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Multiwormholes and multi-black-holes in three dimensions
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We construct time-dependent multicenter solutions to three-dimensional general relativity with a zero or

negative cosmological constant. These solutions correspond to dynamical systems of freely falling wormholes

or black holes and conical singularities, with a multiply connected spacetime topology. Stationary multi-black-

hole solutions are possible only in the extreme black-hole case.

PACS number(s): 04.60.Kz, 04.20.Gz, 04.20.Jb, 04.70.Bw

In a now well-known paper [1], Banados et al. gave a
black hole solution to the three-dimensional Einstein equa-
tions with a negative cosmological constant A= —I, and
studied its properties. This regular solution, which has in-

spired a number of recent papers [2], is given by

/r' J2 ~ ~ vJ
ds =v 2

—M+ 2 dt —r ' d8 — 2dt(I 4r ) ~
2r j

I dr

1ds'= y'I't an'(I 'X)dr' —,, (dX'+dY'),
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and taking the limit I~(x, which yields

ds =y X dt —dX —dY

(2)

12I2 ~

r2 M 12+ 24r

where 8 is periodic with a period 2m, the two parameters M
and J (with M~O,

~
J~ ~ML) are interpreted [1]as the mass

and angular momentum of the black hole, and the constant
v [—=N(~) in [1]]sets the scale of time.

In the present work we wish to outline the construction of
exact dynamical multi-black-hole solutions to three-
dimensional cosmological gravity. Some time ago, conformal
techniques were used to construct static [3]and stationary [4]
multicenter solutions to pure gravity (A =0) associated with
configurations of massive and spinning point particles, as
well as a class of static multiparticle solutions to cosmologi-
cal gravity (A 4 0) [5]. Using similar methods, we shall
construct what at first sight appears to be stationary multi-
black-hole solutions. However, these stationary solutions
turn out to be inconsistent, being generically plagued by ex-
tra conical singularities, which are unphysical in the sense
that their world lines are not geodesics of the multi-black-
hole space-time [5].As we shall show, by taking the posi-
tions of the black-hole centers to be no longer constant but
time dependent, one can derive intrinsically dynamical solu-
tions corresponding to systems of freely falling black holes
together with, now physical, auxiliary conical singularities.

We first consider for simplicity the case of pure gravity
which, along with the well-known point particle solution [3],
also admits a wormhole solution which, under certain cir-
cumstances, may behave as a black-hole solution. This may
be obtained from the J=0 black hole of Eq. (1) by putting
v=yl /c, M=c I, r=c/cos(l X), H=c Y, leading to
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We recognize in (3) the well-known two-dimensional
Rindler space-time [6] with an extra compact spatial
dimension Y. As discussed in [6], the transforma-
tion t Xsinh(74), x=Xcosh(7r); y=Y maps the metric (3)
into the two disjoint regions I (x &t ) of the Minkowski
cylinder ds = dt dx dy —(with —y periodic). The remain-

ing two regions II (t )x ) of the Minkowski cylinder may
be obtained by extending the metric (3) through the horizon
X =0 (of perimeter 2mc) to X = —X (0, and making the
transformation r=Xcosh(g), x=Xsinh(yt), y=Y. The re-
sulting Penrose diagram is shown in Fig. 1.

Of course, this maximally extended Rindler cylinder is
indistinguishable from the Minkowski cylinder. The distinc-
tion comes about if for instance the metric (3) arises as an
interior solution generated by a one-dimensional ring of ex-
otic matter [7]. This ring and its mirror image under the
symmetry X~—X separate space-time into three regions
(Fig. 2): two exterior regions where the metric

FIG. 1. Penrose diagram for the A=0 wormhole (Rindler cyl-
inder), with a timelike geodesic (dashed line) and a radial lightlike
geodesic (wavy line).
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FIG. 2. Penrose diagram for the black-hole space-time generated

by two mirror-symmetric rings (heavy world lines). The exterior
regions are truncated conical space-times, while the interior region
is a truncated Rindler cylinder.

ds,„,= dt dX l

—pX~ — d Y (4)

ds = y X (z,z)dt —lZ'(z)
l

dzdz (5)

(Z'=—dZ/dz). Consider the multicenter map
n

Z =g c;ln(z —a;) + d

appears to be generated by a 6ctitious point particle hidden
behind the ring X= ~ y ', and an interior region where the
metric is (3) (p&0 and y) 0 are the energy density and the
stress of the ring). An observer falling inside the ring may
send lightlike signals to the outside until he crosses the ho-
rizon X=0. Thereafter the observer continues falling towards
interior timelike infinity, while his signals (x —t=negative
constant), which can never catch up with the receding ring

(x t = y —), end up at interior lightlike infinity X;„.The
future Rindler region II is thus, for an external observer, a
genuine black hole (this fact was not fully appreciated in

[7]).Let us here mention that the four-dimensional Rindler
cylinder, dsz= y X dt dX dY —dZz w—ith Y—periodic,
may similarly arise as an interior solution generated by an
in5nite cylinder of exotic matter, leading to a black cosmic
string [8].

Restricting ourselves to the sourceless case, let us now
construct from (3) multiwormhole solutions to pure three-
dimensional gravity; we shall then generalize this construc-
tion to that of multi-black-hole solutions to three-
dimensional cosmological gravity. We 6rst recall that the
conformal map X+iY=Z(z) (with z=x+iy) generates
from (3) the family of stationary fiat metrics [4]

the horizon X(x,y)=0, the total horizon perimeter being
2m'", ,c;. This solution may be maximally extended by
taking two identical copies of the multiply connected X~0
region, which generalize the two regions I of the Rindler
space-time, and connecting the corresponding p horizon
components via p two-sided bridges made of two copies
(past and future) of a region of type II.

However, a serious problem with the above construction
is that the metric (5) has n 1—conical singularities associ-
ated with the zeros of Z'(z). As conical singularities corre-
spond to point particles, we must require for consistency [5]
that these follow geodesics of the multiwormhole space-
time. Now a point particle at rest in the geometry (3) feels a
static gravitational Geld

which vanishes only on the horizon X=0, and the configu-
rations such that the zeros of Z'(z) sit on the horizon are
obviously rather special. Of course, the problem is avoided
for those zeros of Z'(z) which lie behind the horizon and do
not belong to the multiwormhole space-time (the regions
X&0 are cut out and replaced by connecting bridges). How-
ever, for all the zeros of Z'(z) to lie behind the horizon this
must be simply connected (p = 1), in which case the space-
time geometry reduces to that of the original Rindler cylin-
der. The conclusion is that the previously discussed static
multiwormhole solution is inconsistent. However, the pre-
ceding analysis hints strongly towards a dynamical solution.
Consider for instance the map

Z=cln(z —a )+d (8)

(c)0); in the case clnlal +d~0 this leads to a two-
wormhole "solution" with an unphysical conical singularity
located at the "center of mass*' z=0. The gravitational field

(7) acting on this singularity, which tends to reduce X(0) and

thus the separation 2lal between the two centers, pulls the
two wormholes together until they merge in a single worm-
hole for clnlal +d=0.

To translate this picture into an exact solution, we must
introduce a time dependence in the multiwormhole solution.
This can be done by generalizing the conformal map
Z=Z(z) to the time-dependent map

Z=Z(z, t) (9)

which leads from the static fiat metric (3) to a dynamical flat
metric. As we want to describe a system of moving worm-
holes, we shall assume Z(z, t) to be given by (6), where the

positions a; of the centers are now time dependent, leading
to the metric

ds'=(QX' lAl') dt'+(AZ'dz—+AZ'»)« IZ'l«dz, —
(10)

(c; and d real, a; complex) of the region X(z,z) &0 of the
Euclidean (x,y) plane into the spatial sections of the three-
dimensional Rindler space-time; this map preserves spatial
infinity (X~+~m)zl~+~) if all the c; are positive. For
n = 1 and a1=0, c&

=c~0, we recover the Rindler cylinder
with X=clnr+d, F=c8, where z=re', r~e "'. For
n)1, we obtain what appears to be a system of p worm-

holes, p~n being the number of connected components of

where

c;Bpa;(t)
A(z, t) =

(i=1

(such a transformation was previously used by Letelier and
Gal'tsov [9] to construct multiple moving cosmic strings).
The metric (10) has again a horizon at X(z,t)=0, and
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of a point particle following the world line P+ a(t) =0 rela-
tive to the fixed wormhole (the background Rindler space-
time):

Z =clng+ d. (14)

FIG. 3. Penrose diagram for the timelike two-wormhole space-
time with Y=cm (A =0). The mirror-symmetric conical singulari-
ties are shown as heavy world lines in the two regions I (their
dashed analytic extensions into the regions II are not associated
with conical singularities). The double lines result from the super-

position, induced by the map z2= f, of the two disjoint horizon
components.

n —1 conical singularities following the world lines z (t)
which solve the equation Z'(z, t) =0. For consistency, these
world lines must obey the geodesic equations

x"+I'"„(x )x~~=0, (12)

Z = cln[g —a(t)]+d (13)

with +=a . Then, this last motion may be transformed, by
the global time-dependent translation f= i/I+ u(t), into that

where x = t for a—ll a, and an overdot denotes d/do, cr

being the affine parameters on the nth geodesic. Eliminating
the o. in favor of coordinate time t, we are left with a
system of 2(n —1) second-order differential equations for
the 2n unknowns [a;(t),a;(t)]. The remaining twofold arbi-
trariness is of course due to the possibility of arbitrary global
time-dependent translations z~z+ w(t); if we choose for
instance the origin of the complex z plane to coincide with
the "center of mass" of the multiwormhole system, then the
relative dynamics of the system are fully determined by in-
tegrating the consistency equations (12) with appropriate ini-
tial conditions.

We consider in more detail the symmetrical two-
wormhole system (8) with fixed conical singularity z=0.
The two-body problem may be reduced to that of the motion
of one wormhole relative to the fixed point /=0 by the
transformation z = (, which transforms (8) to

These successive coordinate transformations mapping the
geodesic z=0 into a geodesic, it follows that the motion of
the two wormhole centers is given by ~ a = (—i/I)'I, where
i/I= f(t) is a geodesic of the Rindler cylinder metric (14).
These geodesics may easily be derived from those- of
Minkowski space-time by the Rindler transformation. A typi-
cal timelike and a radial null geodesic are shown in Fig. 1. In
the timelike (or generic lightlike) case, as the geodesic
crosses the horizon from region I into region II, a single
wormhole bifurcates into two wormholes which separate to a
finite distance and merge again (the conical singularity falls
back on the horizon) after an infinite coordinate time. The
global structure of the maximal extension of this space-time
is schematized in Fig. 3; because of its multiply connected
topology, this dynamical solution is clearly not equivalent to
a stationary solution with point singularities. In the radial
lightlike case (Fig. 4) the two wormholes, infinitely sepa-
rated at t = —~, fall upon each other and merge, again after
an infinite coordinate time; the time-reversed evolution is
equally possible. In all cases, the total horizon perimeter
4mc is a constant of the motion.

We now sketch how the above construction may be gen-
eralized to the case of A&0 cosmological gravity (fuller
details shall be given elsewhere). In the case J=O, multi-
black-holes may similarly be obtained from the one black
hole (2) by the tine-dependent conformal map X+iY
=Z(z, t), where now X varies between nile (the horizon)
and (m+ 1/2) le (the line at spatial infinity, which may also
be multiply connected) for a given integer rn, and the func-
tions a;(t) in (6) are determined by the condition that the
zeros of Z'(z, t) follow geodesics. In the general case
J 0 0 (J ~M l ), we can write the one-black-hole solu-
tion (1) as

f J )2 I2( J2
ds =h vdt+ 2 dY —~ h +M+

2ch j c 4I2h2)

x(dX +dY )

where hz= r /I M is related to X by—

4I2h2 (16)

and Y= c8. The construction then proceeds as before, except
that the solution Z(z, t) must be analytically continued be-
yond h =0 to the largest, negative root h+ of the right-hand
side of (16) (the event horizon).

The evolution of the symmetrical two-black-hole system
with a conical singularity at z=0 may again be inferred

FIG. 4. Penrose diagram for the lightlike iwo-wormhole space-
time with Y=cm' (A=O).

The conclusion that static multi-black-hole systems necessarily
contain conical singularities was independently obtained by Cous-
saert and Henneaux [10].
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from the geodesic motion of a point particle in the one-
black-hole metric. While the Penrose diagram for the maxi-
rnally extended one-black-hole space-time contains an infi-
nite sequence of regions I, II, and III [1], we are only
concerned with geodesic motion of the conical singularity in
a given region I, which is qualitatively similar to that shown
in Fig. 3, the Rindler horizons being replaced by event hori-
zons (the conical singularity is born on the past event hori-
zon, and dies on the future event horizon). It follows that,
given an initial two-black-hole (plus conical singularity) con-
figuration at time t=o, a distant observer sees the two black
holes falling toward each other, eventually merging (and ab-
sorbing the conical singularity) after an infinite coordinate
time.

Particularly interesting is the extreme case J =M I, in
which we would expect that the gravitational attraction and
the centrifugal repulsion may balance, resulting in stationary

solutions. Indeed, it is easy to show that the lines r=ao,
d8=(v/l)dt are lightlike geodesics for arbitrary ao, corre-
sponding to stationary systems of two black holes orbiting
around the conical singularity at the constant angular veloc-
ity v/2l.

We have studied the classical dynamics of wormholes and
black holes in three-dimensional cosmological gravity. Lim-
iting cases of special interest are pure gravity (A =0) where,
despite the fact that space-time is (almost everywhere) fiat,
we have obtained dynamical systems of freely falling worm-
holes and conical singularities with nontrivial topology, and
extreme black holes (J = —M /A), which may interact to-
gether with conical singularities to form stationary planetary
systems.

I wish to acknowledge stimulating discussions with Ber-
nard Linet, Gary Horowitz, Mare Henneaux, and Olivier
Coussaert.
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