there are terms corresponding to each of
the operators shown explicitly in (2.11). The coefBcients of the operators in (2.15) and (2.16) can be computed as
perturbation expansions in n, (M).

The decay rate of a heavy-quarkonium state H into electromagnetic final states (EM) can be expressed in a factored
form that is analogous to that given in (2.14) for decays into light hadrons:

1(H ~ EM) = ) ~ 2 ™„", (Hl&t&'. ~(A) lo) (OI~'K:-&(A) IH) (2.17)
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where K and K' are products of the unit color matrix. , a
spin matrix (the unit matrix or o'), and a polynomial in
the covariant derivative D and other fields, as in (2.15)
and (2.16). The possible electromagnetic final states EM
include the multiphoton states pp and 3p and the lepton
pairs /+8, where E = e, p, w.

H. Computation of the coefBcients
of the four-Fermion operators

The nonperturbative long-distance dynamics of QCD
is described equally well by full QCD and by NRQCD.
The perturbation expansions for full QCD and NRQCD

I

also give equivalent descriptions of the long-distance dy-
namics, although the description is incorrect. For exam-
ple, perturbation theory allows quarks and antiquarks to
appear as asymptotic states. However, because the co-
efficients of the NRQCD operators are insensitive to the
long-distance dynamics, we can exploit the equivalence
of perturbative QCD and perturbative NRQCD at long
distances as a device to calculate the coeKcients of the
four-fermion operators. We compute in perturbation the-
ory in full QCD the annihilation part A(QQ —+ QQ) of
the scattering amplitude for an on-shell quark and an-
tiquark with small relative momenta. Then we use per-
turbation theory in NRQCD to compute the matrix ele-
ments of four-fermion operators 0 between on-shell QQ
states. The short-distance coeKcients are determined by
the matching condition

A(QQ m QQ)
pert @CD pert NRQCD

(2.18)

By expanding the left and right sides of (2.18) as Taylor
series in the relative momenta p and p' of the initial and
final QQ pairs, we can identify the coefficients of the indi-
vidual operators. These correspond to the infrared-finite
parts of the parton-level amplitudes for QQ scattering.
Because of the equivalence of NRQCD and full QCD at
long distances, all of the infrared divergences contained in
A(QQ ~ QQ) on the left side of (2.18) reside on the right
side in the NRQCD matrix elements (QQ~O„(A) ~QQ).

The application of the matching condition (2.18) is il-
lustrated in Appendix A. The imaginary parts of the
coefficients f that enter into the annihilation rates of
S-wave states through next-to-leading order in v and
the annihilation rates of P-wave states at leading order
in v are computed to order o, In order to illustrate
the use of the matching condition (2.18) beyond leading
order in n„we also calculate the coefficient Im fi( So)
at next-to-leading order in o,

III. MATRIX ELEMENTS FOR HEAVY
QUARKONIUM

The factorization formula (2.14) expresses the decay
rate of an arbitrary heavy-quarkonium state H into light
hadrons as a sum over all four-fermion operators 0„.
If we truncate the expansion at a given order in the
heavy-quark velocity v, then only finitely many of the
operators contribute. In this section, we show how the
number of independent matrix elements can be reduced
further by exploiting heavy-quark spin symmetry and by
using the vacuum-saturation approximation. We deter-
mine the matrix elements that contribute to the decays
of S-wave states at leading and next-to-leading order in
v and those that contribute to the decays of P-wave
states at leading order in v . We also discuss the rela-
tion between these matrix elements and Coulomb-gauge

wave functions, as well as the dependence of the ma-
trix elements on the factorization scale. For the sake of
clarity, we use the lowest S-wave and P-wave states of
charmonium for the purpose of illustration. However, our
results apply equally well to other sets of S-wave and P-
wave states, and they can be extended readily to higher-
orbital-angular-momentum states as well. The lowest-
lying S-wave states in the charmonium system are the
J++ = 0 + state q, and the 1 state J/g (henceforth
referred to simply as Q). The lowest-lying P-wave states
are the 1+ state h, and the J++ states y,J, J = 0, 1, 2.

A. Powers of velocity

We wish to determine the relative importance of the
matrix elements (H~O ~H) of four-fermion operators Q
for a heavy-quarkonium state ~H). The velocity-scaling
rules in Table I suggest that (H~Q ~H) is of the same
order in v for all the dimension-6 operators in (2.9), and
that all the dimension-8 operators in (2.11) are down
by one power of v . There can, however, be additional
suppression by powers of v, depending on the quantum
numbers of the state H. The velocity-scaling rules in
Table I give the correct result only if the operator 0
annihilates and creates a color-singlet QQ pair with the
same angular momentum + Ig as the QQ pair in the
dominant Fock state ~QQ) of the state ~H). [In the nota-
tion for four-fermion operators used in (2.9) and (2.11),
the subscript 1 or 8 and the argument + I J indicate
the color and angular momentum state of the QQ pair
that is annihilated and created by the operator. ] The
matrix element (H Q ~H) is suppressed by only one ad-
ditional power of v, relative to the velocity-scaling rules
in Table 1, if Q annihilates and creates QQ pairs in the
same color-spin-orbital state as appears in one of the Fock
states ~QQg) whose amplitude is of order v. In particu-
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lar, if the dominant QQ component is + L~, the QQ
pair in the component ~QQg) must be in a color-octet
state with spin quantum number S and orbital-angular-
momentum quantum number L + 1. In all other cases,
the matrix element is down by v or more relative to the
velocity-scaling result from Table I.

We can now identify the operators that contribute to
the annihilation of the g into light hadrons through next-
to-leading order in v . The J = 0 + state ~g, ) con-
sists predominantly of the Fock state ~QQ), with the QQ
pair in a color-singlet So state, but it also has an am-
plitude of order v for the Fock state ~QQg), with the
QQ pair in a color-octet Pi state. The QQ pair in
the dominant Fock state ~QQ) is annihilated and cre-
ated by the leading operator Oi ( Sp) = gtyyt@, and by
the operator Pi( Sp) = @tyyt( —2D) @ + H.c., which is

down by v . All other operators are suppressed by v4

or more relative to Oi( Sp). For example, the operator

Os( Pi) = gt( —2D)T y yt( —2D)T @ scales as v rela-
tive to Oi( Sp), but it contributes through the Fock state

~QQg), which gives an additional suppression by v2. The
operator Oi( Si) = g oy y crag scales as Oi( Sp), but it
contributes through the Fock state ~QQgg), and is there-
fore suppressed by an additional probability factor of v4.
As a final example, the operator V(@ty) V(yt@) scales
as v relative to Oi( Sp), but its matrix element is pro-
portional to the total momentum of the QQ pair, which
vanishes for the Fock state ~Q@) in the meson rest frame.
Thus, there are only two operators that contribute to the
decay rate of the g, into light hadrons through next-to-
leading order in v:

I'(g m LH) = (rkiO, ('So)iq, ) + (rj, iP, ('So)ig, ) + 0( I).2 Imp, ( S,), 2 Img, ('S.) (3.1)

The analysis of the operators that contribute to the de-
cays of the @ is siznilar to that for the rk. The 1 state
~g) consists predominantly of the Fock state ~QQ), with
the QQ pair in a color-singlet Si state, but it has an am-
plitude of order v for the Fock state ~QQg), with the QQ
pair in a color-octet Po, Pq, or P2 state. At leading
order in v, only the operator Oi( Si) contributes to the
decay rate of the @ into light hadrons. At next-to-leading
order in v, the only additional contribution comes &om
the operator Pi( Si). As in the case of the g„all con-
tributions &om Fock states containing dynamical gluons,
such as ~QQg), are of order v I' or higher.

We next determine the operators that contribute to
the annihilation decays of the P-wave states at leading
order in v . In contrast to the S-wave states, we And
that Fock states containing dynamical gluons play an
important role. The 1+ state ~h, ) consists predomi-

I

nantly of the Fock state ~QQ), with the QQ pair in a
color-singlet Pq state, but it has an amplitude of or-
der v for the Fock state ~QQg), with the QQ pair in
a color-octet Sp or D2 state. The Fock state ~QQ)
is created and annihilated by the dimension-8 opera-

++ ++
tor Oi( Pi) = @t(—zD)y yt( —zD)@. The Fock state

~QQg), with the QQ pair in a color-octet Sp state, also
contributes to the decay at the same order in v through
the operator Os(iSp) = QtT yytT g. The operator
scales as v relative to Oi( Pi), but there is also a sup-
pression factor of v2 from the probability for the QQg
state. Thus, the Fock state ~QQg), which contains a dy-
namical gluon, contributes to the decay rate into light
hadrons at the same order in v as the dominant Fock
state ~QQ). The resulting expression for the decay rate
j.s

2 Im 'P 2 Im iS
(3.2)

The analysis of the operators that contribute to the decays of the y o, y z, and y 2 is similar to that for 6 . The J++
state ~y ~) consists predominantly of the Fock state ~QQ), with the QQ pair in a color-singlet PJ state. It also has
an amplitude of order v for the Fock state ~QQg), with the QQ pair in a color-octet Si, Di, D2, or Ds state. The
Fock state ~QQ) contributes to the annihilation at leading order in v through the dimension-8 operator Oi( Pg).
The Fock state ~QQg), with the QQ pair in a color-octet Si state, also contributes to the annihilation rate at the
same order in v2, through the operator Os( Si) = Qta'T y yto'T g.

The analysis of the electromagnetic operators that contribute to the decays of S-wave and P-wave states is identical
to that of the operators that contribute to the decays into light hadrons, except that there are no color-octet operators.
We find, therefore, that there are two operators that contribute to the decay of the g into two photons through next-
to-leading order in v: @ty~O)(0~ytg and gty~O) (O~yt( —2D) @ + H.c. Thus, the decay rate for g, ~ pp is

. ++
I'(9. ~ ~~) = ~, (Ol~'&1%) + ", ' «&n. I&'~IO)(OI~'( —-*D)'@l%) + O(v'I'). (3.3)
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It is expressed in terms of the vacuum-to-g matrix
elements &Ol

pter

Irk& and &0lyt (—2 D) @ Irk&. Similarly
the decay rate for Q —+ e+e can be computed at
next-to-leading order in v in terms of &Olytcrglg) and

&Olytcr( ——'D) pig). For the decay y,o ~ pp, the
only operator that contributes at leading order in v

is gt( —2D cr)F10&&0lyt( —2D o')g, and so the decay
rate can be expressed in terms of the single vacuum-

to-y, o matrix element &Olyt( —2D . cr)ply, o&. Simi-
larly the decay rate for y 2 ~ pp can be calculated
to leaclingorder in v in terms of the matrix element

&Olx'( —-*&'*~')0Ix.2& only.

B. Heavy-quark spin symmetry

Heavy-quark spin symmetry provides approximate re-
lations between matrix elements for the various spin
states of a given radial and orbital excitation of heavy
quarkonium. The leading violations of heavy-quark spin

symmetry come from the spin-flip terms in (2.5), whose
eKects are of relative order v . Consequently, the equal-
ities that follow from heavy-quark spin symmetry hold
only at leading order in v . Nevertheless, these relations
can significantly reduce the number of independent ma-
trix elements that contribute to the decays of the various
spin states.

When applied to the S-wave states, heavy-quark spin
symmetry relates the rk and the three spin states of the Q.
For the matrix elements that contribute to their decays
into light hadrons at next-to-leading order in v, the spin-
symmetry relations are

&41&~('~~)10& = &g. l&~('~o)lg. & I1+0(v )], (3.4a)

(41&i('~i)14& = &n-l&i('~o)ln. ) II+&(v')) (34b)

The 12 spin states of the P-wave states h, , y o, y ~, and
y, ~ form a spin-symmetry multiplet. The spin-symmetry
relations between the matrix elements that contribute to
the decays of the P-wave states into light hadrons at
leading order in v are

A.JI&~('&~)l~.~& = &t.l&i('&i)lh. & 11+&(v')), J = o, 1, 2,

&~.~l&s('~~) I~.J) = «-I&s('~o) l~-& 11+O(v')]
(3.5a)

(3.5b)

Heavy-quark spin symmetry also relates the matrix elements that contribute to the electromagnetic annihilation
decay rates. For the matrix elements that contribute to the decays of g, and g, the spin-symmetry relations are

&Olx'~&I@(e)& = &Ol~'&I~. & t1 + O(v')]
e*.&Ol~'~(--;D)'&l&(e)& = &Ol~'( ——;D)'&I~~. & I1 + &("))

(3.6a)

(3.6b)

where the polarization vector e satisfies e e = 1. For the matrix elements that contribute to the decays of the y 0
and y 2 into two photons, the spin-symmetry relations are

Ol~ (-,'D~*~ l)yl~„(e)& = &Ol~t(-,'D ~)pl~„& 11 + O(v')]
3

(3 7)

where the symmetric polarization tensor ~'~ satisfies
tr(e) = 0 and tr(etc) = l.

C. Vacuum-saturation approx:imation

The four-fermion operators in (2.9) and (2.11) that
contribute to the decays of heavy quarkonium into light
hadrons are distinct from those in (2.15) and (2.16) that
contribute to electromagnetic annihilation. The electro-
magnetic matrix elements can be obtained from the cor-
responding light-hadronic matrix elements by making use
of the "vacuum-saturation approximation": insert a com-
plete set of light-hadronic states Px IX) (XI between yt
and y and assume that the sum is "saturated" by the
lowest-energy state, the @CD vacuum 10). The vacuum-
saturation approximation has been used in many other
contexts in particle physics, but it is usually just a sim-
plifying assumption without any rigorous basis. In the
case of heavy quarkonium, we can show that the vacuum-

saturation approximation is actually a controlled approx-
imation.

Consider the matrix element of a color-singlet operator
of the form Q = gtK' yytK g, where K and K' are
products of a unit color matrix, a spin matrix (the unit
matrix or a'), and a polynomial in D and other fields.
The vacuum-saturation approximation to the matrix ele-
ment &HIQ„IH& is obtained by inserting a complete set of
states IX) between y and yt, and assuming that the sum
is well approximated by the term involving the vacuum
state 10):

&Hl&. IH& = ) &Hl@'K.'xlX&&XI~'K-&IH&
X

= &HIS'K'. xlo&&olx'K-WIH& . (3 8)

If the last step in (3.8) is to be a controlled approxi-
mation, we must show that the contributions from all
other states, such as multigluon states, are suppressed
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by powers of v. One example for which this can be done
is the matrix element (iklgtyytglg, ). In the vacuum-
saturation approximation, the last line of (3.8) reduces to
l(0lyt@lg )I . This approximation would be exact if the
g, were a pure So QQ state. The pointlike operator y"g
would then annihilate the g completely, leaving the vac-
uum state. However, the g also has Fock-state compo-
nents, such as IQQg) and IQQgg), which include dynam-
ical gluons. Corrections to the vacuum-saturation ap-
proximation can be attributed to contributions from in-
termediate states IX) containing such dynamical gluons.
For the matrix element (rklgtyyt@lrk), a single-gluon
intermediate state is forbidden by color conservation,
and so the leading corrections to the vacuum-saturation

I

approximation come from two-gluon intermediate states
Igg). The leading contribution to (g, I@tylgg&(gglytvt)Irk)
comes from the IQQgg) component of the rk, which
has an amplitude of order v and a probability of or-
der v . Thus, the vacuum-saturation approximation for

(q, lgtyytglrI, ) holds up to corrections of order v .
The vacuum-saturation approximation holds up to cor-

rections of order v for any matrix element in which the
operator creates and annihilates the dominant QQ com-
ponent of the quarkonium state. For the matrix elements
that contribute to the decay rates of the S-wave states
into light hadrons through next-to-leading order in v,
the vacuum-saturation approximation gives

2

(n-l&i('~o) I~.) = «l~'&l~. ) II + o(~')1,
2

(@l&i('~i)I&) = (0I&'~&I&) I1+ &(&')]

(&.I&i('~o) I&-) = Re I(~.l@'~10&«l~'(—2D)'@le.)] I1+ &(~')]

(& I& ('~ ) I&) = Re I8'I @'~al0) (0 la'~( —-*D)'@l&&1 I
I + O (&')]

(3.9a)

(3.9b)

(3.9c)

(3.9d)

In the case of P-wave states, the vacuum-saturation approximation can be applied to the matrix elements of the
color-singlet four-fermion operators of dimension 8:

(h. l&i('&i) I~.&
= (01~'(—2D)@lh-) I1+ t-1(&')]

2

(&"l&i('&o) I&.o) = — (o &'(—2D ~)&l~') ll+ &(~')]
2

h.il&i('&i)l~-i& = — (01~'(—2D X ~)&l&-i) (I+ &(&')1

2

h 2l&i('&2) I&"& = ) . (01&'(—2D '"O'Ix-2) [1+&(~')] .
22

(3.10a)

(3.10b)

(3.10c)

(3.10d)

The vacuum-saturation approximation cannot be ap-
plied to matrix elements of color-octet operators, such
as (h, lgtT yytT @lb,), because the matrix element
(XlytT gib, ) vanishes if (XI is the vacuum or any other
color-singlet state.

nonperturbative factors in the decay rates can be clari-
fied.

Nonrelativistic Coulomb-gauge wave functions can be
defined naturally as NRQCD Bethe-Salpeter QQ wave
functions, evaluated at equal time. For example, the ra-
dial wave function R„(r) for the g, can be defined as

D. Relation to wave functions

In most previous work on the annihilation decays of
heavy quarkonium, the nonperturbative factors in the
decay rates were expressed in terms of wave functions, or
their derivatives, evaluated at the origin. These "wave
functions" were often identified with the Schrodinger
wave functions calculated in potential models for heavy
quarkonium. The wave-function factors were never given
rigorous field-theoretic definitions, and so the accuracy
of the approximations that were involved was always
vague. By expressing the decay rates in terms of ma-
trix elements of NRQCD, we have provided a rigorous
Geld-theoretic definition of the nonperturbative factors
in the decay rates. Since heavy quarks and antiquarks
are described in:NRQCD by a Schrodinger field theory,
the nonrelativistic wave functions can also be given rigor-
ous Geld-theoretic definitions, and their relations to the

R~. (A) = ~ (01~'@(A)ln.), (3.12a)

1 1
(01~'(-r/2) &(+r/2) In. &

Coulomb

(3.11)

The Pauli spinor fields @(r/2) and yt( —r/2) are under-
stood to be evaluated at the same time t = 0. The fac-
tor 1/v 4vr on the left is the spherical harmonic Ypo(r),
while the factor of +2K, on the left takes into account
the traces of the spin wave function h + ' /~2 and the
color wave function b'~/i/N, of the IQQ) component of
the q . In the absence of a regulator, the wave function or
its derivatives may be singular as r —+ 0. We can define
regularized "radial wave functions at the origin, " R„(A)
for g, and Ry (A) for g, by
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R~(A) e —= ~ (Ol~t~@(A)l@(e))
C

(3.12b)

where e is the polarization vector of the g. The local
operators yt@(A) and pter/(A) can be defined by dimen-
sional regularization with scale A, together with minimal
subtraction. They can also be defined by a lattice regu-
lator, or any other convenient regularization scheme. As
is suggested by the overbar, the intuitive interpretation
of R„(A) and Ry(A) is that they are the radial wave
functions averaged over a region of size 1/A centered at
the origin. Note that the regularized matrix elements in
(3.12) are precisely those that enter into the decay rates
for rI -+ pp and @ -+ e+e at leading order in v .

The matrix element (Olyt( —2D) @lq ) that con-
tributes to the decay rate for g ~ pp at next-to-
leading order in v can also be related to the Coulomb-
gauge wave function defined in (3.11). By the velocity-
scaling rules of Table I, it differs from the matrix ele-

ment (Olyt( ——'V') girl ) in the Coulomb gauge only at
relative order v . With appropriate regularization, the
latter matrix element can be identified with the limit as
r —+ 0 of —V' R(r), where R(r) is the radial wave func-

tion defined in (3.11). The operator yt(&V')2@ contains
a linear ultraviolet divergence proportional to yt@(A),
which we subtract, and a logarithmic divergence that is
cut oK at the scale A. This subtraction and cutoK define
a renormalized I aplacian of the radial wave function at
the origin, which we denote by V'2B„:

~ (Ol~'(2~)'&(A)l~ )
C Coulomb

(3.13)

The analogous quantity V'2Ry for the g can be defined in

a similar way. The corresponding gauge-invariant matrix
elements dier from V' B& and V' Ry only at relative
order v:

(Ol~ (——;D)'&(A)l~.)

e*. (Ol~t~( —2D)'@(A)lq(e)) =—

' V'R„, (A) [1 + O(v')].

V'2Rg(A) [1 + O(v )].

(3.14a)

(3.14b)

The intuitive interpretations of 9' R„(A) and

V'2Ry(A) are somewhat obscured by the subtractions
needed to define the renormalized matrix elements.

Heavy-quark spin symmetry implies that the wave
functions of the q, and g are identical up to corrections
of order v2:

Ro(") = R .(") t1 + O(" )].
It is convenient to introduce an average radial wave

function R~(r) for the 1S states rk and g, which can be
used when the differences of order v can be neglected:

R„(r) + 3Rg(r)
S (3.16)

Because of the heavy-quark spin symmetry, the regular-
ized quantities R„(A) and Ry(A) differ only at relative

order v, as do the renormalized quantities V'2R„(A) and
I

V'2R~(A). Weighted averages Rs(A) and V'2Rs(A) for
the S-wave states can be defined as in (3.16) . The S-wave
radial wave function that is computed in nonrelativis-
tic potential models can be interpreted as a phenomeno-
logical estimate of the wave function (3.16). Thus, the
value Rg(r = 0) that is obtained from potential models
can be used as an estimate of the regularized quantity
Rs(A) at a scale A of order Mv. The relation between
V'~Rs(A) and V' Rs(r = 0) in potential models is more
obscure, because of the subtraction that is required to
define the renormalized matrix element in (3.13), and be-
cause V' Rs(r) diverges linearly as r + 0 if the potential
is Coulombic at short distances.

Nonrelativistic wave functions for the P-wave states
can be defined through matrix elements in the Coulomb
gauge that are analogous to (3.11). For example, the
radial wave function Rh (r) for the h, can be defined as

3 l 1
Rh (r) ~

—r" e—: (Oly (
—r/2) &(+r/2) IZ, (e))

4vr ) g2%,
Coulomb

(3.17)

where the polarization vector satisfies e . e* = l. A regu-
larized derivative of the radial wave function at the origin
R& (A) can be defined by

(A) e =— ~ (Olx'(-,'W)&(A)lh-(e))
Coulomb

(3.18)

Analogous quantities R', (A) can be defined for the y,J

I

states. Since no subtractions are required in order to
define the operator on the right side of (3.18), the quan-
tity R& (A) has a straightforward intuitive interpretation
as the derivative of the radial wave function averaged
over a region of size 1/A centered at the origin. In the
gauge-invariant analogue of the matrix element (3.18),

++
the derivative V' is replaced by the covariant derivative
D. From the velocity-scaling rules of Table I, we see that
these matrix elements dier only at relative order v:
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(ol~'(-,'D. ~)4 (A) Ix.o) =
3

(Ol~'(-'. D)&(A)lh. (e)) = R3 (A) e [I + O(v')],

' Rx, (A) [1 + O(v )],

(3.19a)

(3.19b)

' R', (A) e [1 + O(v )], (3.19c)

3N' R'„(A) e" [1 + O(v )]. (3.19d)

2' R„[1+ O(v )],

(QIOi( Si)lg) = '
Rg [1 + O(v )],

(rI. I&i( ~0)lrI. ) = — «(Rs* &'Rs) [1 + O(v )],

(~.ln ('s )ln. ) (3.2Oa)

(3.2Ob)

(3.2Oc)

(@l&i('~i) I&) = —
2

' Re(Rs* &'Rs) [I + O(v')],

(3.20d)

In (3.20c) and (3.20d), we have used heavy-quark spin
symmetry to replace R„and Ry by their weighted av-

erage Rp and to replace V R„and V' Ry by V'2Rg

without any loss of accuracy. If we were to make the
same replacement in (3.20a) and (3.20b), the relative
accuracy would be decreased to v . For the decays of
the P-wave states into light hadrons at leading order in
v, the vacuum-saturation approximation together with
heavy-quark spin symmetry can be used to express all
the color-singlet matrix elements in terms of the average
regularized quantity R&. Combining (3.10) with (3.19),
we obtain the approximations

2

(h~lDi( Pi)lh~) = R'I, [1 + O(v )], (3.21a)

h.~l&i('P~) I&-~) = R~ [1 + O(v')]

J = 0, 1, 2 . (3.21b)

By heavy-quark spin symmetry, R& (A) differs from
R' (A), J = 0, 1, 2, only at order v2. For applications in
which v corrections can be neglected, these wave func-
tions can all be replaced by the average over the 16 P-
wave spin states, which we denote by R&(A). The value
Rz(0) for the derivative of the radial wave function at
the origin that is obtained from nonrelativistic potential
models can be interpreted as a phenomenological esti-
mate of the regularized quantity Ri&(A) at a scale A of
order Mv.

The vacuum-saturation approximation discussed in
Sec. III C allows the matrix elements of some four-
fermion operators to be expressed in terms of the reg-
ularized and renormalized wave-function parameters de-
fined above. Combining (3.9) with (3.12) and (3.14), we
obtain the following expressions for the matrix elements
that contribute to the decays of the q, and the @ into
light hadrons:

E. Factorization-scale dependence

The matrix elements (HIQ IH) that appear in the fac-
torization formula (2.14) are ultraviolet finite only if the
four-fermion operators 0 are properly regularized. The
regularization introduces dependence on the ultraviolet
cutofF A of NRQCD, and this cutoff dependence must
be understood in order to make quantitative predictions.
We assume that the operator 0 is normal ordered:
(OIO IO) = 0. This guarantees that in the matrix ele-
ment (HIC7 IH), the operator Q annihilates the heavy
quark and antiquark in the initial quarkonium state IH).
In addition to normal ordering, regularization is needed
to control power and logarithmic divergences. If a cuto8'
A is imposed on loop momenta, there are power diver-
gences in (HIO IH) that are proportional to A", where

p = 1, 2, . . . . If the operator 0 has dimension d, then
the coeKcient of A" is, by dimensional analysis, the sum
of matrix elements of four-fermion operators of dimen-
sion d —p or larger. If the dimension is larger than
d —p, the extra dimensions are balanced by powers of
I/M. Similarly the coefficients of logarithmic divergences
are proportional to matrix elements of four-fermion op-
erators of dimension d or larger.

The power and logarithmic divergences associated with
loop corrections to NRQCD operators can be regular-
ized by a variety of means. A convenient regulariza-
tion scheme for analytic calculations is dimensional reg-
ularization with minimal subtraction. The scale asso-
ciated with the dimensional regularization then plays
the role of the NRQCD cutofF A. An advantage in us-

ing a mass-independent regulator, such as dimensional
regularization, is that power divergences are automat-
ically discarded. In other approaches, such as lattice
regularization, the regularized operator may contain di-
vergences that are proportional to powers of A. These
power divergences are simply artifacts of the regulariza-
tion scheme and have no physical content. Since physi-
cal quantities are renormalization-group invariants, they
have no dependence on A. Hence, any power divergences
in NRQCD operator matrix elements must ultimately be
canceled by power divergences in operator coeKcients.

Once one has removed the power divergences, either
by employing a mass-independent regularization scheme
or by making explicit subtractions, the four-fermion op-
erators satisfy simple evolution equations of the form

(3.22)
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where the sum ranges over all four-fermion operators
Og (A) with dimensions dA, & d . The anornalous-
dimension coefficients p g (A) are computable as power
series in the running coupling constant n, (A). For
d = d@, the coefFicients p y are of order n„because
logarithmic ultraviolet divergences in one-loop diagrams
in NRQCD arise only &om transverse gluons, whose cou-
pling to the heavy-quark lines brings in a factor of v . The
coefFicients p„k for d„= 6 and dg ——8 are computed to
order n, in Appendix B.

By taking the matrix elements of (3.22) between heavy-
quarkonium states ~H), we obtain the evolution equations
for the matrix elements (HO~(A) ~H) that appear in the
general factorization formula (2.14):

A
dA

(HIO-(A) IH) = ).M,„,.(HIO~ (A) IH).

(3.23)

The leading v behavior of the matrix elements can be
determined by using the velocity-scaling rules developed
in the previous sections. At any given order in v, there
is only a Gnite number of terms that contribute to the
evolution equation (3.23) . The evolution equations for
the dimension-6 four-fermion operators are calculated to
order a, in Appendix B. The operator evolution equa-
tions for Oi( Sp) and Oi( Si) are given in (B16) and
(B19a) . Taking the matrix elements of these equations

and keeping only those terms on the right sides that are
of relative order v, we find that only the operators 7
survive, and we obtain

A
dA

(~. I
Oi (' Sp) Irk) = —

3 M, (rk I &i ('Sp) Irk)
d i 8' n, (A)

(3.24a)

A
dA W IOi ('Si) I@) = —

3 M, 8 l&i('Si) I@)

(3.24b)

A
dA

(g.l&, ('Sp) lg. ) = 0, (3.25a)

(3.25b)

Truncated at order a„the evolution equations can be
solved analytically for the A dependence of the matrix
elements. For example, the solution to (3.24a) is

where C~ = (N, —1)/(2N, ). If the evolution equa-
tions are truncated at leading order in v, the right
sides of (3.24a) and (3.24b) vanish and we find that
the matrix elements (rI,

~
Oi ( Sp) ~ik) and (vP

~
Oi ( Si ) ~g)

are re normalization-scale invariant through order a, .
The dimension-8 matrix elements (rI, ~'Pi (iSp) ~il, ) and
(v/i ~'Pi ( Si) ~g) are also renormalization-scale invariant
through order a, and at leading order in v

(rI. I
O, ('S,; A)leak) = (ik I

O, ('S,; A, )leak)
—

M, ln
I

'
A I (rk lv ,('s, )Irk)

8C~ (n, (Ap) l
3 pM' (n, A ) (3.26)

where Pp ——(11K,—2ny)/6 is the first coefficient in the P function for @CD with ny fiavors of light quarks: p(d/dp)n, =
—Ppn /7r +2

We next consider the evolution of the matrix elements that contribute to P-wave annihilation at leading order in
v . The color-singlet dimension-8 matrix elements are re normalization-scale invariant to this order in a, :

A„(h, iOi('Pi)ih, ) = 0,

A„(y,J~O, ( P )~y, g) = 0, J = 0, 1, 2.

(3.27a)

(3.27b)

Taking the matrix elements of (B17) and (819b) in Appendix B, we find that the color-octet dimension-6 matrix
elements have nontrivial scaling behavior at order a, :

A
dA

(h,.I Os('Sp) Ih,.) =
3~ M, (h,.l Oi ('Pi) lh,.)d i 4C~n, (A)

d s 4Cpn, (A)A „(~.JIOs('Si) I~.~) = ', (&.~IOi('P~) I&.~).

(3.28a)

(3.28b)

To this order in n „we And that the evolution equations can be solved analytically. For example, the solution to
(3.28a) is

(h,.lOs('Sp A) Ih,.) = (h,.lOs('Sp Ap) I~.) +,»
l

'
1

(h,.lOi('Pi) lh,.).4C~ I' n. (Ap) i
3N pM2 q n. A

(3.29)

The solution (3.29) to the evolution equation can be used to provide a crude estimate of the color-octet matrix
element (6,

~
Os ( Sp, A)

~
h, ) in terms of the color-singlet matrix element (h~

~
Oi ( Pi ) ~

h, ) . Suppose that we approxi-
mate (3.29) by the evolution term on the right side. The evolution term is largest, relative to the matrix element
(&~Os( Sp, Ap) ~h, ), when the scales Ap and A are as widely separated as possible. However, the logarithmic evolution
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holds only down to scales of order Mv. Thus, we choose Ao ——Mv. Then, setting A = M, neglecting the initial
matrix element in (3.29), and assuming that n, (Ap) = n, (Mv) v, we find that (3.29) reduces to

(h. l&s('So., M) lb. ) = ~ M, »
I M I

(h. I&i('&i) lh. ) .
4C 6 v

3%, pM2 in, M) (3.30)

The same method can be used to obtain crude estimates for the corresponding matrix elements for the y J states:

4Cp ( v
(XcJI&s( SiI M) IXcz) =

& M21n I I (&c&I+i( +J) l&c&)3' oM2 ins M )
(3.31)

The terms that we have retained in obtaining these esti-
mates are enhanced by one power of 1n[v/n, (M)] relative
to the terms that we have neglected. Since this is not
a large enhancement factor, particularly in the case of
charmonium, these estimates should be regarded as giv-
ing only the orders of magnitude of the matrix elements.

IV. ANNIHILATION DECAYS OF HEAVY
QUARKONIUM

In Sec. III, we derived a factorization formula (2.14)
for the decay rates of heavy-quarkonium states into light
hadrons. In this section, we apply this formula to the
decays of S-wave states through next-to-leading order in
v and to the decays of P-wave states at leading order
in v . We also treat the decays into the electromagnetic
final states by using the analogous formula (2.17). As
in Sec. III, we use the lowest-lying S-wave and P-wave
states of charmonium for the purpose of illustration.

A. S-wave annihilation

Most previous treatments of the annihilation rates of
the S-wave states of heavy quarkonium have been re-
stricted to leading order in v . In these analyses, long-
distance eÃects were absorbed into a nonperturbative fac-
tor ~Rs(0) ~, where Rs(0) is the radial wave function at
the origin. We improve on these previous treatments
by providing a rigorous definition of the nonperturbative
factor in terms of matrix elements of NRQCD. We also
extend the analysis of the decay rates to next-to-leading
order v, and show that three independent nonpertur-
bative factors are sufhcient to calculate all the S-wave
annihilation rates through this order.

We erst consider the decays of the J = 0 + state g
and the 1 state @ into light hadrons. As was shown in
Sec. III A, there are only two operators that contribute to
each of these decay rates through next-to-leading order
in v2. According to (2.14), the decay rates into light
hadrons are therefore

I'(% ~ «) = M, (~.l& ('S )1%) + M, (%1& ('S )1%) + O( 'I')2 Im fi( Sp) i 2 Imgi( Sp)
(4.1a)

I'(&~«) = M, Wl& ('S )I&) + 2™M, (&I& ('S )I&) + &( 'I') . (4.1b)

The imaginary parts of the coefficients in (4.1) are calculated at order n, in Appendix A2, and Im fi(iSp) and
Im fi( Si) are given through next-to-leading order in n, in Appendix A3. According to the factorization formula
(2.17) for electromagnetic annihilation, the decay rates for rk —+» and @ ~ e e are

I'(~. ~ ») = M', (01~'@In.) + M, R [(~.l&'~10)(01~'(——,*&)'@In.)] + &( 'I')2 Imf„'So) t
2 2 Img„('So)

(4.2a)

I'(4 -+ +
) = 2™M, (0IX' VIV) + 2™M', ' R [(014' XI0) (0IX' (——,*D)'414)] + O( 'I').

(4.2b)

The decay rate for @ ~ »p is given by an ex.—

pression that is identical to (4.2b), but with coeffi-
cients fs~( Si) and gs~( Si). The imaginary parts of
the coefficients in (4.2) are calculated at order n in

I

Appendix A 4, and order-o. , corrections are given for
Im f»( Sp), Im f, ( Si), and Im fs~( Si). The matrix
elements in (4.1) and (4.2) can be computed using lattice
simulations of NRQCD. Since matrix elements of rela-
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tive order v have been omitted, there is nothing to be
gained by computing the dimension-6 matrix elements to
an accuracy of better than v . Similarly, the dixnension-8
matrix elements need be computed only at leading order
ln v

At the level of accuracy in (4.1) and (4.2), the ma-
trix elements are not all independent. The vacuum-
saturation approximation (3.9) can be used to express
the four-fermion matrix elements in (4.1) in terms of the

vacuum-to-quarkonium matrix elements in (4.2). Fur-
thermore, the heavy-quark spin-symmetry relation (3.6)
can be used to equate the matrix elements in the sec-
ond terms on the right sides of (4.2a) and (4.2b). The
net result is that the eight matrix elements in (4.1) and
(4.2) can be reduced to three independent nonperturba-
tive quantities, which we can take to be ~R„~, ~R~~

and Re(Rs* 7'2Rs). The resulting expressions for the
decay rates are

( )
Nc Iin fi( Sp)

r(g -+ LH) — ' R
vrM2

(
N, Im f~~('Sp)

vrM2 lc

r(@ +
)

Nc Im fee( Si)
~M2

N, Imgi( Sp) Re(Rs*V' Rs) + O(v r),
N, Imgi( Si) Re(Rs V2Rs) + O(v I'),

' Re(Rs* V2Rs) + O(v I),
N, Img„( Si) Re(Rs* 9' Rs) + O(v I').

(4.3a)

(4.3b)

(4.3c)

(4.3d)

The quantities R„, Ry, and V' Rg are defined in
Sec. III D in terms of vacuuxn-to-quarkonium matrix ele-
ments in NRQCD, and can, therefore, be calculated us-

ing nonperturbative methods, such as lattice simulations.
They can also be estimated using the wave functions
that are obtained Rom nonrelativistic potential models
of quarkonium. Alternatively, since there are more decay
rates than there are parameters, they can be treated as
purely phenomenological parameters, to be determined
by experiment.

The approximations to the matrix elements that have
been made in (4.3) imply restrictions on the order in
n, (M) to which the coefficients can be included mean-
ingfully. Because of the identification of v with n, (Mv)
in (2.1), we should consider v to be less than or of order
a, (M). There is no point in calculating the coefficients
to relative order o., unless we have included all oper-
ators whose matrix elements are of relative order v" or
less. Hence, there is no gain in accuracy if the coeKcients
of ~R„.~

and ~Ry ~

are calculated beyond relative order

o, , or if the coefficients of Re(Rs V'2Rs) are calculated
beyond relative order o,

If we require accuracy only to leading order in v, then
the decay rates in (4.3) can be simplified further. The
difference between R„and Rq is of relative order v,
and so both can be replaced by their weighted average
Rs. The factor Re(Rs* V2Rs) is of order v relative to
~Rs~ and can therefore be set to 0. We thereby recover
the familiar factorization formulas assumed in previous
work:

(4.4a)

N Im i Si

(4.4b)

r(&. ~ ~~) = ", R, + O(v'r),N, Im f~~( Sp)

(4.4c)

r(~, ,-) "'-f-('s) R, '+ 0(. r)
(4.4d)

Because other corrections of relative order v have been
neglected in (4.4), there is no point in calculating the
regularized wave function at the origin Rs to beyond
leading order in v . Similarly, because of the identifica-
tion of v with n, (Mv), there is no increase in accuracy
if the coefficients of ~Rs~ in (4.4) are calculated beyond
next-to-leading order in o, The effects of matrix ele-
ments of relative order v are probably more important
than perturbative corrections to the coeKcients that are
of relative order o,

B. P-wave annihilation

In most previous work on the annihilation decays of
P-wave states, it was assumed that long-distance effects
could be factored into a single nonperturbative quantity
~R&(0) ~, where R&(0) is the derivative of the radial wave
function at the origin. By explicit calculation, Barbieri
et at. [7,8] found that the coefficients of ~R&(0)~ depend
logarithmically on an in&ared cutoff on the energies of
the final-state gluons. In subsequent phenomenological
applications of these calculations, the infrared cutoff has
been identified with the binding energy of the quarko-
nium state, which is of order Mv, the inverse of the
radius of the bound state, which is of order Mv, or the
inverse of the confinement radius, which is of order AqgD.
It should be clear, however, that the infrared divergence
is a signal of the breakdown of the factorization assump-
tion upon which the calculation is based. The solution to
the problem of infrared divergences in the calculation of
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the P-wave decay rates into light hadrons was first pre-
sented in Ref. [10]. We will review the resolution of this
problem later in this subsection.

As was shown in Sec. IIIA, there are two four-fermion

operators that contribute to the decay rates of any of the
P-wave states into light hadrons at leading order in v .
According to our factorization formula (2.14), the decay
rates of the four P-wave states into light hadrons are

I'(h, m LH) =

r(y g m LH) =

2Im 'P
(h, IOi( Pi)Ih, )

2 Im fi( Pg)
(&.~IOi('P~) I& ~)

(4.5a)
2 Im S

(h, IOs('So)Ih. ) + O(v'I'),

2I S+ ™,'
(y, IO ( S )Iy, ) + 0( 'I'), J = 0, 1, 2. (4.5b)

The imaginary parts of the coefficients fi( Ps), fi( Pz), fs( So), and fs( Si) are calculated in order n, in Ap-
pendix A2. The color-octet matrix elements in the factorization formulas (4.5) represent contributions to the an-
nihilation rates from the Fock states IQQg). Thus, we see that the decays of P wave -(and higher-orbital-angular-
momenturn) states can probe components of the meson wave function that involve dynainical gluons. For the decays
of the y 0 and y 2 into two photons, there is only one operator that contributes at leading order in v:

r(y.o ~ ») =

r(&..~») = + o(v'r).

(4.6a)

(4.6b)

The coefficients Im f»( Po) and Im f»( P2) are calcu-
lated at order o. in Appendix A4y and the order-o. , cor-
rections are given as well. The matrix elements in (4.5)
and (4.6) need only be calculated to leading order in v

since matrix elements of relative order v have been omit-
ted. Because of the identification (2.1) of v with n, (Mv),
there is no increase in accuracy if the coefficients in (4.5)
and (4.6) are calculated beyond next-to-leading order in
n, (M). Perturbative corrections of relative order nz(M)
are probably less important than contributions of other
matrix elements of relative order v .

To the order in v that is being considered in (4.5)
and (4.6), the matrix elements are not all independent.
The vacuum-saturation approximation (3.10) can be used
to express the matrix elements of Oi ( Pi) and Oi ( PJ)
in (4.5) in terms of vacuum-to-quarkonium matrix ele-

I

ments. These matrix elements can be related to regu-
larized derivatives of radial wave functions at the ori-
gin by using (3.19). Because of the heavy-quark spin
symmetry, the derivatives of the radial wave functions
at the origin can all be replaced by the average value
B& for the 12 spin states of the P-wave system, without
any loss of accuracy. The heavy-quark spin-symmetry
relation (3.5b) also implies that the matrix elements of
Os( So) and Os( Si) in (4.5) are the same to leading or-
der in v . Thus, the decay rates (4.5) and (4.6) can all
be expressed in terms of two nonperturbative quantities
IB'J,

I
and (h, IOs( So)Ih, ) (or, alternatively, the average

of the color-octet matrix elements for the 12 P-wave spin
states):

(4.7a)

J =0, 1, 2, (4.7b)

r(~., -+») = M", a~ + O(v r),3N, Im f~~ ( Pg) J =0, 2. (4.7c)

Since R& is proportional to a vacuum-to-quarkonium ma-
trix element, it can be calculated more easily in lattice
NRQCD simulations than can (h, IOs( So) Ih ), which is
a matrix element between quarkonium states.

As we have already mentioned, in the calculations of
Barbieri et al. of the P-wave decay rates into light
hadrons [7,8,21], a logarithmic dependence on an infrared
cutoff appeared in the coefficients of IR&(0)I . We now
explain why this in&ared-cuto8' dependence is absent in

the factorization formulas (4.7). The coefficients of IB&I
in (4.7) depend logarithmically on the NRQCD cutoff
A. In these coeKcients, A plays the same role as did
the in&ared cutoK in the calculations of Barbieri et al.
According to the evolution equation (3.28a), the matrix
element (h, IOs( So)Ih, ) also depends logarithmically on
A. In this case, A plays the role of an ultraviolet cut-
ofF. Because physical quantities, such as decay rates, are
renormalization-group invariants, the A dependence in



1146 GEOFFREY T. BOD&IN, ERIC BRAATEN, AND G. PETER LEPAGE 51

(h, ~Qs( So) ~h, ) cancels the A dependence in the coeffi-

cients of ~B'&~2 in (4.7). Thus, we see that the inclusion
of the color-octet term proportional to (h, ~Qs( So) ~h )
in the factorization formulas removes the dependence of

the decay rate on an arbitrary infrared cutofF.
The factorization formulas (4.7) for the annihilation

decays of P waves at leading order in e were first given
in Ref. [10] in the form

I'(h ~ LH) = Hi I'i(QQ( Pi) + partons) + Hs I's(QQ( So) —+ partons),

I (g J + LH) = Hi I'i (QQ( PJ) ~ partons) + Hs I's (QQ( Si) + partons), 1 = 0, 1, 2,

~(x. ») =H ~ (QQ('P )»),
(4.8a)

(4.8b)

(4.8c)

The coefficients I'i and I's in (4.8) are proportional to
the annihilation rates of on-shell QQ pairs in color-singlet
P-wave and color-octet S-wave states, respectively. The
nonperturbative parameters Hq and H8 that were intro-
duced in Ref. [10] can be defined rigorously in terms of
matrix elements in NRQCD:

Hi —— (h, i
Oi ('Pi)

i

h ),
Hs(~) = M, (h. l&s('So)lh-) .

(4.9a)

(4.9b)

The factors of 1/M and 1/M in (4.9a) and (4.9b) were
chosen in Ref. [10] so that Hi and Hs would be the com-
binations of NRQCD matrix elements and quark masses
that are determined in experimental measurements of the
P-wave decay rates.

In retrospect, the choice made in Ref. [10] to include
factors of 1/M in the definitions of Hi and Hs in (4.9)
was unfortunate. The factors of 1/M are more properly
associated with the coefBcients I'~ and I'8, since they
involve short-distance physics at scales of order 1/A or
less. The factorization formulas (4.7) are, therefore, to
be preferred over the forms (4.8), because they incorpo-
rate all effects of the short-distance scale 1/M into the
coeKcients, leaving matrix elements that depend only on
physics at length scales 1/(Mv) and longer.

of this form, and it is illuminating to see how it could be
derived from a more conventional perturbative analysis.

A. Topological factorization

We remind the reader that, in @CD, infrared (or soft)
divergences are logarithmic and arise only from the emis-
sion of a gluon for which all components of the four-
momentum are small. Collinear divergences (or mass
singularities) are also logarithmic, and arise when one
parton (gluon or light quark) splits into two or more par-
tons and all of their four-momenta are parallel. Collinear
divergences are cut ofF by quark masses, which neces-
sarily introduce a nonparallel component into the four-
momenta of the splitting partons.

Let us focus erst on the infrared divergences that arise
in the radiation of gluons from final-state partons and on
the collinear divergences that arise in the splitting of a
6.nal-state parton into collinear partons. The Kinoshita-
Lee-Nauenberg theorem [19] guarantees that all such di-
vergences cancel when one sums over those final-state
cuts of a given diagram that contribute to an inclusive
cross section. For example, the diagram shown in Fig. 1

V. PERTURBATIVE FACTORIZATION

In this section, we sketch the connection between the
NRQCD approach and conventional perturbative meth-
ods for demonstrating the factorization of cross sections
involving large momentum transfer in @CD. In per-
turbative proofs of factorization, the aim is to demon-
strate that, to all orders in perturbation theory, infrared
and collinear divergences either cancel or can be ab-
sorbed into well-defined nonperturbative long-distance
quantities. Some familiar examples of such nonpertur-
bative quantities are parton distributions in the case of
deep-inelastic lepton-hadron scattering and fragmenta-
tion functions in the case of inclusive hadron produc-
tion at large transverse momentum in e+e annihilation.
The cross sections can be written as sums of products
of long-distance quantities with infrared-safe (i.e. , short-
distance) parton-level cross sections. Our factorization
formula for heavy-quarkonium annihilation rates is also

(b}

(c}
FIG. 1. Example of a diagram that contributes to the

quarkonium annihilation rate at order o, The three cuts
of the diagram participate in a KLN cancellation.
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has three cuts that correspond to gluonic final states,
and each cut contains infrared and collinear divergences.
However, these divergences cancel when one adds the
real-emission cut of Fig. 1(b) to the virtual-emission cuts
of Figs. 1(a) and 1(c). This step in the proof of pertur-
bative factorization is related to the localization of the
annihilation vertex, which was discussed in Sec. IIE.

Next, let us consider the radiation of gluons from the
heavy-quark lines. Such contributions are protected. from
collinear divergences by the heavy-quark mass, and so we
need consider only the possibility of infrared divergences.
One key to analyzing the infrared divergences is the con-
cept of a "controlling momentum. " The essential idea
is that the in&ared divergence associated with an inte-
gration over propagators and vertices in some portion
of a Feynman diagram is cut ofI' by the largest exter-
nal momentum that enters the propagators. For exam-
ple, an in&ared divergence could potentially arise fI'om

the square of the diagram in Fig. 4(c) when all compo-
nents of the four-momentum of the middle gluon become
small. However, because of simple kinematics, the other
two final-state gluons must both carry large momenta,
some of whose components are of order M. That large
momentum must flow through the heavy-quark propaga-
tor to which the soft gluon attaches, and. , consequently,
it cuts ofI' the potential infrared divergence.

In this example, and in general, the concept of a con-
trolling momentum tells us that an infrared divergence
can never arise from a soft gluon that attaches to a prop-
agator that is ofI' shell by order M. That means that the
infrared-divergent part of a Feynman diagram can always
be separated from the "short-distance part" by cutting
through heavy-quark propagators that are off' the mass
shell by amounts that are much less than M. (By the
short-distance part, we mean that part of the diagram
that includes the hard final-state partons and all propa-
gators that are off shell by order M. ) This "topological
factorization" is the crucial step in a perturbative demon-
stration of factorization. It implies that the infrared di-
vergences can be disentangled from the short-distance
part of the diagram and absorbed into the long-distance
part of the diagram, which also includes the quarkonium
wave functions.

The topological factorization of the annihilation rate
of heavy quarkonium is represented schematically in
Fig. 2. The shaded ovals represent the wave function
for a quarkonium state. A typical Fock state contains a
QQ pair and zero or more gluons or light-quark pairs.
The short-distance part of the annihilation rate is rep-
resented by the circle labeled H (for hard). At leading
order in v, the only lines that attach to the short-distance
part are the incoming Q and Q and the outgoing Q and
Q. The long-distance part includes the wave function
of the initial meson and its complex conjugate. These
wave functions are connected by any extra partons that
may be present in the Fock state, which are represented
in Fig. 2 by gluon lines. The long-distance part also in-
cludes soft-gluon interactions between the extra partons,
which are represented by the circle labeled S (for soft).

Once topological factorization has been demonstrated,
two additional steps are required in order to complete the

FIG. 2. Schematic representation of the topological fac-
torization of the rate for quarkonium annihilation. The
short-distance part is represented by the circle labeled H.
The quarkonium wave functions are represented by the shaded
ovals. The wave functions can be connected by light partons,
such as the two gluons that are shown explicitly. Soft-gluon
interactions between the light partons are represented by the
circle labeled S.

proof of perturbative factorization. First, one must de-
couple the relative four-momentum p of the heavy quark
and antiquark from the short-distance part of the am-
plitude by expanding the short-distance part as a Taylor
series in p. Second, one must decouple the Dirac indices
and color indices that connect the short-distance part
to the long-distance part. This can be accomplished by
making use of Fierz rearrangements. In the factored de-
cay rate, the long-distance parts correspond to the matrix
elements of the NRQCD four-fermion operators in the
quarkonium state; the short-distance parts correspond to
the imaginary parts of the coefficients of those operators
in the NRQCD Lagrangian.

In order to see in more detail how the perturbative
analysis leads to the results that we have obtained. from
NRQCD, let us consider two examples: annihilation of S-
wave and P-wave quarkonium at leading nontrivial order
in v and through order a, in QCD perturbation theory.
We use the specific example of decays into two and three
gluons in the discussions below. However, the essential
ingredients of the discussion apply also to decays into a
light quark-antiquark pair and decays into a qq pair and
a gluon.

B. Annihilation of S-wave quarkonium

The first step in the analysis of annihilation of S-wave
quarkonium is to identify the short-distance part in the
topological factorization of the amplitude. The dominant
component of the bound-state wave function consists of
a b,-cavy quark and antiquark in a color-singlet state. We
take the QQ pair to have total four-momentum P and rel-
ative four-momentum 2p. We assume that, owing to the
bound-state dynamics, the Q and Q have inverse prop-
agators (2P + p) —M2 of order M2v2, with v2 (( 1.
In the meson rest frame, the energies &PO + po of the Q
and Q then dier from the mass M by order Mv and
their momenta 2P +p are of order Mv. At order o.„the
QQ pair can annihilate into two gluons through the dia-
grams in Fig. 3. By energy conservation, the two gluons
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must both have momenta of order M. At this order, the
topological factorization of the annihilation rate is triv-
ial. The QQ annihilation amplitude belongs entirely to
the short-distance part of the annihilation rate in Fig. 2,
while the quarkonium wave function belongs to the long-
distance part.

We next consider the annihilation rate of the QQ pair
at order o, This rate has contributions from the annihi-
lation into three gluons through the diagrams in Fig. 4,
and also &om the annihilation into two gluons, due to
the interference between next-to-leading order diagrams
such as those in Fig. 5 and the leading-order diagrams

I

in Fig. 3. We begin by examining the infrared diver-
gences in the diagrams for the emission of a real gluon of
four-momentum l shown in Fig. 4. As we have already
explained, the diagram in Fig. 4(c) contains no infrared
divergence. For the diagrams in Figs. 4(a) and 4(b), we
identify the infrared contribution that is leading in v by
assuming that Po 2M, that lo ——~l~, P, and p are of
order Mv, and that po is of order Mv . The emission
vertex for the gluon with momentum l and the two adja-
cent heavy-quark propagators can then be approximated
as follows:

(+-'P + p) p+ M (+-'P+ p y I) p+ M M(1+ po) „M(l+ po)
(+-'P+ p)' —M'+i~ (+-'P+ p y I)' —M'+ie (6-,'P+ p)' —M'+i~ —2M~a+ i~

M(1 + po) (+g" &

(+-'P + p)' —M' + ze ( —ll

where the upper and lower signs correspond to Fig. 4(a)
and Fig. 4(b), respectively. (In the case of the lower
sign, the order of the p matrices should actually be re-
versed, but the last line is unafFected. ) The factor +g~ is
called the "eikonal vertex, " and the factor 1/( —le + ie) =
1/( —~l~) is called the "eikonal propagator. " Their prod-
uct is called the "eikonal factor. " We see that the eikonal
factor for the contribution of Fig. 4(a) is equal and op-
posite in sign to the eikonal factor for the contribution
of Fig. 4(b). All other propagator and vertex factors in
the two diagrams are the same. If the QQ pair is in a
color-singlet state, then the color factors in the two dia-
grams are also the same, and the in&ared contributions
from the region ~l~ -+ 0 cancel. This cancellation is a
consequence of the fact that, in the in&ared limit, the
soft gluon couples to the color charges of the quark and
antiquark. Since the quarkonium is a color singlet, the
quark and antiquark have opposite color charges.

I'/2+p

- P/2+p

(a)

Because of the in&ared cancellation, the topological
factorization of the real-emission diagrams in Fig. 4 is
trivial. The amplitudes for QQ ~ ggg all belong to
the short-distance part of the annihilation rate in Fig. 2,
while the quarkonium wave function belongs to the long-
distance part.

Now let us turn to the virtual-gluon-emission dia-
grams shown in Fig. 5. Once again, we can identify
the in&ared part by neglecting l and p compared to
M. As in the preceding example, the eikonal vertices
are proportional to g"0 times the quark (or antiquark)

P/2+ p

—P/2+ p

FIG. 3. Example of a Feynman diagram for quarkonium
annihilation at order o, The shaded ovals represent the
quarkonium wave functions.

(c)

FIG. 4. Examples of real-gluon emission in quarkonium de-

cay at order n, . The shaded ovals represent the quarkonium
wave functions.
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P/2+p

- P/2+p

(a)

(b)

(c)

FIG. 5. Examples of virtual-gluon emission in quarkonium
decay at order a, . The shaded ovals represent the quarkonium
wave functions. VP ~ gPP

V ~ l

lp —i~' (5.3)

velocity of the quark and antiquark. [This 1/v contribu-
tion is calculated in detail in (A20) —(A22).] Ordinarily,
in the absence of a collinear singularity, the phase space
for two partons to be moving with small relative veloc-
ity would be unimportant. Here, that region of phase
space is important by virtue of the quarkonium bound
state. (In fact, it is the 1/v singularity that builds up
the bound-state wave function in a perturbative analysis
of the Bethe-Salpeter equation for positronium. )

At this point, the topological factorization of the
virtual-emission diagrams can be carried out. For the
diagrams in Fig. 5, one factors the following contribu-
tions into the long-distance part: the wave functions,
with which we associate the square root of each quark
or antiquark wave-function renormalization, and the 1/v
singularity that arises from the diagram of Fig. 5(a). The
remaining contributions &om these diagrams are factored
into the short-distance part.

Many discussions of perturbative factorization make
use of the Grammer-Yennie technique [22] for analyzing
infrared divergences. As an aside, let us indicate briefly
how that technique would apply to the example at hand.
Prom our previous discussion, we see that, in the infrared
limit, the in&ared-gluon vertex V" is well approximated
by g~ Vp. Then we can write

charge. For Fig. 5(a), the eikonal propagator factors as-
sociated with the exchange of the gluon with momen-
tum l are [1/(—lp + ie)][—1/(lp + ie)]. Each of the dia-
grams of Figs. 5(b) and 5(c) contains a mass renormal-
ization, which we subtract. The remaining contribution
is a wave-function renormalization, half of which we ab-
sorb into the quarkonium wave function. The other half
yields the eikonal propagator factor (—1/2) [1/( —lp+xe)]
(The squared propagator appears after subtraction of the
mass-renormalization contribution. ) The eikonal factors
&om the three diagrams would cancel were it not for the
i~'s in the propagator denominators. Instead, the eikonal
factors yield

1 —1
—lp+ie lp+i~

1 1
—lp+i~ —lp+ ie

1= 27rib(l p) . . (5.2)—lp+i~

The 8(lp) contribution arises because of the pinch in the
lp integration contour in the contribution of the diagram
of Fig. 5(a). This h(lp) contribution corresponds to the
exchange of a spacelike gluon with temporal polarization
between the quark and antiquark. That is, it corresponds
to the Coulomb scattering of the quark and antiquark.
Note that the factor multiplying h(lp) is divergent at
lp ——0. This somewhat unexpected divergence has arisen
because we have neglected the relative momentum p of
the heavy quark and antiquark. Had we retained that
momentum in the propagator denominators, we would
have obtained a 1/v singularity, where v is the relative

provided that lp is not small compared with the other
components of l. This is always the case for real emis-
sion. For virtual emission, we can eliminate the region of
small lp by deforming the lp contour of integration into
the lower half of the complex plane. As can be seen from
an examination of the propagator denominators, all of
the singularities in the lower half of the complex plane
are order M away from the origin, except in the diagram
of Fig. 5(a). This is the momentum-space manifestation
of the fact that a spacelike gluon (with small lp) can be
exchanged causally only between comoving particles. In
carrying out the contour deformation for the diagram of
Fig. 5(a), and only in this case, we unavoidably pick up
the residue of a pole at lp 0. This residue yields the
1/v singularity in (5.2) that was noted earlier. Along the
deformed. contours, the Grammer- Yennie approximation
(5.3) is valid. Substituting (5.3) for the infrared vertices,
we can make use of Ward identities (current conserva-
tion) to show that the contributions of the deformed con-
tours cancel. In order to obtain this Ward-identity can-
cellation, one needs, in addition to the Grammer-Yennie
contributions of Figs. 4 and 5, Grammer- Yennie contribu-
tions in which the infrared. gluon attaches to the short-
distance part of the process. But, as we have already
argued, these diagrams give contributions that vanish in
the infrared region, and so there is no harm in applying
the Grammer- Yennie approximation to them.

After topological factorization, the short-distance and
long-distance parts of the annihilation rate are still tied
together by integrations over the relative four-momenta
p and p' of the QQ pairs entering and leaving the short-
distance part and by sums over the color and Dirac in-
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dices associated with the heavy-quark propagators. To
complete the factorization, we must decouple these inte-
grals and sums.

The decoupling of the integration over p and p' is ac-
complished simply by expanding the short-distance con-
tribution in a Taylor series in p and p'. Taking p and p'
to be of order Mv and po and po to be of order Mv, we
see that the Taylor expansion of the short-distance part
corresponds to an expansion in powers of v. All of the
dependence on p and p' is now in the long-distance part
and in the explicit powers of p and p' from the Taylor
expansion. To analyze S-wave decays at leading order in
v, we need keep only the zeroth-order terms in the Tay-
lor expansion, which amounts to setting p = p' = 0. In
the meson rest frame, the QQ pair has total energy Po,
which divers &om 2M by an amount of order Mv, and
total momentum P of order Mv. At leading order in v,
we can set Po = 2M and P = 0 in the short-distance part
of the annihilation rate. Thus the incoming quark and
antiquark can be taken to be on their mass shells and at
threshold.

The decoupling of the color indices connecting the
short-distance and long-distance parts of the annihila-
tion rate is straightforward. The short-distance part is
a color tensor C,~ I,~, with color indices i and j for the
incoming Q and Q and j and k for the outgoing Q and
Q. The indices i and j can be decoupled from the tensor
by using the Fierz rearrangement

(5.4)

A similar rearrangement can be used for the indices k
and 1. By color symmetry, T, .C,~ pI, must vanish and

T, .C;~ I,IT&I, must be proportional to the unit tensor b
The resulting rearrangement formula is

(5.5)

The indices have been decoupled from the tensor by de-
composing it into a term in which both pairs of indices
are projected onto a color-singlet state and a term in
which both pairs of indices are projected onto a color-
octet state. For S-wave quarkonium, the dominant Fock
state contains a color-singlet QQ pair, and so only the
first term on the right side of (5.5) contributes at leading
order in v.

The Dirac indices connecting the short-distance and
long-distance parts of the amplitude can be decoupled
in a similar way, although the algebra is a little more
cumbersome than it is for the color indices. Having set
p = p' = 0 and P = (2M, 0) in the short-distance part of
the amplitude, we find that the numerators of the four
propagators connecting it to the long-distance part re-
duce to M(po + 1) for the quarks and M( —po + 1) for
the antiquarks. The Dirac structure of the short-distance
part of the amplitude is therefore a tensor I',z I,~, in which
the Dirac indices i and k of the quarks are contracted
with projectors P+ ——(1 + po)/2, and the Dirac indices
j and l of the antiquarks are contracted with projectors
P = (1 —pp)/2. The indices i and j can be decoupled
&om the Dirac tensor by using the Fierz rearrangement

1 1
(P+);;(P—),, = — (&P+),; (7P—), , +

2 ( 1P+),, ( 1P—);,' (5 6)

where o' = (i/2)e '~" [p~, p"I. A similar Fierz rearrangement can be used to decouple the indices k and I from the
Dirac tensor. Since all three-momenta have been set to 0 in the Dirac tensor I"~'", there is no three-vector on which
I"&'" can depend. Its transformation properties under rotations then imply that the vector (o psP );~I';z k&(psP+)~k
must vanish, while the tensor (cr psP );~I';i ki(o psP+)ik must be proportional to the Cartesian unit tensor h k.

Consequently, one obtains the rearrangement formula

1
( ),,, (P ). , I'; . „, (P )„„,(P ), , =

4 (7 P ),, (7 P ), , P, „ ("f P ),,„, (y P )„,

+ ( & P ),, ( & P ), , P, , „, ( 7 P ),,„, (
.
7 P )„, . (5.7)12

This rearrangement of the Dirac indices corresponds
to the decomposition of the Dirac tensor into spin-singlet
and spin-triplet pieces. The Dirac matrix p5P = P+p5
projects a QQ pair at rest onto a state with total spin 0,
as can be seen &om the identity

P+cr'ps projects a QQ pair at rest onto a state of total
spin 1:

) (1,MP, m; —,', m') u 6 = U™(~'~.P ),
2mml

) (0, 0~-'„m; -', , m') u 8
mm/

1
(psP ),g2

(5.8) (5 9)

where u and 8 are Dirac spinors evaluated at zero
three-momentum. Similarly, the Dirac matrix o'p5P

where U ' is the unitary matrix that transforms &om
the Cartesian basis to the basis of angular-momentum
eigenstates.
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Now that we have decoupled the integrations over p
and p' and the sums over color and Dirac indices, the
factorization of the annihilation rate is complete. In the
rearrangement identity (5.7), the factors on the right side
that are enclosed in square brackets belong to the short-
distance part of the annihilation rate. They correspond
to the operator coefficients in the NRQCD approach. The
remaining factors to the right and. to the left of the square
brackets belong to the long-distance part. It is evident
that the long-distance parts of the annihilation rate can
be reproduced by matrix. elements of local operators in
the quarkonium state. The two operators that contribute
to the annihilation of S-wave states at leading order in v

may be identified as

@p,P—+%CAN, P 0 = 0,('S,),
Co~, P—+4 . 4 op, P 4 = 0,('S,),

(5.10a)
(5.10b)

where 4 is the Dirac field for the heavy quark. For ma-
trix elements between quarkonium states, these opera-
tors reduce at leading order in v to the NRQCD oper-
a«» & ('So) = O'XX'0 d & ('S ) = O' X X' 4'
respectively. Thus, perturbative factorization yields the
same operator matrix elements as appear in the NRQCD
analysis. It should be noted, however, that the iden-
tifications (5.10) are not unique. For example, the op-
erator —+p5@C'ps', when sandwiched between quarko-
nium states, also reduces at leading order in v to Oq( So)
and both —4'op54 @crp5@ and —4g'tIJ . 4p4 reduce to
&i('Si)

C. Annihilation of P-wave quarkonium

Now let us analyze the annihilation of P-wave quarko-
nium at leading nontrivial order in v. First we note that,
because the spatial part of the P-wave quarkonium wave
function transforms under rotations like a vector, the p-
independent part of the QQ annihilation amplitude van-
ishes on carrying out the angular part of the integration
over p. Thus, we must retain terms with one factor of
p in the annihilation amplitude, which means that the
leading amplitude is down by one power of v relative to
the S-wave case.

At order o.„the annihilation proceeds through the di-
agrams in Fig. 3. In this case, the factor of p in the
QQ annihilation amplitude can come only from expand-
ing the propagator of the virtual heavy quark, which is
off its mass shell by an amount of order M. The topolog-
ical factorization is therefore trivial. The amplitude for
QQ ~ gg belongs to the short-distance part of Fig. 2,
and the quarkonium wave function belongs to the long-
distance part.

We next consider the annihilation at order o.„which

receives contributions from the real-emission diagrams in
Fig. 4 and from the virtual-emission diagrams in Fig. 5.
The factor of p can come from one of two sources: the
purely short-distance (infrared-safe) part of the diagram
or the potentially infrared-divergent part, which consists
of the soft gluon and the heavy-quark propagators to
which it attaches.

If the factor of p comes from the short-distance part of
the diagram, then the analysis of the infrared divergences
goes through exactly as in the S-wave case. Infrared di-
vergences cancel between the real-emission diagrams, but
the exchange of a virtual gluon between the Q and Q
IFig. 5(c)] results in a I/v singularity. Topological fac-
torization is trivial, except for this I/v singularity. It
must be factored into the long-distance part of the anni-
hilation rate.

We proceed to consider the case in which the factor of
p comes from the potentially infrared-divergent part of
the diagram. We consider separately the cases of virtual-
gluon emission and real-gluon emission.

The diagrams for virtual-gluon emission are shown in
Fig. 5. The potentially infrared-divergent part of the am-
plitude includes the factors in the first line of (5.1). The
required factor of p can come either from a p . p in the
numerator of a propagator or &om expanding out the
denominator. The terms with a factor of p that comes
from a propagator denominator are easily seen to be sup-
pressed by a power of v. The terms that contain a p - p
in the numerator are also suppressed by a factor of v be-
cause of the Dirac structure. To see this, first consider
the case of a soft gluon with temporal polarization. From
the identity P+p.~ =- p-gP, one can see that the factor
p p connects "large" components of Dirac matrices to
"small" components. This gives rise to the suppression
by a factor of v. Now consider the case of a virtual gluon
with spatial polarization vector e. Both of the spatial-
gluon vertices bring in factors of e . ~. The combined
e8'ect of these two factors and the factor of p g is again
to connect large and small components, which costs a
factor of v. Thus for virtual-gluon emission, there are no
in&ared divergences at leading order in v. The topolog-
ical factorization is therefore trivial. The amplitude for

QQ ~ gg belongs entirely to the short-distance factor in
the annihilation rate, aside &om the square root of each
heavy-quark or heavy-antiquark wave-function renormal-
ization, which we associate with the quarkonium wave
function.

Finally, we consider the case of real-gluon emission
through the diagrams in Figs. 4. I et us examine the in-
frared limit of the diagrams in Figs. 4(a) and 4(b) for the
case in which the soft gluon with momentum t has spa-
tial polarization vector e. The emission vertex and the
adjacent heavy-quark propagators can be approximated
as follows:

(+-,'P+ p) . ~+ M (+-', P+ p y l) ~+ M
(+-,'P + p)' —M'+ie (+-,'P + p p l)' —M'+ ie

M(1 + pp) —p
—2M/o + ie

M(1 + po) —p
(+2P+ p)2 —M2 +is

M(1 + pp) /2p
(+-'P+ p)' —M'+ ze g

—IlI )
(5.11)
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The upper and lower signs apply to Figs. 4(a) and 4(b),
respectively. (For the lower sign, the order of the Dirac
matrices should actually be reversed. ) In the last line
of (5.11), we have retained only those numerator terms
that contain one power of p. The factor 2p e/( —

~l~)

is the in&ared-emission factor. In contrast with the S-
wave case, the in&ared contributions from the two real-
emission diagrams add, rather than canceling. Because
we have retained one power of p, the soft gluon couples
to the color current of the heavy quark, rather than to
the color charge. Since the heavy quark and antiquark
have opposite color charges and, in the c.m. frame, oppo-
site momenta, their color currents are equal. Note that,
because of the vector p in the in&ared-emission factor,
the emission of the soft gluon changes the orbital-angular
momentum quantum number of the QQ pair by one unit,
but it does not Rip the spin of the quark or antiquark.
Thus, it converts the heavy quark and antiquark from a
color-singlet P-wave state to a color-octet S-wave state.

In the decay rate, we must integrate the infrared-
emission factors &om the square of the sum of the am-
plitudes over the phase space of the gluon. Keeping only
the logarithmically divergent part of the integral, we find
the result

dst 1 f2p. e') /2p'. e*l
(2~)' 2/&/ &

—
[&I )

4 /

where A is an in&ared cutofF of order Mv, and we have
arbitrarily set the upper limit on ~L~ to M. We have
introduced a factorization scale A to separate the infrared
divergence &om the short-distance part of the integral.
The long-distance contribution that is proportional to
In(A/A) in (5.12) can be interpreted as the probability
for a heavy quark and antiquark in a color-singlet P-
wave state to make a transition to a color-octet S-wave
state by radiating a soft gluon.

We can now carry out the topological factorization
of the diagrams in Fig. 4 for real-gluon emission. The
square of the amplitude for QQ ~ ggg, integrated over
phase space, belongs to the short-distance part of the
annihilation rate in Fig. 2, except for the second term
on the right side of (5.12). This term, which contains
the in&ared-divergent contribution that arises from the
emission of the soft gluon in Figs. 4(a) and 4(b), is in-

eluded in the long-distance part, along with the quarko-
nium wave function. The soft gluon is an example of
a light parton that connects the initial and final wave
functions in Fig. 2. Note that, in this contribution to the
annihilation rate, the heavy quark and antiquark enter
the short-distance part in a color-octet S-wave state. We
call this contribution to the annihilation rate the "color-
octet contribution. " In all the other contributions to the
P-wave annihilation rate at this order, the heavy quark
and antiquark enter the short- distance part in a color-
singlet P-wave state. We refer to those contributions as
the "color-singlet contribution. "

At this point, we have identified the long- and short-
distance parts in the topological factorization of the anni-
hilation rate. It remains only to decouple the integrations
over the relative momenta p and p' of the QQ pairs and
the sums over color and Dirac indices.

We first discuss the color-singlet contribution. The
color indices of the short-distance and long-distance parts
are easily decoupled by using the rearrangement identity
(5.5). Only the first term on the right side of (5.5) con-
tributes, since the QQ pair is in a color-singlet state.
In order to decouple the integrals over the relative mo-
menta p and p' of the initial and final QQ pairs, we ex-
pand the short-distance part as a Taylor series in p and
p'. At leading order in v, we set po ——po' ——0 and
keep only those terms linear in both p and p'. The re-
sulting amplitude has the structure p l, &&p', in which
the Dirac indices i and k of the quark are contracted
with projectors P+ and the Dirac indices j and l of
the antiquarks are contracted with pro jectors P . The
Dirac indices of the initial and final QQ pair are de-
coupled from the short-distance factor I',

&& by apply-
ing the Fierz identity (5.6) to both the initial and fi-

nal indices. The resulting rearrangement identity can
be greatly simplified by making use of the fact that the
Fierz-decoupled short- distance parts transform like ten-
sors under rotations and the fact that there are no three-
vectors on which I™

k&
can depend. For example, the ten-

)

sor (psP+);~r, &&(psP+)ii' must be proportional to the
unit tensor 6 ", and the tensor (o psP+), iI', &&(psP+)iq
must be proportional to the totally antisymmetric tensor

Since (o PsP+);zr, &&(cr PsP+)ii is a Cartesian
tensor in three dimensions with four indices, it can be de-

composeded

into a linear combination of the three tens ors
(am $bn &amz &bnz and 1 ($abgmn + pan gamb) 1 gam gbn

3 )

which correspond to total angular momentum 0, 1, and
2, respectively. Consequently, one obtains the rearrange-
ment formula

(P ),,, (P )„, (p- r;,", „, p'") (P ),„, (P ), ,

= » (p-~.P )„[(~.P ), , r;;, , „,. (~,P, ),, „,l („'-~,P )

+36 (P &P+),, [( VP—), , r,', ~ ( '.p ),,„,] (p' P )„,

+ ((p a) psP+). [(a psP —)i'z'rzr&i &i&i(o f&P+)i~i ~] ((p' x cr) psP )qi
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p' "'~.P ),'[( ~.~,P ), , r,'.,",., „,( '», P,)„](p'- "»,P )

—24((pxa)™pP),, [ '( pP ); I,;,„,(YP ) „](p' pP )„,

+24(p YP ),, ["'(YP ); 7;, , „,( "YP ), „]((&'x ) YP )„,. (5.13)

We use the notation T~ sl for the symmetric traceless part of a tensor T s and T~ j = 2(T —T ) for the antisym-
metric part.

At this point, the factorization of the color-singlet contribution to the annihilation rate is complete. The factors
in square brackets on the right side of (5.13) belong to the short-distance part, while the factors to the right and to
the left of the square brackets belong to the long-distance part. It is apparent from the rearrangement identity (5.13)
that the long-distance parts can be reproduced by matrix elements of the local operators

. ++ 14'( 2—D)p—sP+4' @(—~D)psP 4 = Og( Pg),
] . ++ . ++——@(—;D. a)~—,P+4 0(—;D. a)~—,P @ = 0,('P, ),3

] . ++—-4(——,*D x a)q, P+4 . 0(—;D x a)—q,P 4 = 0,('P, ),
2

4( *D—~* ~l—)p-P+44(—'D~' )p-P O' = Og( P ),

4( ;D—)p, P—+—4 . 4(—;D x a)p—,P 4,
—4(—;D x a)~—,P 4 4( 2D)p, P+—4—.

(5.14a)

(5.14b)

(5.14c)

(5.14d)

(5.14e)

(5.14f)

The matrix elements of the last two operators vanish for a
quarkonium state that is a charge-conjugation eigenstate.
The other four operators reduce at leading order in v to
the NRQCD operators 0( Pq) and 0( Pq), J = 0, 1, 2,
respectively.

Finally, we consider the factorization of the color-octet
contribution to the annihilation rate, for which the short-
distance part involves the annihilation of a QQ pair in a
color-octet S-wave state. The color indices of the short-
distance and long-distance parts are easily decoupled by
using the rearrangement identity (5.5). Only the second
term on the right side of (5.5) is nonvanishing for the
color-octet contribution. The decoupling of the momen-
tum integrations and the Dirac indices proceeds along
the same lines as for S-wave quarkonium, which was dis-
cussed in Sec. VB. The momentum integrations are de-
coupled by Taylor expanding the short-distance part in

p and p', and setting p = p' = 0. The decoupling of the
Dirac indices is accomplished by using the rearrangement
formula (5.7). The factors in square brackets in (5.7) be-
long to the short-distance part of the annihilation rate,
while the factors to the right and to the left belong to
the long-distance part. Prom the rearrangement identi-
ties (5.5) and (5.7), it is evident that the long-distance
parts are reproduced by matrix elements of the operators

Cp, T P+@C~,T—P 4 = 0,('S,),
@a~,T P+4 Ca—~,T P @ = Os('S&).

(5.15a)
(5.15b)

These operators reduce, at leading order in v, to the oper-
ators Os(~SO) = QtT yytT Q and Os( Sg) = QtaT y.
ytoT Q in the NRQCD analysis. The matrix elements
of Os( So) and Os( Sq) include the probability factor
proportional to ln(A/A) in (5.12). The logarithmic de-

pendence on A is reflected in the evolution of these op-
erators, which is given in (3.28a) and (3.28b). Thus, the
factorization scale A in the perturbative approach can be
identified with the ultraviolet cutofF of NRQCD.

VI. PRODUCTION OF HEAVY QUARKONIUM

In this section, we present a general factorization for-
mula for computing inclusive heavy-quarkonium produc-
tion rates in high-energy processes that involve a mo-
mentum transfer Q that is of order M2 or larger. In the
case of S-wave quarkonium, our factorization formalism
coincides with the "color-singlet model" for quarkonium
production [23] in the nonrelativistic limit, but it also al-
lows the systematic calculation of relativistic corrections
that are suppressed by powers of v . In the case of P-
wave quarkonium, our formalism reveals that the color-
singlet model is incomplete, even at leading order in v,
and must be supplemented by including the "color-octet
mechanism" for P wave quarkonium -production [24].

A. Factorization of the production rate

Our goal, as in the discussion of heavy-quarkonium
annihilation, is to express the inclusive production rate
for a quarkonium state in a factored form. That is, we
wish to write the production rate as a sum of terms, each
of which consists of a short-distance part, which can be
calculated in QCD perturbation theory, multiplied by a
long-distance part that can be expressed as a matrix el-
ement in NRQCD. Our arguments for the factorization
of the production rate are based on the all-orders prop-
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erties of QCD perturbation theory. In this sense, the
level of rigor of these arguments is comparable to that in
the proofs of factorization for the Drell-Yan process for
lepton-pair production in hadron-hadron collisions [25].
These arguments are less rigorous than those that we
have given for the factorization of the quarkonium an-
nihilation rate. The latter arguments rely only on the
general space-time structure of the annihilation process
and on the validity of the efFective-field-theory approach.
Their level of rigor is comparable to that in the proofs of
factorization in deep-inelastic lepton-hadron scattering,
which can be formulated in terms of the operator-product
expansion.

When a quarkonium state is produced in a process that
involves momentum transfer Q of order M2 or larger,
the production of the QQ pair that forms the bound state
takes place at short distances of order 1/M or smaller. A
simple example of such a process, which the reader can
keep in mind throughout the following discussion, is the
production in e+e annihilation at a center-of-mass en-
ergy ~s )) M of a heavy-quarkonium state H, with four-
momentum P, recoiling against two light-hadron jets. At
leading order in QCD perturbation theory, the relevant
parton process is e+e ~ QQgg. We take the Q and
Q to have momenta P/2+ p and P/2 —p. The relative
three-momentum p must be of order Mv in the P = 0
frame in order for the QQ pair to have a significant prob-
ability for forming the bound state H. The amplitude for
the production of the QQ pair is insensitive to changes
in the relative four-momentum p that are much less than
M, and therefore the quark and antiquark are produced
with a separation of order 1/M or less. Similarly, the
square of the amplitude is insensitive to changes in the
the total four-momentum P of the heavy pair that are
much less than M. Thus, the product of one amplitude
and the complex conjugate of a second will contribute
significantly to the QQ-production cross section only if
the corresponding production points are separated by a
distance of order 1/M or less. We therefore conclude that
the production of the QQ pair is indeed a short-distance
process that takes place within a distance of order 1/M.

In the framework of NRQCD, the effect of the short-
distance part of a production amplitude is simply to cre-
ate a QQ pair at a space-time point. The formation of
the quarkonium state H from the QQ pair takes place
over distances that are of order 1/(Mv) or larger in the
quarkonium rest kame, and so it is described accurately
by NRQCD. Therefore, in NRQCD, the production rate
(the square of the amplitude summed over final states)
involves the creation of a QQ pair at a spacetime point,
its propagation into the asymptotic future, where the
out state includes the quarkonium H, and, finally, the
propagation of the QQ pair back in time to the creation
point. That is, the long-distance part of the production
rate is given in NRQCD by vacuum matrix elements of
local four-fermion operators. The eKects of the short-
distance parts of the production rate are taken into ac-
count through the coeKcients of the four-fermion opera-
tors. Since the final state must include a quarkonium, the
four-fermion operators that appear in production cross
sections involve projections onto the space of states that

contain, in the asymptotic future, the quarkonium state
H plus anything else. The generic form of a production
operator is

n„" =&tX„@ ) ) ~H+X)(H+X~
(x

= Xt X' 0 (aaaa) o) &'„X, (6.1)

t-'o, ('+o) = X'o) (aaaa) O'X,

»"('+i) = X'a*o) (aaaa) o)'a*X,

&o ('+o) = X'T @(aaa ) O'T X,

~o ('Po) = X'a'T o)' (aaaa) o)' *T X

(6.2a)

(6.2b)

(6.2c)

(6.2d)

Some of the color-singlet production operators of dimen-
sion 8 are

O-'Oo" ('Po) = X'(—o&')0 (aaaa) @'(—o&*)X,

(6.3a)

(P)= —x'( ——;D )0 H a 4'( ——;& &)Xt t t
3

» ( P, ) = —Xt(—
—,
'D x a)'o) (a~~ax) (6.3b)

2 2

x@t(—2D x cr)'y,

O ('P ) = Xt(—-*S~' ~) a(aoa)aa) o('t( —-'P)~'a'~)X

(6.3d)

(6.3c)

Here we consider explicitly only unpolarized production of
heavy quarkonium. In the case of polarized production, a~t

would create a state of definite polarization, and K and K'
would, in general, depend on one or more vectors associated
with the incoming particles, such as the directions of their
spins and momenta.

where the sums are over the 2J + 1 spin states of the
quarkonium H and over all other final-state particles X.
In the second line of (6.1), the projection has been ex-

pressed compactly in terms of the operator a~t that cre-
ates the quarkonium H in the out state. A sum over the
angular-momentum quantum numbers m J is implicit in

a~a~. The factors K and K' in the operator are prod-
ucts of a color matrix (either the unit matrix or T ), a
spin matrix (either the unit matrix or o'), and a polyno-
mial in the covariant derivative D and other fields. The
overall operator 0 is invariant under color and spatial
rotations. We assume that any matrix elements of 0
will be evaluated in the quarkonium rest frame; other-
wise the factors K and K' may depend on the four-
momentum of the quarkonium.

It is convenient to introduce notation for the produc-
tion operators that is analogous to that for the decay
operators defined in (2.10) and (2.12). The production
operators of dimension 6 are
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Given that the long-distance part of the production
rate can be expressed in terms of vacuum matrix elements
of operators of the form given in (6.1), the inclusive pro-
duction cross section must have the form

o(H) = ):M", , (0I&."(A)10)
. P„(A) (6.4)

where it is understood that the matrix element is to
be evaluated in the quarkonium rest frame. The short-
distance coefBcients I' depend on all the kinematic vari-
ables of the production process, but they are independent
of the quarkonium state H. Equation (6.4) is the equiv-
alent for production of our factorization formula (2.14)
for quarkonium decay.

Beyond leading order in perturbation theory, interac-
tions involving soft (infrared) gluons and gluons collinear
to the final-state jets potentially spoil this factorization
picture, both by making the QQ-production process long
ranged and by making connections between the outgo-
ing quarkonium and the final-state jets that destroy the
topological factorization. In the case of quarkonium de-
cay, we were able to use the KLN theorem to argue that
such final-state soft and collinear interactions cancel in
the inclusive decay rate. In the case of quarkonium pro-
duction, the KLN theorem does not apply directly be-
cause we have specified that the final state contains the
quarkonium: some of the cuts in the KLN sum are miss-
ing. Cuts are missing only for diagrams in which a soft
or collinear gluon attaches to one of the heavy Q or Q
lines. If only one end of a gluon attaches to a Q or Q line
and the other end attaches to a final-state jet, then the
sum over cuts along the jet line is sufEcient by itself to
eKect the KLN cancellation. If both ends of a soft gluon
attach to a heavy Q or Q line, then there is no KLN
cancellation. However, this contribution is part of the
matrix element of the NRQCD four-fermion operator.

In the case that 0„ is a color-octet operator, one might
worry that, because the intermediate states in the first
line of (6.1) carry net color charge, the factorization of
the cross section in (6.4) is not valid. Owing to the
property of confinement, such colored states have infi-
nite energy. (Their energies would be finite in a finite
volume, however. ) Of course, the complete final state
is color neutral and contains only color-singlet hadrons.
One can picture the color neutralization of the partons
in perturbation theory as a process involving soft-gluon
exchanges between the partons. In particular, there can
be color-neutralizing soft-gluon exchanges between par-
tons that are comoving with the quarkonium and partons
in other hadron jets produced by the short-distance pro-
cess. However, the KLN argument tells us that, at least
in perturbation theory, the infrared and collinear diver-
gences &om such soft interactions cancel in the inclusive

&i ('So) = — x'@ a~ax @'(——;D)'X+ H.c
2

(6.3e)

Pi ( Si) = — y o'@ a~a~ . @ o'( —2D) y + H.c.
2

(6.3f)

quarkonium production rate. That is, for purposes of
computing the inclusive quarkonium production rate, the
colored partons can be treated as if they were unconfined.
Of course, the complete operator Q is invariant under
color rotations, and one can deal with it without refer-
ring to the troublesome colored intermediate states by
making use of the form given in the second line of (6.1).
This approach might be useful in lattice measurements
of the production matrix elements.

If we consider production of quarkonium in hadron-
induced processes, then a host of new difBculties arise in
proving that the production rate factors. These include
exchanges of soft, collinear, and Glauber (quasielastic)
gluons involving spectator partons in the initial state and
exchanges of soft and collinear gluons involving active
partons in the initial state. Rather than discuss the res-
olution of these diKculties here, we will merely assume
that the Glauber divergences cancel, that the only non-
canceling infrared divergences are those associated with
the matrix elements of the four-fermion operators, and
that the noncanceling collinear divergences can be ab-
sorbed into initial parton distributions. We refer the
reader to the proofs of factorization of the Drell- Yan cross
section [25,26] for detailed discussions of these points.
Given these assumptions, the factored form (6.4) holds
to all orders in perturbation theory. It should be noted
that, in the case of hadron-hadron collisions, there is a
limit to the precision of the factored form of the cross
section. Generally, because of soft exchanges between
spectators, one can prove only that a factored form holds
through next-to-leading order in an expansion in inverse
powers of the large momentum transfer Q [26]. Beyond
that order, factorization is known to fail [27].

B. Relation of production matrix elements
to decay matrix elements

The NRQCD matrix elements that appear in the pro-
duction rate (6.4) are related to the NRQCD matrix el-
ements that appear in decay rates through a crossing of
the quarkonium from the final state to the initial state.
This relation is analogous to the one between parton dis-
tribution functions and parton fragmentation functions
[28]. In general, the crossing relation is very compli-
cated. There are, however, two instances in which one
can obtain simple results.

Through order n, in @CD perturbation theory, the
crossing relation between (HID IH) and the correspond-
ing production matrix element (OIO IO) is a simple
equality, up to a factor of 2J + 1 for the number of spin.
states. Finite-order perturbation theory is usually of lit-
tle help in dealing with long-distance matrix elements.
It does tell us, though, that, to leading order in o.„the
evolution equations for the production operators are the
same as the evolution equations for the corresponding
decay operators. For example, the evolution equation for
the production matrix element (OIOs (iSo) IO) in terms of
(OIDi ( Pi)IO) is identical at leading order in n, and in
v2 to the evolution equation (3.28a) for the corresponding
decay matrix elements:
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olv,".('s, )lo) =
z~ M, &olv,"-('P,)lo). (6.5)

When 0 is a color-singlet operator, the vacuum-
saturation approximation can sometimes be used to sim-
plify the matrix element. Assuming that the sum over
states in the first line of (6.1) is dominated by the quarko-
nium state H plus the vacuum, we obtain

&oln„"lo) = (olx"K.@ ).lH)(Hl q'K.'xlo)

= (»+ 1)&Hl@'K.'xlo& &olx'K-@IH&

(6.6)

where Q = gtK' XxtK g. In the second line, we
have used the rotational invariance of the operator
vPtK' xlo)&olxtK @, which implies that the matrix el-
ement is identical for each of the 2J + 1 angular-
momentum states H that dier only in the quantum
number mg. In the last line, we have used the vacuum-
saturation approxiination (3.8) for the decay matrix ele-
ment

(Hler)„lH).

For the vacuum-saturation approximation to be a con-
trolled. approximation, we must be able to show that the
contributions of all the other states in the sum in (6.1)
are suppressed by powers of v. This is in fact the case
if the operator O„creates and annihilates the QQ pair
in the angular-momentum state that corresponds to the
dominant Fock state of the meson H. In this case, the
vacuum-saturation approximation result (6.6) is correct
up to an error of relative order v4.

In the case of a color-octet operator, the states
lH + A) in the first line of (6.1) have nonzero color, and
the vacuum-saturation approximation is not applicable.
In perturbation theory, we can approximate the sum by
retaining only the terms involving intermediate states
lH + g) that contain a single gluon. Similarly, we can
approximate the sum for the corresponding decay matrix
element by retaining the terms that involve single-gluon
intermediate states lg). The resulting matrix elements
(OlxtK glH + g) and (glxtK„glH) are related by cross-
ing. Unfortunately the crossing relation is a simple equal-
ity only at leading order in perturbation theory. In the
absence of any rigorous relation between them, we treat
the matrix elements of the color-octet production opera-
tors and the color-octet decay operators as independent
nonperturbative quantities.

C. Computation of the operator coefBcients

The short-distance part of the quarkonium produc-
tion rate is insensitive to the long-distance QQ dynamics.
Therefore, following the same reasoning as in Sec. IIH,
we can exploit the equivalence of perturbative QCD and
perturbative NRQCD at long distances as a device to
calculate the coefficients of the matrix elements in (6.4).
We compute the production rate for an on-shell QQ pair
with small relative momentum using perturbation the-
ory in full QCD. Then we use perturbation theory in
NRQCD to compute the matrix elements of four-fermion
operators QP&, which are analogous to those in (6.1)
except that the projection is onto on-shell QQ states.
The short-distance coefficients are then determined by
the matching condition

pert @CD

= ).M"~. , &ol&. (A)lo)
pert NRQCD

(6 7)

Hy expanding the left and right sides of (6.7) as Taylor
series in the relative momentum p between the Q and Q,
we can identify the coefEcients of the individual opera-
tors. They correspond. to the infrared- and collinear-finite
parts of cross sections for QQ production. One useful way
to evaluate the left side of (6.7) is to express the projec-
tion of the product u(P/2+ p)U(P/2 —p) of the Q and
Q spinors onto a particular angular momentum state in
I orentz-invariant form. We refer the reader to Ref. [29]
for examples. Then the left side of (6.7) can be evaluated
in any convenient frame, such as the c.m. frame of the
overall production process. It is understood, of course,
that the matrix elements on the right side of (6.7) are to
be evaluated in the rest frame of the quarkonium.

D. 8-wave production

We now apply the factorization formalism to the pro-
duction of S-wave quarkonium through next-to-leading
order in v . For definiteness, we use the lowest-lying S-
wave levels of charmonium for the purpose of illustration.
Of course, the results that we give generalize immediately
to other S-wave quarkonium systems. According to (6.4),
the cross section for the inclusive production of S-wave
charmonium is

P 'S a 'S
olv", -('s, )lo) + 'M,

'
(olp,".('s, )lo) + o(~'~)

sS G sS
«l&i('si)lo) + ~, (OIPi('si)lo) + &(~'~).

(6.Sa)

(6.sb)

The vacuum-saturation approximation (6.6) can be used to reduce the four-fermion matrix elements to products of
matrix elements between the vacuum and the quarkonium state. These can, in turn, be related to the quarkonium
wave functions given in Sec. IIID. Finally, heavy-quark spin symmetry can be used to reduce the matrix elements
to the same three nonperturbative parameters that appear in charmonium decay: lR„ l, lR~l, and Re(Rs' V'2R~).
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Taking into account factors of 2J + 1 for the number of spin states, we find that the cross sections are

N, Fg('Sp)
2 M2

3N Fg(ssi)

N, Gg(esp)
Re(Rs V2Rs) + O(v o),2'M4

3N, Gi( Si) Re(Rs V2Rs) + O(v o).2+M4

(6.9a)

(6.9b)

o(rk) = N, Fi('Sp)
2' M2

(6.1Oa)

(6.10b)

If we require only accuracy to leading order in v, then
we can simplify the production rates in (6.9) further by

dropping the terms proportional to Re(Rs* V'2Rs) and
replacing B„and By by their weighted average Bs. We
then recover the familiar factorization formulas used in
most previous work:

various terms in (6.4), one must take into account not
only the size of the matrix element and the leading power
of n, (M) in the short-distance coefficient, but also the
dependence of F (A) on dimensionless ratios of kinematic
variables. The terms given explicitly in (6.8) may not be
the dominant contributions to the cross sections if the
coefficients of the matrix elements are suFiciently sup-
pressed relative to the coefBcients of the matrix elements
of relative order v .

E. P-wave production

In applying the factorization formula (6.4), one should
keep in mind that the short-distance coefficients F (A)
depend not only on n, (M) but also on dimensionless ra-
tios of kinematic variables. For example, in the case of
production of heavy quarkonium at large transverse mo-
menturn pT, the coefficients F (A) depend strongly on
pT/M . In determining the relative importance of the

We next apply the factorization formalism to the pro-
duction of P-wave quarkonium to leading order in v, us-
ing the lowest-lying P-wave levels of charmonium for the
purpose of illustration. According to our factorization
formula (6.4), the inclusive production rates for P wave-
charmonium are

F 'S
o(h. ) = 'M, '

( oln,
".(' P)l 0) + 'M, '

(olO,".('S.)lo) + O(v'o) (6.11a)

3P E ss
(~') = . (0I&"('P.)lo) +, (0I&.""('S.)lo)+O(" ), (6.11b)

The vacuum-saturation approximation (6.6) can be applied to the color-singlet matrix elements to express them in
terms of vacuum-to-quarkonium matrix elements. These matrix elements can be expressed in terms of regularized
derivatives of radial wave functions at the origin by using (3.19). Because of heavy-quark spin symmetry, they can
all be replaced, without loss of accuracy, by their weighted average BP. Heavy-quark spin symmetry also implies
that the color-octet matrix elements in (6.11) are equal at leading order in v, up to factors of 2J + 1. Thus, the
P wave charmoni-um production rates can all be expressed in terms of the two nonperturbative parameters IRi&I2

and (OIOs'( Sp)lo) [or, alternatively, the average over the P wave states of 3-/(2J + 1) times the color-octet matrix
elements]:

o(h, ) = '
R~ + (Olds ( Sp)IO) + O(v o),

9N. Fi('Pi), ' Fs('Sp)
(6.12a)

( ) = ' R' ' (OIO" ('S )lo)+O(v o.) J =0 1 22' M4 P (6.12b)

Note that the color-octet matrix element (OIOs ( Sp) Io) in (6.12) cannot be identified with the decay matrix element
(h. l&.('s.)lh. ) - (4 7)

The first application of the factorization formulas (6.12) was to the inclusive production of P wave charmoni-um
states in B-meson decay [24]. The factorization formulas were given in the form

r (b ~ b,.+ X) = H, r, (b -+ cc( P ) + X, p,) + 3 H'(I ) r. (b ~ cc('S,) + X),

r(b+y, +X) =H I' (bwcc( P )+X,y,)+ (2J+1)H'(p, )I' (bwcc( S)+X)

(6.13a)

(6.13b)
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The coefFicients I'i and I"8 are proportional to the pro-
duction rates for on-shell Qq pairs in color-singlet P
wave and color-octet S-wave states, respectively. The
factors Hi and Hs can be expressed in terms of NRQCD
matrix elements divided by appropriate factors of the
heavy-quark mass:

H, =
3M, (oln,".('P, )IO)

, (0]"'('~o)l0).Hs(A) =

(6.14a)

(6.14b)

The definitions (6.14a) and (6.14b) were chosen in
Ref. [24] so that Hi and Hs would coincide as closely
as possible with the decay matrix elements Hi and Hs.
Using the vacuum-saturation approximation (6.6), we see
that the de6nition of Hi given in (6.14a) is equal to that
given in (4.9a), up to corrections of order v4. A crude
estimate for Hs(M) in terms of Hi is given in (3.30). A
similar estimate of Hs(M) in terms of Hi can be obtained
by solving the evolution equation (6.5) and assuming that
(OlOs'( So, A)l0) can be neglected at some initial scale
A = Ao. With the normalizations in (4.9b) and (6.14b),
the resulting estimates for Hs(M) and Hs(M) are equal.
However, there is no apparent rigorous relation between
these two matrix elements.

As we have already remarked in connection with the
decay matrix elements, the factors of 1/M in (6.14a) and
(6.14b) are more properly associated with the operator
coefBcients, since they involve short-distance physics at
distance scales of order 1/A or less. Therefore, the factor-
ization formulas (6.12) are preferable to the forms given
in (6.13).

In Ref. [24], which discusses the decay of a B meson
into a charmonium state, the NRQCD cutoff A was set
equal to the scale of the large momentum transfer in
the process, which is the bottom-quark mass mb. This
choice of cutoff is inappropriate because the NRQCD evo-
lution equation (6.5) accurately reflects the behavior of
full QCD only for cutoffs A that are less than M. That is,
the NRQCD evolution equation cannot be used to sum
logarithms of Q /M, where Q is the large momentum
transfer in a production process. Therefore, a more ap-
propriate choice of NRQCD cutofF for the process ana-
lyzed in [24] is A = m„where m, = M is the charmed-
quark mass. Note, however, that a change of NRQCD
cutoff &om mb to m does not affect the short-distance
coe%cients in the leading-order calculation presented in
[24], and is, in general, insignificant numerically.

VII. DISCUSSION AND OUTLOOK

The factorization approach that we have developed
in this paper provides a systematic theoretical frame-
work for understanding the annihilation and production
of heavy quarkonium. In this section, we discuss the
relation between our approach and previous models for
quarkonium production and annihilation. We also sum-
marize the current status of theoretical calculations of
annihilation rates and production cross sections.

A. Comparison with previous approaches

We have presented a rigorous formalism for calculating
the inclusive annihilation rates of heavy quarkonia. It is
based on the use of NRQCD to separate the annihilation
rate into short-distance parts, involving distance scales
on the order of 1/M, and long-distance parts. The short-
distance parts are identified with the imaginary parts
of coeKcients in the NRQCD Lagrangian, and can be
computed as perturbation expansions in n, (M). The
long-distance parts are expressed as matrix elements of
four-fermion operators in NRQCD and can be computed
nonperturbatively by using lattice simulations. We have
also developed an analogous formalism for computing in-
clusive production rates of heavy-quarkonia in processes
involving large momentum transfers. The cross sections
are factored into short-distance parts, which can be com-
puted perturbatively, and long-distance parts, which are
expressed as NRQCD matrix elements.

The factorization approach provides a firm theoreti-
cal foundation for calculations of the annihilation and
production rates for heavy quarkonium. It can be used
to assess the degree of validity and the limitations of
models used in previous work on heavy-quarkonium pro-
duction and annihilation. The most thoroughly devel-
oped model for the calculation of production rates is the
"color-singlet model" [30—33]. Most calculations of an-
nihilation rates have also been carried out within this
model. In the color-singlet model, the quarkonium state
is modeled by a color-singlet QQ pair that is in the appro-
priate angular-momentum state and has vanishing rela-
tive momentum. Nonperturbative efFects are assumed to
factor into a single nonperturbative quantity that is pro-
portional to the square of the radial wave function, or
one of its derivatives, evaluated at the origin.

The factorization formalism represents a significant ad-
vance over the color-singlet model in several respects.
First, it provides a systematic &amework for calculat-
ing perturbative corrections to the short-distance fac-
tors to arbitrarily high orders in n, . The in&ared di-
vergences that are encountered at any order of the per-
turbation expansion can be factored into specific non-
perturbative matrix elements. Perturbative calculations
in the color-singlet model are based on the assumption
that all in&ared divergences can be factored into a single
nonperturbative quantity. In the case of S waves, cal-
culations at next-to-leading order in a, (NLO) provide
empirical support for the assumption that long-distance
efFects can be factored into the quantity lB+(0)l . Our
formalism reveals that this assumption is, in fact, cor-
rect for any specific S-wave process in the nonrelativistic
limit to all orders in o, It has often been assumed, in
addition, that the same quantity lBs (0) l

describes pro-
cesses involving both the 0 + and 1 S-wave states.
Our formalism shows that this additional assumption is
correct only at leading order in v . The assumption that
the same quantity lBg(0)l describes annihilation into
light hadrons and electromagnetic annihilation also fails
at next-to-leading order in v, as does the assumption
that the same quantity lBs(0) l

describes both aniuhila-
tion and production processes. In the case of P waves,
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explicit calculations of the decay rates into light hadrons
reveal that the assumption of a single long-distance factor
~&~&(0) ~2 fails at leading order in n, (LO) for h and y~q

[8] and at NLO for y,o and y, 2 [7]. In the context of our
formalism, these results follow simply &om the existence
of a second independent matrix element that contributes
to the annihilation rates of P-wave quarkonia in the non-
relativistic limit.

The factorization formalism also improves upon the
color-singlet model by allowing the systematic calcula-
tion of relativistic corrections to annihilation and pro-
duction rates. Relativistic corrections are incorporated
by including nonperturbative matrix elements that scale
as higher powers of v. In the case of S waves, our formal-
ism for computing the v corrections is similar at leading
order in o., to a model for relativistic corrections devel-
oped by Keung and Muzinich [34]. The major differences
are that the factorization formalism provides nonpertur-
bative definitions for the long-distance factors, it allows
the short-distance coefFicients to be calculated beyond
leading order in o.„and it can be used to treat correc-
tions of order v and higher.

Another advantage of the factorization formalism is
that it provides unambiguous field-theoretic definitions of
the long-distance factors in annihilation and production
rates. This allows one to compute them nonperturba-
tively using, for example, lattice simulations of NRQCD.
Previous approaches have relied either on determining
the long-distance factors phenomenologically or on re-
lating them to potential-model wave functions. Both of
these approaches are of limited utility. The purely phe-
nomenological approach can be applied only in situations
in which the number of accurately measured experimen-
tal observables is greater than the number of nonpertur-
bative matrix elements. Potential-model estimates can
be used for color-singlet matrix elements that have sim-
ple potential-model analogs, but they cannot be used for
other matrix elements, such as the color-octet matrix
elements that contribute to the annihilation of P-wave
states into light hadrons at leading order in v . It is also
difFicult to gauge the accuracy of potential-model esti-
mates in the absence of a rigorous connection to QCD.
Since our formalism provides unambiguous definitions of
the long-distance factors in annihilation and production
processes, it allows us to quantify relations between these
matrix elements and Coulomb-gauge wave functions in
NRQCD. It also allows us to quantify the differences
between matrix elements for decays into light hadrons
and matrix elements for decays into electromagnetic fi-
nal states, as well as the differences between annihilation
matrix elements and production matrix elements.

A final advantage of the factorization formalism is that
it takes into account the complete Fock-space structure of
the quarkonium. In the color-singlet model, the quarko-
nium is assumed to be simply a QQ pair in a color-singlet
state with definite angular-momentum quantum numbers

+ IJ. However, a quarkonium also has a probability of
order v2 to be in a QQg Fock state, and it has probabil-
ities of order v or smaller for the higher Fock states. In
the case of P waves, the factorization formalism reveals
that the QQg component can play just as important a

role in annihilation and in production as the dominant
QQ component. In the case of S waves, the higher Fock
states can be ignored in the nonrelativistic limit and even
to relative order v, but the factorization formalism in-
dicates that they do contribute at relative order v .

The factorization formalism for describing the anni-
hilation of heavy quarkonia is in many ways similar to
the operator-product-expansion formalism for calculat-
ing the inclusive decay rates of heavy-light mesons [35].
These decay rates can be factored into short-distance
parts, which involve the weak decay of a heavy quark or
its weak annihilation with an antiquark in the meson, and
long-distance parts, which can be expressed as NRQCD
matrix elements. The main difFerence between heavy-
quarkonium annihilation and heavy-light meson decay is
in the relative importance of the various matrix elements.
Since the typical momentum of a heavy quark in a heavy-
light meson is of order A@cD and is independent of M,
the relative importance of matrix elements is determined
strictly by the dimension of the operator.

Operator-product-expansion methods have also been
used to treat exclusive decays of heavy quarkonium into
light hadrons at leading order in v [36]. The NRQCD
formalism might prove to be useful in extending such
analyses to include relativistic corrections. In exclusive
processes, a factorization theorem holds, not only for the
decay rate, but also for the decay amplitude. Thus, just
as in the case of electromagnetic annihilation, the rele-
vant NRQCD matrix elements for exclusive decays are
vacuum-to-quarkonium matrix elements of color-singlet
operators of the form yf K

Operator-product-expansion methods have also been
used in a completely difIerent context in heavy-
quarkonium physics [3,37]. These methods have been
used to treat the interactions of heavy quarkonium with
light hadrons whose momenta are small compared to the
scale Mv of quarkonium structure. Voloshin [38] has used
this approach to calculate nonperturbative corrections to
quarkonium annihilation rates that are proportional to
the gluon condensate. In our factorization formula, the
gluon-condensate contribution would appear in the long-
distance matrix element. In some of the cases considered
by Voloshin, the corresponding short-distance part in-
volves the annihilation of the QQ pair in a color-octet
state. His approach can therefore be used as a frame-
work for estimating the matrix elements of color-octet
operators.

The general factorization formula (6.4) for the produc-
tion cross section of any specific quarkonium state H
takes into account the short-distance production of color-
singlet QQ pairs and color-octet QQ pairs in all angular-
momentum states. In this respect, our approach has
some elements in common with the "color-evaporation
model" for quarkonium production [39]. In this model,
the total inclusive cross section, summed over all quarko-
nium states 0, is obtained by integrating the pertur-
bative cross section for inclusive QQ production from
the quark threshold 2M up to the physical threshold for
the production of a pair of heavy-light mesons. No con-
straints are imposed on the color and angular momentum
states of the QQ pair. Under the hypothesis of "semilocal
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duality, " the nonperturbative QCD effects that are re-
sponsible for the formation of a color-singlet bound state
containing the QQ pair are assumed to be negligible af-
ter one sums over all quarkonium states H. In the fac-
torization approach, the nonperturbative efFects are not
neglected, but are factored into long-distance matrix el-
ements (0~0 ~0). In the color-evaporation model, the
production cross section for a specific quarkonium state
H is obtained by multiplying the total quarkonium cross
section by a purely phenomenological fraction f~ Th. e
relative production rates of difFerent quarkonium states
are, therefore, not predicted. In the factorization ap-
proach, the relative production rates can be calculated
by using perturbative QCD, once the values of the dom-
inant matrix elements (0~0/~0) have been determined.

B. Present status of calculations

The possible applications of the factorization formal-
ism for heavy-quarkonium annihilation and production
are almost limitless, since heavy quarkonia play a role
in so many high-energy processes. In order to high-
light some of these applications, we discuss below the
present status of calculations of annihilation and produc-
tion rates.

In the case of S-wave decays, NLO perturbative correc-
tions have been calculated for all the annihilation rates.
In many cases, the NLO corrections are uncomfortably
large. In order to develop a better understanding of
the origin of these large corrections, it would be desir-
able to have calculations at next-to-next-to-leading order
(NNLO), at least for the simplest processes @ ~ e+e
and g ~ pp. Relativistic corrections to the S-wave anni-
hilation rates have been studied by Keung and Muzinich
[34]. From their results, one can extract the coefficients
of all the matrix elements of relative order v at leading
order in a, . A phenomenological analysis of the decay
rates of the lowest-lying S-wave states of charmonium,
including the next-to-leading order corrections in both
n, (M) and v, is in progress [40].

In the case of P-wave decays, complete NLO pertur-
bative corrections are available only for the electromag-
netic decays y 0 —+ pp and y 2 ~ pp. For the decays
of P-wave states into light hadrons, complete results are
known only to order n, [10]. The coefficients of ~B&~
have been. calculated to order n, [7], but they contain log-
arithmic infrared divergences that should be factored into
matrix elements of the operators Os( So) and Os( Si).
There are constants under the logarithms that should
also be factored into the matri~ elements. Unfortunately,
these constants cannot be determined readily from the
existing calculations. The relativistic corrections to P-
wave annihilation rates have not yet been analyzed.

In the case of D-wave decays, the only complete LO
calculations are those for the electromagnetic decays of
the Di state into e+e and the D2 state into pp [3].
For the decay of the D2 state into light hadrons, the co-
efficient of the matrix element corresponding to ~R'ii(0)

~

has been calculated at LO [3]. For the decays of the
Dp states into light hadrons, only the logarithmic in-

frared divergence in the coefficient of ~R&(0)~ has been
extracted [41]. This divergence should be factored into
other matrix elements that contribute to the annihilation
rate in the nonrelativistic limit. These matrix elements
can be identified by using the methods of Sec. III A, and
their coeKcients can be calculated by using the methods
illustrated in Appendix A.

The status of calculations of the production of heavy
quarkonium has been reviewed recently in Ref. [23], al-
though many aspects of that review are superseded by the
developments described in the present paper. In the case
of S waves, most production processes have been com-
puted only to LO. The only processes for which complete
NLO calculations are available are g and ik production in
B-meson decay [42] and inclusive ik production in hadron
collisions [43,23]. It would be desirable to have calcula-
tions of complete NLO corrections for more production
processes, in order to develop a better understanding of
the size and behavior of the perturbative corrections. It
is also important to calculate the relativistic corrections,
which are expected to be typically on the order of 30%%uo

for charmonium. Relativistic corrections have been cal-
culated for the photoproduction of the g [44] within the
model of Keung and Muzinich [34]. The factorization
formalism can be used to express those results in terms
of well-defined NRQCD matrix elements.

For the production of quarkonia at large transverse mo-
mentum pz, the contributions that are leading in 1/pz
sometimes come from beyond leading order in the per-
turbation expansion, and they can be computed without
complete calculations of the NLO or NNLO corrections.
These contributions come from fragmentation and can
be expressed in terms of process-independent fragmenta-
tion functions D;~H(z, p) for a parton i with invariant
mass p to produce a jet containing the quarkonium state
H with light-cone momentum fraction z. The fragmenta-
tion contribution to a production cross section sometimes
appears in a LO calculation, but it often appears first at
NLO and sometimes even at NNLO. The fragmentation
functions for producing S-wave quarkonia from the frag-
mentation of gluons [45] and heavy quarks [46] have been
calculated at LO in o,

For P-wave quarkonia, there are many production pro-
cesses for which complete calculations are not even avail-
able at LO. For most processes, the coefficient of ~B'J,

~

has been calculated [23]. Complete LO calculations, in-
cluding the coefficient of (0~Os ~0), are available only for
the production of P-wave charmonium in B-meson de-
cays [24], T decays [47], gluon fragmentation [48], and
charm fragmentation [49]. Relativistic corrections to P
wave production processes have not been studied.

In the case of production of D-wave quarkonia, the
only perturbative calculations that are available are those
for the coefficients of ~R~(0)

~

in the decay rates for Z
Hp, where H represents any of the D2 or DJ states
[50].

In the factorization approach, nonperturbative long-
distance eKects are organized systematically into well-
defined NRQCD matrix elements. This allows one to
go beyond potential model estimates or phenomenolog-
ical determinations of the long-distance factors. In-
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stead, they can be calculated from first principles us-
ing lattice simulations of NRQCD. Such calculations are
still in their infancy. At present, the only vacuum-to-
quarkonium matrix elements that have been calculated
are (O~ytg~rI, ), (O~gtcr@~g), and (O~ytDy~h, ), and their
analogues for the bottomonium system [51,52]. The
only four-fermion matrix elements that have been calcu-
lated thus far are (q, ~Dq( So) ~q, ), (h, ~Oq( Pq) ~h, ), and
(h, ~Os( So) ~h~) and their analogues for the bottomonium
system [52]. Thus far, all matrix elements have been cal-
culated. only to leading order in v and in the absence of
dynamical light quarks. Production matrix elements are
much more difficult to calculate through lattice simula-
tions, unless they can be related to annihilation matrix
elements through the vacuum-saturation approximation.

C. Concluding remarks

Heavy-quark mesons have long been the best under-
stood of hadrons. Until recently, our understanding
has been based almost exclusively on phenomenological
quark potential models that are motivated by QCD. Now,
lattice QCD simulations are providing systematic anal-
yses that are based directly upon the QCD Lagrangian
[53]. Heavy-quark systems are particularly well suited
to lattice simulations, and, consequently, they are now of
central importance to our exploration of nonperturbative
QCD. This new role for quarkonium studies, as a rigor-
ous testing ground for nonperturbative QCD, demands a
much higher degree of rigor than was necessary in older
phenomenological analyses. Approximations are neces-
sary in tackling most difIicult problems, but it is essential
in a fundamental analysis that there be systematic pro-
cedures for improving the approximations. In this paper,
we have developed a formalism for studying annihilation
decays of heavy-quark mesons that meets this standard.
With our formalism, we can improve upon the nonrel-
ativistic quark potential model by including relativistic
corrections in a systematic way. We can also go beyond
the quark model to include the dynamical effects of glu-
ons. Thus, we can, for the first time, begin to confront
the full richness of nonperturbative QCD in analyses that
are systematic and rigorous.
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APPENDIX A: COEFFICIENTS
OF FOUR-FERMION OPERATORS

The coefficients in the Lagrangian for nonrelativistic
QCD can be determined by matching scattering am-
plitudes in NRQCD with those in full QCD [14]. In
this appendix, we use these techniques to determine the
coefFicients for some of the four-fermion operators that
contribute to quarkonium annihilation rates. In Ap-
pendix A 1, we illustrate the method by calculating the
coefBcients of dimension-6 operators to order o, In
Appendix A2, we apply the method to calculate the
imaginary parts of the coefIicients of dimension-6 and
dimension-8 operators to order o, In Appendix A3, we
demonstrate how the imaginary parts of some of the co-
efIicients can be extracted at next-to-leading order from
existing calculations of the decay rates of bound states.
We also record coefIicients that can be extracted from
existing calculations in the literature. Finally, in Ap-
pendix A4, we give the corresponding coefficients for
electromagnetic annihilation rates.

1. CoefBcients at order a,

We wish to determine the coeKcients of the dimension-
6 and dimension-8 four-fermion operators at order o., by
using the matching condition (2.18). We consider QQ
scattering amplitudes, with the momenta of the heavy
quarks and antiquarks small compared to the heavy-
quark mass M. In full QCD, there are two Feynman
diagrams for QQ scattering at the tree level. The gluon-
exchange diagram in Fig. 6(a) is also present in NRQCD.
The annihilation diagram in Fig. 6(b) is not present in
NRQCD, and so its effects must be reproduced by adding
four-fermion terms to the effective Lagrangian. We cal-
culate the annihilation contribution to the amplitude for
QQ scattering in the center-of-momentum frame. We
take the incoming Q and Q to have momenta p and —p,
while the outgoing Q and Q have momenta p' and —p'.
By conservation of energy, we have ~p'~ =

~p~ = p.
The scattering amplitude (T-matrix element) in full

QCD corresponding to the diagram in Fig. 6(b) is

&z' u(p')7"T v( —p') 8(—p)V„T u(p),

(A1)

where E = QM2 + p2. We have suppressed the color
indices on the four-component Dirac spinors. Following
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No. DE-FG02-91-ER40684, and by the National Science
Foundation.

FIG. 6. Feynman diagrams for Qq scattering at leading
order in a, .
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(A2b)

Ref. [14], we express the four-component Dirac spinors
in the Dirac representation in terms of two-component
Pauli spinors via the substitutions

E+M (
v(p) = (A2a)

E+M )
(—i ).~

2E ( r) )

where ( and i1 are two-component spinors with sup-
pressed color indices. The Dirac spinors u(p') and v( —p')
have similar expressions in terms of Pauli spinors (' and
r)'. The spinors (A2a) and (A2b) represent fermion states
with the standard nonrelativistic normalization. Ex-
panding to second order in the velocity v = p/E, we
find that the annihilation contribution to the scattering
amplitude (Al) from full @CD reduces to

Ms(b) = — '
(1 —v )(' crT r)' qtcrT ( ——(v*v~ + v"v'~)(' o'T rI' r)to'T (M2 2

(A3)

where v = p/E and v' = p'/E. It is convenient to suppress the spinors and write the above matrix element as a
direct product of color matrices multiplied by a direct product of spin matrices:

M6(b) M2
' (T g T ) (1 —v')o' g) o-* — —(v*v'+ v"v")o-* gI o-'

2
(A4)

One can read off the dimension-6 term in the scattering amplitude in terms of the parameters of NRQCD by
substituting (, (', q', and r)t for g, gt, y, and yt in the effective Lagrangian (2.9):

(1 gI1) fi('So) 1 C31 + fi( Si) o'Cscr* + (T IST ) [fs('So) 1(m 1 + fs( Si) o.* gIo'j . (A5)

Comparing (A4) and (A5), we find that only one of the four terms in (2.9) has a nonvanishing coefficient at order n, :

fs('Si) = —7m, (M). (A6)

The coefficients of the remaining three terms in (2.9) are of order o,
To determine the dimension-8 coefficients, we need the scattering amplItudes from the term (2.11) in the eff'ective

Lagrangian:

(11) fi( Pi) v'. v 1@1+ fi( Pi) + fi( P2)
M2 2

v v cr'(3~'

(A7)

There are similar terms with color structure T (3 T
and coefficients fs and gs. Comparing with (A4), we find
that

gs( Si) = o..(M),

gs( Si, D, ) = ~~, (M).

(A8a)

(A8b)

The color-singlet coefIicients gq and the remaining color-
octet coefficients vanish at this order in n, (M).

2. Imaginary parts at order a2

We now turn to the calculation of the imaginary parts
of the coefFicients at order o, They can be determined
by matching the imaginary parts of QQ scattering am-
plitudes in full @CD and NRQCD in accordance with
(2.18). In full @CD, the annihilation contributions to

the imaginary parts at order o., come from the one-loop
diagrams in Fig. 7. We will determine the imaginary
parts of the coefFicients of the dimension-6 operators in
(2.9). We will also determine the imaginary parts of the
coefFicients of the dimension-8 operators that contribute
to the annihilation of P-wave states at leading order in
e and S-wave states at next-to-leading order in e . The
dimension-8 terms in the Lagrangian are given in (2.11).
To determine the coefficients, we consider QQ scattering
in the center-of-momentum frame, with the Q and Q mo-
menta small compared to the heavy-quark mass M. We
calculate the imaginary parts of the diagrams in Fig. 7
in the Feynman gauge. After making the substitutions
(A2) for the Dirac spinors, we expand in powers of the
velocity v.

Below, we list the results for the imaginary parts of
each of the diagrams, suppressing the spinors as in (A4).
The diagrams in Figs. 7(a) and 7(b) yield, on expansion
through second older ln the velocity 'U
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(1 1 2
Imper()= ' (T T TT ) 1 ——v + —v ~ v'~ i@1+~ ———v + —v v'~ cr'gcr'

2M2
q 3 3 (, 3 5 5 )

(2, , ll „11
~

—v*v" + —v"v' ——(v*v~ + v"v")
I

o' I3 o'
(5 15 30 (A9a)

(1ImMq(b)= ' (T T T T) /I ——v ——v v'/ II31 —
/

———v ——v. v'/ a*go.*

2M' i 3 3 (3 5 5 )
(2, , 11 „11

~

—v*v" + —v"v' + —(v'v'
( 5 15 30

The color matrices can be simplified as follows:

T Tbg T'T = 1gC~
2N,

T Tbg T.Tb = 1g)b C~
2N

+ v"v")
~

cr' @cr'

N —2
1 + T (3T

2N

T~g T~,

(A9b)

(Aloa)

(AIOb)

where C~ = (N, —I)/(2N, ) is the Casimir for the fundamental representation. The diagrams in Figs. 7(c) and 7(d),
which involve the triple-gluon vertex, yield

N vrn2 ( 11
() = '(T gT) II ——v'~ o*go'

6M2 q 10

N, vrn2 ( 11
ImM7(d) = ' ' (T ST ) ~

1 ——v
~

cr*cr'
6M' q 10

(1,
i

—v'v~ + —v"v ~
i

o' C3 o.~

~

—v'v'+ —v"v'~
~

o' S cr~

(2 5

(A11a)

(Al lb)

(A12)

The quark loop diagram in Fig. 7(g) gives

From the gluon-loop diagram in Fig. 7(e) combined with the associated ghost loop diagram in Fig. 7(f), we obtain

Im (M7( ) + M7(f)) — (T 13 T ) (1 —v )O' I3 o' ——(v'v + v"v' )o' Ca o
12M2 2

ImMp(s) = ' (T g) T ) (1 —v )cr'(go' ——(v'v~+ v"v'~)cr*c3cr~ (A13)

Adding the amplitudes (A9) and (A11)—(A13) and
comparing with (A5), we can read off the imaginary parts
of the coeKcients of the dimension-6 operators:

(a) (b) Im fi('Sp) = n, (M),2N
(A14a)

000 OOO Im fs( Sp) = ' n, (M),
vr(N, —4)

4N,
(A14b)

(c) Im fs( Si) = n, (M). (A14c)

The imaginary part of the coefficient fi( Si) vanishes at
order n, . Comparing with (A7), we see that the coeffi-
cients of the color-singlet dimension-8 operators are

Im f, ( Pp) =

Im fi( P2) =

Imgi('Sp) =—

n, (M),

n, (M),

n, (M).

(A15a)

(A15b)

(A15c)

FIG. 7. Feynrnan diagrams that contribute to the imagi-
nary part of the amplitude for QQ scattering at order n, .

The imaginary parts of the coefficients fi( Pi), fi( Pi),
gi( Si), and gi( Si, Di) vanish at order n, .
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3. Imaginary parts at higher orders in cx,

According to the matching condition (2.18), the coeffi-
cients of the four-fermion operators can be computed at
next-to-leading order in o., by calculating scattering am-
plitudes at next-to-leading order in full QCD and equat-
ing them to the scattering amplitudes in NRQCD, cal-
culated to next-to-leading order in o, For some of the
four-fermion operators, the imaginary parts of the coef-
ficients can be extracted at next-to-leading order in o.,
from calculations of heavy-quarkonium annihilation rates
that already exist in the literature.

As an illustration of our factorization approach, we
discuss in detail the calculation of Im fi( Sp) at next-to-
leading order in n, . In order to determine Im fi( Sp),
we consider the matrix element M for the forward scat-
tering of a QQ pair above threshold in a color-singlet
spin-singlet state with relative velocity 2v. The imag-
inary part of M can be expressed as a sum over cuts
through the Feynman diagrams for forward scattering.

(b) (c)

FIG. 8. Feynman diagrams in NRQCD for the scattering
of a QQ pair in a color-singlet Sp state through the operator
0'xx'W.

The annihilation contribution to ImM is the sum over
cuts through gluon and light quark lines only. It has been
calculated in full QCD at next-to-leading order in o., and
in the limit v -+ 0 by Barbieri et al. [5j:

~C~n.'(M) (~' ~' l (199Im& 1+ + ——5 Cp+M2 I 2v 4 ) q 18
13ir' l 8 n,

24 ) 9 (A16)

where C~ ——N is the Casimir for the adjoint represen-
tation, n, (M) is the QCD coupling constant in the mod-
ified minimal subtraction (MS) renormalization scheme
for QCD with nf favors of light quarks, and M is the
perturbative pole mass of the heavy quark. We have
corrected apparent errors in Ref. [5] of 2/3 in the over-
all coefficient and 1/2 in the coefficient of the m /v term.
The next-to-leading-order correction contains a Coulomb
singularity proportional to 1/v, which gives an infrared
divergence in the limit v ~ 0.

In order to determine Im fi( Sp), we must calculate the
corresponding contribution to Im M in NRQCD at next-

to-leading order in o, The relevant Feynman diagrams
are shown in Fig. 8. They contain a four-fermion vertex
that corresponds to the term @tyytg in the effective La-
grangian. The annihilation contribution is the sum over
all cuts that pass through that vertex. The Cutkosky
rules specify that a cut passing through the four-fermion
vertex is computed by taking the imaginary part of the
coefficient fi(iSp) and complex conjugating the part of
the diagram to the right of the cut. The incoming and
outgoing states consist of a QQ pair in a color-singlet
spin-singlet state with relative velocity v ~ 0. Explic-
itly, the in state is

1 v - 1
IQQ) = ) ~'~ ) (ia2) IQ(p, m, i)Q( —p, m', j)),

U mm'C
(A17)

where p = Mv is the momentum of the quark in the center-of-momentum frame. The quark states lQ(p, m, i)) with
momentum p, spin quantum number m = +1/2, and color i have the standard nonrelativistic normalization:

(Q(p, m, j)lQ(p, m, i)) = h''b (2vr) 8 (p' —p) . (A18)

For the leading-order diagram in Fig. 8(a), the cut through the four-fermion vertex gives simply the imaginary part
of the coefficient fi( Sp)/M:

2K, Im fi('Sp)
ImM8( ) (A19)

It is convenient to calculate the next-to-leading-order diagrams in Figs. 8(b) and 8(c) by using the Coulomb gauge,
since then only Coulomb exchange contributes in the limit v -+ 0. For the diagram in Fig. 8(b), we obtain
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t'
Im&

) 8(b)

2N, Im fi (' Sp) —z4~CF o.s
g 1

(27r)4 q2

1 1

E + qo —(p + q) '/2M + i e E —qp —(p + q) '/2M + it (A2O)

where E = p /2M. After using contour integration to integrate over the energy qp of the exchanged gluon, we find
that the contribution reduces to an integral over the gluon's three-momentum:

(
ImM i

) 8(b)

2N, Imfi( Sp) d q 1 1
4~CF o.,MM2 (27r)s q q + 2p q —it (A21)

The integral is infrared divergent, and can be regularized by using dimensional regularization. The integral over q is
analytically continued to D = 3 —2eiR spatial dimensions. Evaluating the regularized integral in (A21), we obtain

(ImM
~) 8(b)

2N Im fi(iSo) 7rCpn, i I' 1 2Mv )
1 —— + ln 47r —p —21n

M2 4v (&iR PiR )
(A22)

where p is Euler s constant and ppR is the arbitrary regularization scale introduced with dimensional regularization.
The logarithmic infrared divergence appears as a pole in eyR. The subscript IR on e and p serves as a reminder that
they are associated with infrared divergences. Note that (A22) is complex valued. The imaginary part of (A22) arises
because it is possible for the incoming quark and antiquark to scatter on shell before annihilating at the four-fermion
vertex. After summing over all diagrams, one must, of course, obtain a real result for Im M. The diagram in Fig. 8(c)
is evaluated in the same way as Fig. 8(b), except that the Cutkosky cutting rules require the complex conjugation of
the part of the diagram that involves the Coulomb-gluon exchange. The result is

Im&
) 8(c)

2N, Im fi( Sp) 7rC~n, i I' 1 2Mv )i1 + — + ln 47r —p —21n
M2 4v 7t EyR PiR )

(A23)

Note that the imaginary part of (A23) cancels that of (A22). Adding (A19), (A22), and (A23), we obtain the complete
result for Im M through next-to-leading order in o., :

2N, Im fi('Sp) 7r2 n,ImM 1 +M2 2v
(A24)

Comparing (A16) and (A24), we can read off the imaginary part of fi( Sp) through next-to-leading order in n, :

vr CF (7r' 6 199
Imfi( So) = n (M) 1 +

~

— 5
I
C+ +

2N g4 ) q18
137r2 ) 8 n,

24 ) 9 7r
~C„— n, —- (A25)

Note that the factorization approach reproduces the standard prescription of simply dropping the 1/v terms in the
perturbatively calculated annihilation rate [54]. The factorization approach puts this prescription on a rigorous
footing, and makes it clear how to extend the calculation systematically to higher orders in o., and in v.

In (A25), n, (M) is the MS coupling constant with renorrnalization scale M. If we make a different choice for the
renormalization scale p of n, (p), then we must differentiate between the MS coupling constant n, ~

(IIi) for full

@CD with ny flavors of light quarks and a heavy quark and the corresponding coupling constant n, ~ (p) for only ny
flavors of light quarks, which is the appropriate running coupling constant below the heavy-quark threshold. These
coupling constants satisfy the matching condition [55] n, ~ (M) = n, 7 (M) + O(n, ). If we wish to use a different
renormalization scale p g M for n, in (A25), then we must make one of the following substitutions:

n, (M) = n("' (p) 1 + Pp —'ln —+ O(n. )
7r

.(M) = ~ (u) I + I P. ——
l

—1 —+ O( .),2

3p 7r M

(A26a)

(A26b)

where Pp
—— (33 —2nf)/6 is the first coefficient in the P function for @CD with ny flavors of light quarks:

p(d/dp)n, (p) = —PIIn2/7r +
The coefFicient of the operator Qi."Sp) in the NRQCD Lagrangian is fi( Sp)/M, and the perturbation series

for fi( Sp) depends on the definition of the heavy-quark mass M. The order-n, correction in (A25) corresponds to
the choice M = M~ ~„where M~ ~, is the perturbative pole mass, i.e., the location of the pole in the heavy-quark
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propagator in perturbation theory. An alternative choice is the running mass M(p) in the MS renormalization scheme.
Its relation to the pole mass through order n, is [56]

Mpi, = M(p) 1+ ~1+ —ln
~

Cp —'+ O(n. )
3 p) n,
2 M) (A27)

Throughout this paper, we will adopt the choice M = M~ ~, for the heavy-quark mass in the coefficient f /M"" 4 of
a four-fermion operator with naive scaling dimension d

We can obtain the imaginary part of the coefficient fi( Si) through next-to-leading order in n, from a calculation
by MacKenzie and I epage of the annihilation decay rate of the J/g or T [6]. Their published result is given explicitly
only for N = 3, but one can insert the appropriate color factors in the various classes of diagrams and obtain the
result

Im fi( Si) = ' n, (M) 1 + [
—9.46(2)C~ + 4.13(17)C~ —1.161(2)nf]—

(~' —9) (m.' —4)C~, as
54N. 7r

(A28)

where Q is the electric charge of the heavy quark (Q = +2/3 for the charmed quark and Q = —1/3 for the bottom
quark) and the Q, , i = 1, . . . , ny, are the electric charges of the light quarks. The perturbative correction in the first
term on the right side of (A28) was calculated by Mackenzie and I epage [6]. The term proportional to n2 is due to
annihilation of the QQ pair into a virtual photon, which then decays into light hadrons. The order-n, correction can
be calculated as the sum of two terms: —4C~n, /7r, which is the order-n, correction to the rate for g ~ e+e, and
3C~n, /(4a), which is the order-n, correction to the rate for p -+ qq. For completeness, we also give the coefficient
analogous to (A28) for the decay of the g into a photon plus light hadrons:

Im f~i( Si) = n, (M) 1+ [—9.46(2)C~+ 2.75(11)C~ —0.774(1)ny]—
2(~2 —9)Cp Q2n s

3N, 7r
(A29)

Calculations of the annihilation rates of P-wave states were carried out through order o., by Barbieri and col-
laborators [7,8,21]. They calculated only the coefficients of ~R&~ in (4.7). These coefficients contain logarithmic
infrared divergences that should be factored into the color-octet matrix elements, along with associated constants
that can be determined from calculations in NRQCD. In Ref. [7], the logarithmic infrared divergences in Im fi( Po)
and Im fi( P2) were cut off by taking the heavy quark and antiquark off their mass shells and below threshold, in
which case the in&ared divergence manifests itself as a logarithm of the binding energy. In order to extract NRQCD
coefficients, it might be necessary to repeat the next-to-leading-order calculations in Ref. [7] using on-shell scattering
amplitudes and dimensional regularization of the infrared divergences in order to maintain gauge invariance.

4. CoefBcients of electromagnetic operators

The calculation in Appendix A2 can be easily modified to give the imaginary parts of the coeKcients of the
electromagnetic four-fermion operators at order n and at leading order in n, . The Feynman diagrams in Figs. 9(a)
and 9(b) yield imaginary parts that correspond to annihilation into two photons. These imaginary parts can be
obtained from (A9) by replacing the color matrices T by the unit color matrix and by substituting n, —i Q n, where

Q is the electric charge of the heavy quark: Q = +2/3 for the charmed quark and Q = —1/3 for the bottom quark.
The sum of the two diagrams yields

srQ4n' ( 4,l 2 . . . (2, ,~ ll
Im (Mg( )+Mg(b)) = (1S1)

~

1 ——v
~

11 + —v v'rr*cr +
~

—v'v' + v' v~
~

o (yo.~

M2

I f ('S) = Q (A31)

Comparing to the NRQCD scattering amplitudes analo-

Comparing to the NRQCD scattering amplitudes anal-
ogous to (A5), we find that the only nonzero coefficient
for the dimension-6 operators is

Im f~~( Po) = 3~Q n2,

4~Q4n'
5

1mf„('P, ) =

(A32a)

(A32b)

(A30)
I

gous to (A7), we can read off the nonzero coefficients of
the dimension-8 operators:
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The rate for @ -+ e+e is known through next-to-leading
order in n, [57]:

(a) (b)

vrQ n 0!s
Im f„( Si) = 1 —4Cp—

3 7r
(A37)

Finally, Mackenzie and Lepage [6] have calculated the
rate for g ~ gpss to next-to-leading order in n, . The
corresponding coefficient is

(c)

FIC. 9. Feynman diagrams that contribute to the imagi-
nary part of the amplitude for electromagnetic QQ scattering
at order n .

Im fs~( Si) = 1 —9.46(2)Cy —'4(~' —9)Q'n'

(A3S)

47r Q4n'
Img~~('So) =—

3
(A32c) APPENDIX B: EVOLUTION

OF FOUR-FERMION OPERATORS

The diagram in Fig. 9(c) yields an imaginary part that
corresponds to the annihilation into lepton pairs. The
imaginary part can be obtained from (A13) by replac-
ing T by the unit color matrix, and by substituting
(nf/2)n, —+ —Qn. The resulting matrix element is

7r n
ImMg(, )

= (1I31) (1 —v )o.* g) o.*
3M2

——(v'v' + v"v")rr' C3 cr'
2

vr Qz n2
Imf. ,('S,) =-

3
Comparing to the NRQCD scattering amplitudes analo-
gous to (A7), we can read oK the nonzero coefficients of
the dimension-8 operators:

(A34)

Comparing to the NRQCD scattering amplitudes analo-
gous to (A5), we find that the only nonzero coefficient of
the dimension-6 operators is

As we mentioned in Sec. IIIE, loop corrections to the
four-fermion operators in the NRQCD Lagrangian are,
in general, ultraviolet divergent, and, therefore, must be
regularized. One can remove power divergences, either
by employing a mass-independent regularization scheme,
such as dimensional regularization, or by making explicit
subtractions. Once this has been done, the four-fermion
operators satisfy simple evolution equations of the form
(3.22). The evolution equation for an operator 0 with
naive scaling dimension d involves only operators OI,
with dimensions dk & d . The coeKcients p I, in the
evolution equation can be computed as power series in

For dk ——d, the coefBcients p I, are at most of
order o.„because the logarithmic ultraviolet divergences
at order o., come only &om corrections of relative order
v, which correspond to operators OI, of dimension d +2
or larger. In this appendix, we compute at order o., the
coefBcients of the dimension-8 operators that appear in
the evolution of the dimension-6 four-fermion operators.

4~Q n
9

vrQ2n2

3

Img„( Si) =—

Img. .('Si, Di) =—

(A35a)

(A35b)

Im f~~( So) = vrQ n 1 +
~

——5
~

C~—1 4 2 (7r' l n.
q4 p 7r

(~' 7) n,
Im f~~( Po) = 3vrQ n 1 +

~

———
I

Cp —'
( 4 3) vr

(A36a)

Several of the electromagnetic coefficients can be de-
termined through next-to-leading order in o., from cal-
culations that are available in the literature. The anni-
hilation rates for q, y 0, and y 2 into two photons have
been calculated through next-to-leading order in o., by
Barbieri et al. [5,7]. The corresponding coefficients are

1. Heavy-quark self-energy

In order to illustrate the methods that are used to cal-
culate the coefBcients in the evolution equations, we first
calculate the self-energy of the heavy quark in NRQCD
through order o, From this calculation, we determine
the relation between the perturbative pole mass Mp I,
and the mass parameter M in the NRQCD Lagrangian,
and we extract the residue Z(p) of the pole in the heavy-
quark propagator through order o.,v . The residue is
given by

4vrQ4n' ~s,Imf„('P, ) = 1 —4C~ —'
(A36b)

(A36c)

(b)

FIG. 10. Feynman diagrams in NRQCD for the self-energy
of a heavy quark at order n, .
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Z(p) ' = 1 — (E = p /2M' i„p),

where Z(E, p) is the self-energy correction. To determine
Z(p) to order n, and to order v, we must calculate the
self-energy correction K that arises from the one-loop di-
agrams in Fig. 10. We calculate these diagrams in the
Coulomb gauge, because it facilitates the extraction of

the dependence on v. The seagull diagram in Fig. 10(b)
gives only power ultraviolet divergences, which are sub-
tracted as part of the regularization scheme. Interac-
tions from l.b;~;„, also need. not be included, because
the terms of order o.,v that they produce are all pro-
portional to power ultraviolet divergences.

The contribution to the self-energy from the diagram
in Fig. 10(a) is

Z(E, p) = i4vrC~n, q 1 ( 1 p2 —(p q)2
(2~)' E —qo —(p —q)'/2M + ie (q' M'(q,' —q' + ie) )

(B2)

The integral of the term containing 1/q, which comes from Coulomb exchange, gives rise to an ill-defined power
divergence, which can be dropped. After using contour integration to integrate over the energy qo of the gluon, we
And that the contribution reduces to

Z(E, p)
d'q 1 p' —(p q)'

(27r) s
q E —q —(p —q) 2/2M + i e

In order to identify the power divergences in (B3), we expand the denominator in a Taylor series in 1/M:

K(E,p)
d q p —(p. q) t' E —p2/2M+ (2p. q —q2)/2M1+ +

(27r)' q' q
(B4)

Setting E = p /2M, we find that every remaining
term in the integrand in (B4) yields a power divergence,
which is subtracted in our regularization scheme. Thus,
after regularization, the self-energy vanishes on the en-

ergy shell, and there is no correction to the energy-
momentum relation E = p /2M. In full @CD, the
energy-momentum relation defined by the pole in the
perturbative heavy-quark propagator is E = p +
M &, . Matching the coefIicients of p in these energy-
momentum relations, we obtain

order o., by computing one-loop corrections to scattering
amplitudes in NRQCD that involve this operator. We
consider the amplitude for the scattering of a QQ pair
with momenta p and —p into a QQ pair with momenta
p' and —p'. We use the compact notation with sup-

M = Mp i, 1 + O(n. )

Thus, through order o.„the mass parameter I in the
Lagrangian for NRQCD can be identified with the per-
turbative pole mass.

We proceed to compute the residue of the pole in the
heavy-quark propagator, which is given by (B1). After
we subtract the power divergences, the only term remain-
ing in (B4) that contributes at order n, v is the term pro-
portional to E —p /2M. Consequently, the expression
for the residue is

(a)

(c)

(e)

(b)

2~Cy n. d q p —(p q) . (B6)
(2vr)s qs

Imposing a momentum cutoff ~q~ ( A on the magnitude
of the gluon momentum and keeping only the logarith-
mic ultraviolet divergence at order o.„we find that the
residue Z(p) is

2C'F n.inc,Zp =1— V
37r

where v = p2/M2.

(B7)

2. One-loop ultraviolet divergences

The coefFicients in the evolution equation for the op-
erator Ds ( So) = Qt T yet T~g can be determined at

FIG. 11. Feynman diagrams in NRQCD that contribute
to the evolution of an S-wave four-fermion operator, such as
W'T XX'T V o e'XX'O
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pressed Pauli spinors that was introduced in Eq. (A4).
The matrix element corresponding to the leading-order
diagram in Fig. 8(a) is then written

M = (T gT)(lgl), (B8)

where the first factor gives the color structure and the
second factor gives the spin structure. The one-loop cor-
rection to the Inatrix element is given by the sum of the
contributions of the ten diagrams in Figs. 11(a)—11(j).
We wish to calculate the terms in these contributions
that are proportional to lnA, where A is an ultraviolet
cutofF. For higher-order calculations, it might be wise to
impose the cutofF by using dimensional regularization, in
order to maintain gauge invariance, but for our purposes
it is sufIicient to impose a cutofI' on the magnitude of the

gluon three-momentum: ~q~ ) A.
The four diagrams in Figs. 11(a)—11(d) are self-energy

corrections to the external quark lines. Each diagram
contributes i/Z —1 times the leading-order amplitude in
(B8). Using the expression (B7) for the renormalization
constant Z, we find that the sum of the contributions of
the four diagrams is

4C~o, ,lnA
~ii(a) —ii(a) = — U (T 8T ) (11)

37r

(B9)

The diagram in Fig. 11(e) represents the exchange of a
transverse gluon between the incoming quark and anti-
quark. (The exchange of a Coulomb gluon does not lead
to an ultraviolet divergence. ) This diagram yields the
contribution

Mi, (,) =i 2' (T g) T T T") (I I31)
J' —(p. q)'

(27K) qp
—q + zE

1 1
E + qp —(p + q) 2/2M + i e E —

qp —(p + q) 2/2M + it (B10)

where E = p /2M. We integrate over the energy qp of the exchanged gluon and identify the power divergences by
expanding the denominators in a Taylor series in 1/M. Keeping only the term that gives a logarithmic ultraviolet
divergence, we find that the contribution reduces to

Mii(t) = — '
(T T T T ) (11) d'q p' —(p q)'

(2ir)' q' (Bl1)

The integral is the same as in (B6). The diagram in Fig. 11(f) gives an identical contribution:

2aslnA 2 a b a bMi](p) M i(if)
'

v (T g T T T ) (1 gI 1)
37K

(B12)

The diagrams in Figs. 11(g)—11(j) involve the exchange of a transverse gluon between initial and final quark or
antiquark lines. (The exchange of a Coulomb gluon leads to a vanishing contribution. ) These diagrams are evaluated
in the same way as those in Fig. 11(e). The results are

2o lnA ( b b
Mll(s) ~ JHii(h) ~ v ' v (T T ST T ) (1 gI 1)

37'
(B13a)

2O's lnA I a b b a
JMii(, )

= Mii(;) = v v' (T T T T ) (lg)1).
37r

(B13b)

The color factors in (B13) can be simplified by using the identities in (Alo). Adding up the results for the diagrams
in (B9), (B12), and (B13),we find that the sum of the logarithmically divergent terms of order n, v2 is

JHs( Sp) = ' (2Cp v. v'(lgll) + (K, —4) v v' —(%, —2) v (T t3T )j(lg31).
C

(B14)

The logarithmically divergent part of the diagrams for scattering through the color-singlet operator Oi( Sp)
gtyytg can be obtained from the expressions (B9) and (B12)—(B13b) simply by replacing the color matrix T by the
unit matrix 1. Adding up these contributions, we obtain

JHi( Sp) = [v v' (T T ) —C~v (11)] (11) .
37r

(B15)

The ultraviolet-divergent parts of the matrix elements Ms ( Si) and M i ( Si), which correspond to scattering through
the spin-triplet operators Ds( Si) and Qi (sSi), can be obtained by replacing the spin factor 1 1 by cr' cr' in (B14)
and (B15), respectively.
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3. Evolution equations

The logarithmically divergent contributions to the scattering amplitudes in Appendix H' 2 can be expressed to leading
order in v as the matrix elements of dimension-8 operators. Differentiating the operator equation corresponding to
(B15) with respect to A, we obtain the evolution equation for the operator Oi(iSo):

By difFerentiating the operator equation corresponding to (B14) with respect to A, we obtain the evolution equation
for the operator Os( So):

2 N2 —4~n 2~N2 —2
(B17)

The evolution equations for the corresponding spin-triplet operators can be obtained from (B17) and (B16) simply
by inserting o' between gt and y and also between yt and g. It is convenient to express the resulting operators in
terms of the combinations that appear in (2.11) by using the identity

D*cr~ gID'o' = —D o. I3 D rr + —(D x cr)' (g (D x n)* +. D('as) I3 D('.o~) . .
3 2

The resulting evolution equations are

(B18)

A Oi( Si) =

A Os( Si) =

Os( Po) + Os( Pi) + Os( P2)

'2 [Oi( Po) + Oi( Pi) + O, ( P2)]

3 NM
2(N —4)n. 2(N,2 —2)n.

(B19a)

(B19b)

The evolution equations for electromagnetic operators can be calculated in the same way, except that there are no
contributions from diagrams such as those in Figs. 11(g)—11(j), which involve exchange of gluons between initial and
final quark lines. The evolution equations for the dimension-6 electromagnetic operators can be obtained from (B16)
and (B19a) by dropping the color-octet terms on the right sides and inserting vacuum projections:

A„(@'xlo)(olx'O) =—
A (@tcry]0) . (0~ yt o g)dA

,.M; 5'BIO) (Olx'(--;D)'~+ H'],

0) (Ol~ ~(—2D) @+H.c.]

(B20a)

(B20b)
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