
PHYSICAL REVIEW D VOLUME 51, NUMBER 3 1 FEBRUARY 1995

Consistency of' the chiral pion-pion scattering amplitudes with axiomatic constraints
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The pion-pion scattering amplitudes provided by second-order chiral perturbation theory are
confronted with known rigorous constraints derived from the axioms of quantum field theory. We
mainly test constraints restricting the m -vr S- and D-wave amplitudes in the unphysical interval
0 & s (- 4m . These constraints impose significant lower bounds for a linear combination of coupling
constants specifying the second-order chiral Lagrangian. The accepted value of this combination
is consistent with these bounds. The x -vr S and D waves are strongly correlated by a set of
constraints.
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!.INTRODUCTION

During the 1960s and 1970s much eKort was invested
in deriving properties of scattering amplitudes which are
exact consequences of the general principles of quantum
field theory [1]. This program was pioneered by Mar-
tin and was very successful in the pion-pion case, the
scattering of the lightest hadrons. Analyticity proper-
ties, i.e., the fact that scattering amplitudes are bound-
ary values of analytic functions of two complex variables,
constitute one of the main tools provided by axiomatic
Geld theory. It implies the validity of dispersion relations
with a number of subtractions restricted by the Froissart
bound. The other tools are unitarity and crossing sym-
metry. Their interplay leads to a wealth of constraints
on the low energy pion-pion scattering [2]. We call them
"axiomatic constraints" as they follow from the axioms
of quantum Geld theory.

A characteristic feature of the axiomatic constraints
is that they do not depend on any specification of the
interactions going beyond the requirement of crossing
symmetry. Nowadays it is well established that the pion
is a quasi-Goldstone boson associated with the breaking
of chiral symmetry and the pion-pion scattering ampli-
tudes should reHect the specifi. cities of the dynamics of
such particles. This has been worked out in chiral per-
turbation theory (CPT), which provides an approxiinate
form of the low energy pion-pion amplitudes. Our aim
is to check whether this chiral ansatz, i.e., the second-
order one-loop chiral amplitudes first obtained by Gasser
and Leutwyler [3], satisfies a representative set of the ax-
iomatic conditions. Surprisingly, this has not been done
until now, at least to the best of our knowledge.

The constraints we shall test restrict the shape of the
pion-pion amplitudes in a triangle A of the Mandelstram
plane:

6 = (s, t, u~0 ( s ( 4m, 0 ( t ( 4m, 0 ( u ( 4m
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where 8, t, and u are the standard Mandelstam vari-
ables, s + t + u = 4m, m =pion mass. As the chiral
ansatz is meant to provide a reliable approximation of
the pion-pion amplitudes at low values of 8, t,, and u, it
should verify our conditions with a good precision. In
fact, the chiral amplitudes are analytic functions, they
are exactly crossing symmetric and have positive absorp-
tive parts. The axiomatic conditions being consequences
of these properties, they might be expected to be sat-
isfied automatically. This is not the case because the
chiral amplitudes grow asymptotically as 8 and violate
the Froissart bound which is another ingredient of the
axiomatic constraints. Since the chiral ansatz represents
the first terms of a low energy expansion, bad asymptotic
behavior can be expected. Our purpose is to determine
whether the chiral ansatz, when restricted to its domain
of validity, is compatible with the low energy implica-
tions of the Froissart bound. The latter being the mark
of a local quantum Geld, we are asking if quasi-Goldstone
bosons can be described by such a field.

Our constraints are inequalities which are linear in the
amplitudes: they enforce bounds on combinations of pa-
rameters appearing in the chiral Lagrangian. This im-
plies that these quantities cannot be chosen at will if
compatibility with general field theoretical principles is
required. In order to get first insight into the nature of
these restrictions we apply the constraints to the stan-
dard chiral perturbation theory defined by Gasser and
Leutwyler [3]. This may as well be done for other ver-
sions of this theory, for instance, the "generalized chiral
perturbation theory" proposed by Stern and his collab-
orators [4]. In the case of the standard theory we find
that a combination t of second-order coupling constants
defined in (2.7) has to be larger than a lower bound equal
to 6 in order of magnitude. Fits to experimental data give
I —21 [5]. The bound is respected and the order of mag-
nitude of the bound is not disproportionate to the actual
value of l. This is of importance because it proves that
the restrictions imposed by the constraints are relevant,
a fact which could not have been asserted beforehand.
A sum rule requiring a phenomenological input accounts
for the difference between the experimental value of l and
its axiomatic lower bound.
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Since the axiomatic constraints are a rather old topic
we find it worthwhile to start with an outline of their
sources. This is done in Sec. II. The standard chiral
ansatz for the m -vr amplitude is also displayed in this
section and first constraints are checked. Section III deals
with conditions on S and P waves and bounds for I are
obtained, taking into account the uncertainties due to
unknown third-order corrections. The sum rule which
has just been mentioned is also discussed in this section.
Section IV is devoted to constraints which strongly cor-
related the z -m S and D waves. Our conclusions are
presented in Sec. V.

II. AXIOMATIC PROPERTIES OF PION-PION
SCATTERING

We first recall the basis of the rigorous properties of
the pion-pion amplitudes we shall exploit [1]. These prop-
erties hold in the triangle A defined in (1.1) where the

I

amplitudes are real and satisfy the crossing conditions

T'(s, t, u) = ) C.", T'(t, s, u)
I/

= ) C.'„'T'(u,t, s)
I/

= ) C,'„'T'(s,u, t) . (2.1)

T (s, t, u) is the s-channel isospin I amplitude (I
0, 1, 2) and C,t C,„,Cq„are crossing matrices [2]. At
each point of A, T (s, t, u) is given by three dispersion
relations evaluated either at fixed s, fixed t, or fixed u.
These relations result from exact analyticity properties:
the Froissart bound ensures that only two subtractions
are needed. The fixed-t dispersion relations have their
simplest form if written for the isospin I t-channel am-
plitudes T~/l (s, t, u) [= TI (t, s, u)]:

OO

T~ l( st, )u= p/(t) + vI(t)(s —u) +-
7r ~2

s2 2

dx —,
~ +( 1)' ~) C.", A'(x t),x2 (x —s x —u)

(2.2)

A (s, t) = ImT (s+ i~, t, u), s & 4m (2.3)

If (s, t, u) C E, T(s, t, u) is also given by a fixed-s or a
fixed-t dispersion relation obtained Rom (2.2) by suitable
substitutions. An important property of the absorptive
parts is that they are positive for 0 & t ( 4m . This
follows kom their partial wave expansion:

where pl(t) and vI(t) are unknown t-dependent subtrac-
tion constants (pi ——0, vo ——v2 ——0). A is the absorp-
tive part of the 8-channel amplitude T:

A (s, t) = ) (2l + 1)lm f& (s + i e)Pr
~

1 +
L=o

s —4m2 )
(2 4)

Each term on the right-hand side is positive because the
partial waves fr (s) have positive imaginary parts in the
physical domain s & 4m, and Pr(z) & 1 for z & 1.
Our constraints are consequences of the twice subtracted
dispersion relations, the positivity of the absorptive parts
and crossing symmetry. They restrict the shape of the
amplitudes TI in the triangle A and the partial waves f&
in the unphysical interval 0 & 8 & 4m

Most of the constraints we shall use concern the to-
tally symmetric vr -vr amplitude T = s(T + 2T2). The
second-order chiral ansatz of this ainplitude is [3,6]

Tx(s, t, u) = —+ —([(2s —4s+ 3)I(s) + (s m t) + (s -+ u)]+ -'[n(s + t + u ) + p]), (2.5)

with A = m /(16vrE ), where I" is the pion decay con-
stant. We treat A as an expansion parameter: A = 0.0448
if one takes m = 140 MeV and I" = 93.2 MeV. In (2.5)
and in the following the variables s, t, u are measured in
units of m . Our normalization of scattering amplitudes
differs ft. om the one commonly used in CPT by a factor
(1/32vr). The constant first-order term is the m -m Wein-
berg amplitude. The first set of square brackets gives the
finite part of the one-loop contributions with

7t
I(s) = 2 g(4/s) —1 arctang(4/s) —1 —— + 1

2

(2.6)

~ =l —6, l =2l, +4l, ,

P = l'+21,
l = —8li —16l2 —9l3+ 12l4 .

(2 7)

The exact vr -vr amplitude T(s, t, u) satisfies a simple
version of the dispersion relation (2.2):

This form is adapted to the unphysical values 0 & 8 & 4.
The second set of square brackets in (2.5) comes from the
tadpoles and second-order trees. The constants a and P
are linear combinations of the scale independent coupling
constants l; of the second-order chiral Lagrangian
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T(s, t, u)

=tt(t)+ —'
Js ds —', (' +" )A( st),

(2.8)

where A(s, t) is the s-channel 7r -m absorptive part: it
is positive for 8 & 4, 0 & t & 4.

With one exception, at the end of Sec. III, the con-
straints we shall discuss concern vr -m scattering and we
want to know the conditions under which they are obeyed
by the chiral amplitude T~. More precisely, we assume
that the true amplitude T differs from Tz by O(A ) terms
in the triangle 4:

T(s, t, u) = Tx(s, t, u) + O(A ), (s, t, u) E A . (2.9)

T(3, 2, —1) & —1.30, T(s, s, s) & 2.70 . (2.10)

With A = 0.0448 and reasonable values of n and. P, Tx is
of the order of a percent of the bounds. This means that
the chiral ansatz describes a pion-pion interaction which
is weak at the scale defined by the axiomatic bounds
(2.10). It is precisely one of the achievements of current
algebra and CPT to explain the smallness of the pion-
pion interaction.

From now on we consider only constraints derived
from the linear and homogeneous conditions of analyt-
icity, positivity, and crossing. They leave the first-order
Weinberg amplitudes completely free. This comes from
the fact that these amplitudes are linear in 8, t, and u
and that the arbitrariness in the subtraction constants
in (2.2) leaves crossing symmetric linear terms of the full
amplitudes T undetermined. Consequently, all condi-
tions we shall examine test exclusively the second-order
chiral ansatz.

As already mentioned in the Introduction, the con-
straints lead to bounds for linear combinations of the
second-order coupling constants l, , the bounds being de-
termined by the loop and tadpole terms. To establish
the relevance of these bounds we look at the simplest ax-

[

If the amplitude T satisfies an axiomatic condition it can
be violated by T~ to an order of magnitude fixed by Eq.
(2.9). Clearly, we have no control of the third-order cor-
rections within the present context. The actual size of the
O(A ) term in (2.9) could well be A tiines a relatively
large factor.

The axiomatic constraints we shall use follow from
analyticity, positivity of absorptive parts, and cross-
ing. These conditions being linear convex and homo-
geneous, they constrain only the shape of the amplitudes
and not their size. However, by including nonlinear as-
pects of unitarity, it has been possible to derive absolute
axiomatic bounds for the vr -~ amplitude [7]. These
bounds are remarkable in that they have to hold inde-
pendently of the details of the dynamics, whenever the
I = 0 and I = 2 mass spectra start at 2m (absence of
two pions bound states). The most stringent bounds are

iomatic constraint on the vr -vr amplitude T(s, t, u). It
tells us that the symmetry point 8 = t = u = 3 is an
absolute minimum of T [8]. In fact Tz has an extremum
at this point because of crossing symmetry. Inspection
of (2.5) shows that it will be a inaximum, instead of a
minimum, if o. is large and negative. Therefore o. has
to be larger than some lower bound. At the symmetry
point,

—n 1.729 . (2.11)f82 gt2 2 gggt 4~

Insofar as the second-order derivatives of the O(A ) term
in (2.9) are also O(A ), the symmetry point will be a
minimum of T if

l ) 3.4+ 6vrO(A) = 3.4+ O(0.8) . (2.12)

III S AND P WAVES, MAINLY mo-mo S WAVE

We investigate two sets of axiomatic constraints on the
vr -vrP S-wave fp(s). The first set restricts the shape of fp
on the interval [0, 4] through the signs of its derivatives.
The second set consists of inequalities relating the values
of fp af two points of [0, 4]. For 0 & s & 4, fp(s) is given
by

(4—s)/2
fp(s) = dtT(s, t, u) .

4 —s 0
(3.1)

The constraints on the derivatives follow directly from
properties of T(s, t, u) implied by the dispersion relation
(2.8) and the positivity of A(x, t) One find.s [8—10]

& 0 for 0 & 8 & 1.217,p(s)
ds

(3 2)

dfp(s) ) 0 for 1.697 & s & 4,
ds

(3.3)

d2 f() (s) )0 for0&s&17. (3 4)

These conditions show that fp has a minimum in the in-
terval (1.217, 1.697): this minimum is clearly a reflection
of the minimum of the full amplitude at the symmetry
point.

The chiral ansatz for the m -m' 8 wave is

This condition shows that l; = 0 is excluded: second-
order trees have to be included in the chiral Lagrangian
in order to get an ansatz which is compatible with the
axiomatic constraints.

The actual value of l quoted in the Introduction, / =
21 + 4, comes from lq ———1.7 + 1.0 and l2 ——6.1 6 0.5
[5]. It is compatible with (2.12) and, as announced, the
order of magnitude of the bound is comparable with this
accepted value.

fss(s) = —+ — (2s —4s+ 5)I(s) + dt(2t —4t+ 5)I(t) + — —(5s —16s+ 52)+(I )
2 ''

2 1 A 2

2 4' 4 —8 o 3 '3 (3.5)
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FIG. 1. The chiral vr -7r 8 wave as given in (3.5) with
l' = 0 (P = 21), for s C [0, 4] and various values of l = n+ 6
with the two vertical lines delimiting the position of the ax-
iomatic minimum following from (3.2)—(3.4). FIG. 2. The chiral 7r -7r S wave on the interval [0,4] for

central values of the parameters l and l' defined in (2.7):
l = 21 [5], l' = —58.5 [5,6].

We ask if this ansatz satisfies the conditions (3.2)—(3.4)
as it stands, ignoring the O(A ) corrections in (2.9). As in
the case of the full chiral amplitude, fox will have a max-
imum instead of a minimum if n is too negative. The
minimum value of o. is determined by the shape of the
loop contribution, given by the fj.rst set of square brack-
ets in (3.5). This contribution is found to satisfy condi-
tions (3.2) and (3.4) but it marginally violates condition
(3.3) because its minimum is slightly above s = 1.697,
at s = 1.701. The polynomial in the second set of
square brackets, coming &om the tadpoles and second-
order trees, has its own extremum at s = 1.6. Thus o.
has to be slightly positive in order to bring the minimum
of fpx into the allowed interval: this corresponds to

with

F(x, s, t) =

ln
/

fx —4+tl
4 —t i x )

(3.8)

As T(s, t, u) = T(t, s, u), (3.7) implies that

CXD

T(s, t, u) = f (t) + — dx A(x, t)E(x, s, t), (3.7)
7l 4

l) 6.63. (3.6)
OO

fp(s) —fp(t) = — dx[A(x t)E(x, s, t)
7l 4

The situation is illustrated in Fig. 1 which shoves the
evolution of the shape of fpx as l varies between 0 and
8. Figure 2 shows fpx for the central phenoinenological
value l = 21.

Our endings about the loop term are instructive be-
cause the loop contribution to the full amplitude veri-
fies all the required exact properties except the Frois-
sart bound and its S-wave projection violates conditions
(3.2)—(3.4) only weakly. This shows that the axiomatic
constraints are not necessarily very sensitive to vrrong
asymptotic behavior. In the present case, the practical
eKect of these constraints is to impose correct behav-
ior of the tree and tadpole contributions. Note that the
third-order corrections introduce an uncertainty 1.7
into (3.6).

The constraints relating the values of fp(s) at two
points in [0,4] are obtained by eliminating the subtrac-
tion constant p(t) in (2.8). Projecting this dispersion
relation onto the t-channel S-wave fp(t) gives an equa-
tion relating p(t) and fp(t). Using this equation, p(t)
can be eliminated Rom (2.8) in favor of fp(t), giving

—A(x, s)F(x, t, s)] . (3.9)

We see that the inequality

fp(s) —fp(t) ) 0

holds for every pair (s, t) such that

(3.10)

E(x, s, t) ) 0 and (F(x, s, t) —E(x, t, s)) ) 0

forx)4ift)8,
(3.11)

F(x, t, s) ( 0 and (F(x, s, t) —F(x, t, s)) ) 0

forx)4if 8)t.
The inequality A(x, s) & A(x, t), valid if 4 & s & t &

0, has been taken into account: it results from (2.4).
The first known inequalities (3.10) [9] have been obtained
&om the more restrictive condition



51 CONSISTENCY OF THE CHIRAL PION-PION SCATTERING. . . 1097

I"(x,s, t) &0 and F(x, t, s) (0 for x &4. (3.12)

(3.13)

Using expression (3.5) of fo we see that (3.13) is equiv-
alent to an inequality of the form

We have computed anew the domain of the (s, t) plane
defined by condition (3.12) and determined the signifi-
cantly larger domain defined by condition (3.11). The
result is displayed in Fig. 3.

The assumption (2.9) implies that the inequality (3.10)
imposes the following constraint on the second-order chi-
ral S wave:

O(As). Therefore a is small and the ratio A/a is large.
All inequalities leading to interesting ratios 6/a follow
this trend. Furthermore the precise numbers appearing
in bounds like (3.15) depend on the fine details of the
chiral ansatz. There are pairs which lead to slightly larger
bounds but s and t are very close in these pairs and
it would be unrealistic to assume that the correction to
[fo (s) —fo (t)] is efFectively of order As. Assuming that
the derivative of the correction to fo is also O(As) we
may safely suppose that the correction to the diA'erence
is O((s —t)As). If we adopt this procedure, the pair
s = 1.720, t = 1.675 with a = 0.000 388 and 6 = 0.002 55
gives the largest lower bound combined with a relatively
small uncertainty:

u(s, t)l —b(s, t) & O(A), (3.14)
l & 6.6+O(5) . (3.16)

l & 6.1+O(5) . (3.15)

The large uncertainty in this lower bound comes &om
the fact that, for reasonable values of l, the difference
[fo+(s) —fox(t)] is small comPared with A2 and is, in fact,

where a(s, t) & 0 and we consider those pairs for which
b(s, t) & 0. These give lower bounds for /. It turns out
that the loop term in (3.5) satisfies all the inequalities
arising from the strong condition (3.12). This means
that the lower bounds produced by these inequalities are
smaller than 6. The pair 8 = 2.30, t = 1.08, is an ex-
ample verifying (3.11) and not (3.12) and leading to an
inequality (3.10) slightly violated by the loop term. With
a = 0.0097, b = 0.0588 and A 0.05 this gives

Although the bounds (3.15) and (3.16) are not dis-
portionate to the phenomenological value of /, the dif-
ference between this value and the bound nevertheless is
relatively large and has to be explained. Comparing the
equality (3.9) and the inequality (3.10) we see that this
difference is determined by the integral on the right-hand
side of (3.9). This integral cannot be evaluated with the
help of the chiral ansatz alone and the explanation we are
looking for has to be based in part on the phenomenolog-
ical analysis of pion-pion scattering. In other words we
are no longer confronting the chiral ansatz with rigorous
constraints alone but are using (3.9) as a sum rule. To
estimate the right-hand side of (3.9) we cut ofF the inte-
gral at an energy of 1400 MeV (x = 100) and replace the

3

t2-
FIG. 3. The domains of pairs (s, t) for

which an inequality (3.10) holds true. The
black domain contains the pairs satisfying
condition (3.12). The domains in grey are
the extensions obtained by replacing (3.12)
by (3.11).

0

0
I

2
I

3
I

4
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absorptive parts by their S-wave contributions leading to
the integral

100 1/2

D(s, t) = — dx[F(x, s, t) —F(x, t, s)] —
i

4 3 ix —4)

A refinement of the technique leading to the vr -m con-
straints (3.10) produces inequalities involving the I = 0,
1 and 2 S and P waves [13]. We discuss only one of these
constraints:

fo (s) —fo (s) —1.693 269fi (s) ——
[fo (t) + 2 fo (t)]

x[sin bo(x) + 2 sin bo(x)] . (3.17)

We expect D(s, t) to be a good approximation of the
right-hand side integral of (3.9). In fact, if (s, t) verifies
(3.11), D(s, t) is smaller than this integral and we have
an improved version of (3.14):

1
a(s, t)l —b(s, t) & D(s—, t) + O(A) . (3.is)

l & 17.9+ O(5), l & 17.7+ O(5) . (3.i9)

To evaluate D(s, t) we take the phase shifts obtained
&om the chiral ansatz between threshold and 600 MeV
according to the procedure described in [6, for the cen-
tral values of the coupling constants [5,6]. Above 600
MeV and up to 1400 MeV the chiral amplitudes can
no longer be trusted and we take the I = 0 phase
shift adopted by the Particle Data Group [11] and the
I = 2 phase shift given by Martin et al. [12]. We
find D(2.30, 1.08) = 2.31 x 10 4 and D(1.720, 1.675) =
8.69 x 10 . These results lead to the following lower
bounds which, according to (3.18) replace (3.15) and
(3.16):

+4.751 676fi (t) & 0, (3.20)

with s = 2.6097, t = 1.0873. A high accuracy in the coef-
ficients of fi is mandatory in order to ensure a vanishing
contribution of the first-order linear amplitudes. After
insertion of the chiral ansatz of the S and P waves, the
left-hand side of (3.20) becomes a linear function of li,
l2, and l4. Remarkably, it depends practically only on
the combination / = 2l1+ 4/2 which appears in the vr -vr

amplitudes. Eliminating l2, (3.20) becomes

This inequality efI'ectively constrains only l:

l & 2.3 + O(1.3) . (3.22)

This bound is weaker than the preceding ones. It may
be that the uncertainty is underestimated because it is a
combination of the A corrections of the six amplitudes
appearing in the constraint.

0.0338l + 1.3 x 10 li —6 x 10 l4 —0.0764 & O(A) .

(3.21)

The coincidence of these two bounds obtained from
quite different (s, t) pairs is striking. It supports the as-
sumption that D(s, t) is a good approximation of the
integral in (3.9). This allows us to turn the inequalities
(3.19) into approximate equalities, that is into approxi-
mate versions of the sum rules (3.9). Dropping the third-
order corrections we notice that the second-order chiral
ansatz is not quite consistent with the sum rules: the
right-hand side has been evaluated assuming l = 21. We
shall not enter into a detailed analysis of this issue taking
into account the uncertainties on the l;. We limit our-
selves only to the conclusion that matters here: the size
of D(s, t) which forces l to be substantially larger than
the rigorous lower bounds (3.15) and (3.16).

IV. m -m S AND D WAVES

The partial waves l ) 2 do not have the same sta-
tus as the S and P waves. The reason is that the
twice-subtracted fixed-s dispersion relations lead to a
Froissart-Cribov representation for these higher partial
waves, which involves only absorptive parts and no sub-
traction constants. For the vr -vr D wave and 0 & s ( 4,

4 1 ( 2x
f2 (s) dx +(x s) Q2

~

—1
~

(4.1)
4 —sm 4 q4 —s )

On the other hand, the chiral ansatz gives

2
2(s) =4 4

2t i 1
dt(2t —4t+ 3)P

~

1 —
~
I(t) + o. (4 —s)

4 —s) 45 (4 2)

Positivity immediately implies that f2(s) as given by
(4.1) is positive on [0,4]. Moreover, it has been shown
that df ( )/2d sis nsegative for 1.435 ( s & 4 [14].

The loop contribution to the chir al D wave is
marginally in conBict with these constraints, being
slightly negative above s = 2.71. It is found that f2~ has
the correct shape if I, ) 7.85. Although this is our largest
rigorous lower bound, it is not really useful because there
is no reliable way of estimating the uncertainty coming

&om the third-order D-wave corrections. The shape of
f2~ for various values of l is shown in Fig. 4.

Apart &om the properties of the D wave alone, there
are two known sets of inequalities involving both the m-
ero S and D waves [15]. The inequalities of the first set
are of the form

&( t)f ()+&(t )f (t) &f () —f (t) (43)
for appropriate pairs (s, t), C(s, t) being a known func-
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FIG. 4. The chiral 7r -vr D wave on the interval [0,4] for
various values of l.

These inequalities impose lower bounds on L as well
as upper bounds. The lower bounds are weaker than
the previous ones and the upper bounds are too large
( 1000) to be of any interest. The real strength of the
inequalities (4.4) is that they strongly constrain the shape
of the 7r -7r D wave once the S wave is given. This
phenomenon has already been recognized by Martin in a
general context [15]. In our case, with t = 21, we obtain
an impressive picture, displayed in Fig. 5. The chiral S
wave defines gates through which the D wave must pass.
The gates located below 8 = 1 are very narrow. The
chiral D wave passes through all the gates, often close
to the lower edge. Therefore the second-order chiral vr-
7r S and D waves obey all the constraints (4.4). This

tion. These inequalities again provide bounds for / but
they do not improve our previous results.

The second set of constraints gives upper or lower
bounds for the D wave at given points in terms of the
difference of the S wave between two points:

(
f2(s) &&5&2

TABLE I. The chiral m -m D wave f~"/A and its lower
and upper bounds from (4.4) for l = 21.

S

0.0341
0.073
0.304
0.325
0.572
0.589
0.747
0.803
0.826
1.000
1.200
1.400
1.435
1.500
1.600
1.800
1.900
1.950
2.000
2.050
2.100
2.288
2.500
2.857
3.000
3.102
3.106

(Lower
bounds)/A

14.459 34

11.749 86
9.479 23
5.584 49

7.815 48
6.587 37
5.575 84
4.541 94
3.538 43
3.960 47
3.435 62
0.930 242
0.286 525
0.475 615
0.708 817
0.883 305
1.19199
1.627 80
1 ~ 11638
0.304 35

f~~/A
15.256 09
14.685 68
11.996 60
11.788 77
9.630 69
9.498 39
8.348 95
7.973 07
7.823 04
6.763 39
5.691 12
4.752 4
4.600 94
4.327 54
3.929 92
3.210 38
2.885 82
2.731 84
2.583 2
2.439 8
2.301 5
1.825 27
1.366 13
0.761 78
0.541 21
0.457 97
0.453 71

(Upper
bounds)/A

15.822 05

12.124 49

10.661 81

8.363 08
8.330 16

9.11861
9.930 5

10.433 5
10.489 9
10.569 6
10.628 5
10.5136
5.050 84
4.305 03
3.887 46
3.594 93
3.365 35
6.10339
5.355 27

2.827 7
6.596 16
1.009 08

picture remains qualitatively unchanged if the value of l
is reduced. It is only for l = 3.7 that one of the bounds
starts to be violated. The constraints (4.4) also impose
correlations on the third-order corrections, due to the
fact that the width of the narrow gates is a &action of
A, as shown in Table I. Thus, one may expect third-
order S-wave corrections to be larger than the widths of
the narrow gates: they will be shifted by these corrections
and the D wave must comply with these shifts.

20-,

10-

FIG. 5. The upper and lower bounds im-
posed on the vr -vr D wave by the chiral
7r -vr S wave according to the inequalities
(4.4) for I = 21. The orientation of the ar-
rows distinguishes the upper froxn the lower
bounds. The chiral D wave satis6es all con-
straints. Bounds and D wave are divided by

1.0

t ..i)t
2.0 3.0 4.0
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V. CONCLUSIONS

We have checked whether the second-order chiral pion-
pion amplitudes obey a set of known axiomatic con-
straints. We have found that this is the case as long as the
value of the combination I of second-order coupling con-
stants is larger than about 6. As l 21, the constraints
are actually satisfied. It is remarkable that the best
bounds (3.6) and (3.16) produced by different families
of vr -vr constraints are nearly equal, and slightly larger
than 6. This arises &om the fact that the loop terms ei-
ther obey the constraints or violate them marginally. In
the latter case, a small positive a removes the violation.
Since a = I —6 is the coefficient of polynomials in (2.5)
and (3.5) coming &om tadpoles and second-order trees,
o. 0 essentially means that the trees nearly cancel the
tadpoles. A sum rule involving data at energies which are
above the domain of validity of the chiral ansatz shows
that l has to be substantially larger than its axiomatic

lower bound. It is remarkable that constraint (3.20), in-
volving all S and P waves, effectively restricts only that
combination l which appears in the 7t -7t amplitudes.

Finally, we have discovered that the second-order chiral
7t -7r S wave practically fixes the D wave below 8 = 1
by means of a set of axiomatic constraints. Surprisingly,
the second-order chiral D wave agrees completely with all
the conditions imposed by the S wave if l is large enough.
This implies strong correlations between the third-order
S- and D-wave corrections.
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