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Gravitational waves from inspiralling binaries are expected to be detected using a data analysis technique
known as matched jiltering. This technique is applicable whenever the form of the signal is known accurately.
Though we know the form of the signal precisely, we will not know a priori its parameters. Hence it is
essential to filter the raw output through a host of search templates each corresponding to different values of
the parameters. The number of search templates needed in detecting the Newtonian waveform characterized by
three independent parameters is itself several thousands. With the inclusion of post-Newtonian corrections the

inspiral waveform will have four independent parameters and this, it was thought, would lead to an increase in
the number of filters by several orders of magnitude —an unfavorable feature since it would drastically slow
down data analysis. In this Rapid Communication I show that by a judicious choice of signal parameters we
can work, even when the first post-Newtonian corrections are included, with as many number of parameters as
in the Newtonian case. In other words I demonstrate that the effective dimensionality of the signal parameter
space does not change when first post-Newtonian corrections are taken into account.

PACS number(s): 04.80.Nn, 04.25.Nx, 95.55.Ym

Coalescing systems of compact binaries are the most
promising sources of gravitational radiation for the planned
laser interferometric gravitational wave detectors. As a bi-
nary system of stars inspirals, due to radiation reaction, the
gravitational wave sweeps up in amplitude and frequency.
The resulting inspiral waveform is often called the chirp
waveform. As the wave sweeps up in frequency secular post-
Newtonian corrections to the phase of the waveform become
substantial [I]. When such corrections are incorporated in
the templates that are used in detecting the gravitational
wave signal it may be possible to glean useful astrophysical
information such as the masses of the component stars [1,2],
their equation of state, etc. In addition, observation of several
such coalescence events can facilitate an accurate determina-
tion of cosmological parameters, such as the Hubble constant
and after a few hundred events the density parameter [3,4].
In order to extract information of this kind, it is absolutely
essential that the parameters of the waveform be determined
very accurately.
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Optimal Weiner filtering or matched filtering is a data
analysis technique that allows a very precise determination
of signal parameters [5].The method consists in correlating
the raw output of a detector with a waveform, variously
known as a template or a filter, whose Fourier transform is
the Fourier transform of the signal divided by the noise
power spectrum. A decision about the presence or the ab-
sence of a signal is made by looking at the maximum of the
correlation. A template whose parameters are exactly
matched with those of the signal enhances the signal-to-noise
ratio (SNR) in proportion to the square root of the number of
cycles that the signal spends in the detector output, as op-
posed to the case when the shape of the waveform is not
known a priori and all that can be done is to prebandpass
filter the detector output to the frequency band where the
signal is assumed to lie, and then look at the SNR for each
data point in the time domain individually [6].For an inter-
ferometric detector, such as the Laser Interferometric Gravi-
tational Wave Observatory (LIGO) or the VIRGO, operating
with a lower frequency cutoff -40 Hz and an upper cutoff
-1 kHz, this means an amplification in the SNR -30—40 for
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the inspiral waveform from a typical binary. This enhance-
rnent in the SNR not only increases the number of detectable
events but, more importantly, it also allows a more accurate
determination of signal parameter the error in the estima-
tion of a parameter being inversely proportional to the SNR.
In order to take full advantage of matched filtering it is es-
sential that the inspiralling binary waveform, and in particu-
lar the evolution of its phase, be known to a very high degree
of accuracy [1].A mismatch in the phases of the template
and the signal can drastically reduce the SNR. Though we
are confident about the event rate, and hence know the prob-
ability of the signal being present in the data train, we will
not know a priori what the signal parameters are. Conse-
quently, the detector output needs to be filtered through a
number of templates each corresponding to a particular set of
"test" parameters. The number of search templates needed to
cover the astrophysically relevant range of the parameter
space depends primarily on the dimensionality of the param-
eter space.

Cutler et aL [1]pointed out that for the purpose of con-
structing a set of matched filters to detect gravitational waves
from inspiralling binaries it is both necessary and sufficient
to work with the so-called restricted post-Newtonian gravi-
tational waveform. In this approximation one incorporates
the post-Newtonian corrections only to the phase of the
waveform working always with just the Newtonian ampli-

tude. Going beyond the restricted post-Newtonian approxi-
mation is not expected to change appreciably the magnitude
of the statistical errors in the parameter extraction, so the

restricted post-Newtonian approximation can be used to es-
timate statistical errors. However, in the postdetection analy-
sis it is necessary to employ more accurate templates since
the use of just the restricted post-Newtonian waveform
would give rise to some systematic errors. In the restricted
post-Newtonian approximation the gravitational waves from
a binary system of stars, modeled as point masses orbiting
about each other in a circular orbit, induce a strain h(t) at the

detector given by

h(t) =A[m f(t)]zi3cos[q&(t)],

where f(r), the instantaneous gravitational wave frequency,
is equal to twice the orbital frequency of the binary; the

constant A involves the distance to the binary, its reduced
and total mass, and the antenna pattern of the detector. The
detailed form of A will not be of any concern in this Rapid
Communication. The phase of the waveform can be sche-

matically written as

rP(t) +N(t) + HAPP iN+ +PS SN+

Here yN(r) is the dominant Newtonian part of the phase and

ppItN represents the nth order post-Newtonian correction to
it. In the quadrupole approximation we have only the New-

tonian part of the phase given by [5]

Here f(t) is the instantaneous Newtonian gravitational wave

frequency given implicitly by

/ f
tg T 1a N

a,

is a constant having dimensions of time given by

(5)

and f, and 4 are the instantaneous gravitational wave fre-

quency and the phase of the signal, respectively, at t = t, .

Even though it is possible to invert f in terms of r we shall

continue to work with (4) since it allows a straightforward
interpretation of the parameter rz and later of a similar post-
Newtonian parameter. We shall refer to the time elapsed
starting from an epoch when the gravitational wave fre-

quency is f, till the epoch when it becomes infinite, at which

time the two stars would theoretically coalesce, as the chirp
time of the signal. In the quadrupole approximation vz is the

chirp time. The Newtonian part of the phase, namely, Eq. (3),
is essentially characterized by three parameters: (i) the time

of arrival t, when the signal first becomes visible in the

detector, (ii) the phase uzi of the signal at the time of arrival,
and (iii) the chirp mass ~=(pM),U~, where p, and M are

the reduced and the total mass of the binary, respectively.
Note that at this level of approximation the phase (as also the

amplitude) depends on the masses of the two stars only

through the above combination of the individual masses.
Consequently, two coalescing binary signals of the same

chirp mass but of different sets of individual masses would

be degenerate and thus exhibit exactly the same time evolu-

tion. This degeneracy, as we shall see below, will be removed
when post-Newtonian corrections are included in the phase
of the waveform.

How many search templates are needed to cover an inter-

esting range of the parameter space if we restrict ourselves to
the Newtonian waveform? Sathyaprakash and Dhurandhar

[7]have made a detailed analysis of this question and a typi-
cal number of filters they quote is about a thousand. They
have also pointed out that the present-day computer technol-

ogy is well equipped to filter the detector output on-line.
However, as pointed out earlier it is not enough to consider

just the Newtonian waveform. Inclusion of post-Newtonian

corrections serves a dual purpose: On the one hand unless the

secular post-Newtonian corrections are included in the phase
of the search templates there would be a severe drop in the

SNR. On the other hand, and more importantly, in order to

do interesting astrophysics with gravitational waves it is es-

sential to remove the degeneracy in the wave forms by in-

cluding post-Newtonian corrections.
When post-Newtonian corrections are included the pa-

rameter space of waveform acquires an extra dimension. It
was feared that this would mean a severe burden on data

analysis: an extra dimension of the parameter space implies
that it would be necessary to construct for each of the thou-

sand odd Newtonian filters a similar number of filters corre-

sponding to the post-Newtonian parameter. Several authors

have therefore analyzed the effectiveness of a Newtonian

template with "wrong" parameters to detect a post-
Newtonian signal [8,9]. However, these authors conclude

that even after allowing for a mismatch in the parameters of
a Newtonian template and a post-Newtonian signal the SNR
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would reduce by about 10—20%. Such a drop in the SNR is
unfavorable considering the low event rate of these sources.
In this Rapid Communication I will show that when the first
post-Newtonian corrections are included in the phase of the
waveform it is possible to make a judicious choice of the
parameters so that the parameter space essentially remains
only three dimensional. While such a strategy is suitable for
an unambiguous and easy detection it does by no means
guarantee a precise estimation of all of the binary's param-
eters. The bottom line of this Rapid Communication is that
the algorithm presented here enables an enhancement in the
SNR by including post-Newtonian corrections in the search
templates without at the same time causing any extra burden
on data analysis. It should, however, be noted that further
off-line analysis would be necessary to extract useful astro-
physical information.

With the inclusion of first post-Newtonian correction the
phase of the waveform becomes [10,11]

We begin by defining the scalar product of waveforms
which plays a crucial role in deciding the filters that are
required to span the range of parameters and hence to assess
the effective dimensionality of the parameter space. Given
two waveforms g(t) and h(t) their scalar product is defined
by

~" g(f)h*(f)
„

J — s,(f)

where S„(f)is the hvo sid-ed detector noise power spectral
density and g(f) = I"„g(t)exp(2mft)dt and h(f)
= f"„h(t)exp(2mift)dt, are the Fourier transforms of the
waveforms g(t) and h(t), respectively. The SNR p obtained
for a signal h(t) using an optimal Weiner filter is simply the
norm of the signal computed using the above definition of
the scalar product:

g (t) 9 N(t) + 9 P1N(t)~ (6) p=(h, h).

where AN(t) is given by (3) and

(f) —1

0 P1N(t) 4m'f~rP1—N 1 —'—
if.f

(7)

Now f(t) is the instantaneous post-Newtonian frequency
given implicitly by

& f1 si3.

t —t~= r~ 1—
if.&

I f i-2
+ rp1~ 1 if. i

rN is given by (5) and rP1N is a constant having dimensions
of time given by

5(743+ 924')
64 512IJ„(rrf,)

The phase (7) now contains the reduced mass p, and the
parameter ri= p, /M, in addition to the chirp mass ~. Tak-
ing (M, ri) to be the post-Newtonian mass parameters
the total mass and the reduced mass are given by
M =Mrs ~, p, =Mr@ . Note that the total chirp time r of
the signal has a Newtonian contribution rz and a post-
Newtonian contribution rpl g . The time left starting from an
epoch when the gravitational wave frequency is f, until an
epoch when the frequency becomes infinite is
r= r~+ rplg. We shall refer to rz as the Newtonian chirp
time and to rplz as the post-Newtonian chirp time. Note that
instead of working with the parameters ~ and rg we can
equivalently work with the parameters r& and rp1~.

Thus the post-Newtonian filter is characterized by four
parameters: X»={t„@,rN, rplN) where we have used the
symbol kk, k=1, . . . ,4, to collectively denote the four pa-
rameters. Note that t and 4 are kinematical parameters that
fix the origin of the measurement of time and phase, respec-
tively, whereas the Newtonian and the post-Newtonian chirp
times are dynamical parameters in the sense that they decide
the evolution of the phase and the amplitude of the signal.
We shall now set out to see if it is possible, for the purpose
of filtering, to reduce the dimensionality of the parameter
space from four to three.

A waveform is said to be normalized if its norm is equal to
unity. Let us consider the behavior of the scalar product of
two chirp waveforms g(t; X») and h(t; li.») which differ in all
their parameter values, i.e., X& being in general different
from li.», and are normalized, i.e., (h, h) =(g,g) =1. Their
scalar product C(k», k») is given by

C()», )»') =(g(Z»), h(Z»)). (12)

h(f)=&f exp ig A(f)l » i 4—
k=1

(13a)

where A is a constant and

6=2rrf (13b)

Here k» can be thought of as the parameters of a signal while

k» those of a template. Then C(k», k») is the SNR ob-
tained using a template that is not necessarily matched on
to the signal. Since the waveforms are of unit norm
C(X»,)») =1, if k»=k» and C(k», k»)~1, if l1» + k». In
general, as indicated by its arguments C(k», li.») depends on
the individual values of the parameters both of the signal and
the template. In what follows I will first show that the SNR
(12) depends only on the difference in the parameter values
Xk—Xk. Second, I will show that a template of a given total
chirp time obtains roughly the same SNR for all waveforms
of the same total chirp time though their Newtonian and
post-Newtonian chirp times may be different from that of the
template (see, however, the discussion at the end of the pa-
per). The former of these two results implies uniformity in
the spacing of filters [7,12]while the latter result facilitates a
massive reduction in the number of templates required in
spanning the parameter space since instead of constructing
filters separately for each of the Newtonian and post-
Newtonian chirp times we can construct filters simply for the
total chirp time.

In the stationary phase approximation the Fourier trans-
form of the restricted first-post-Newtonian chirp waveform
for positive frequencies is given by [5,7,13]

4
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FIG. 1. Surface showing the maximum, over t, and 4, of the

SNR C(beak).
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(13d) FIG. 2. Contours of the SNR surface shown in Fig. 1. The con-

tours are approximately straight lines 7&+ Tplg —const.

(13e)

For f(0 the Fourier transform is computed using the iden-

tity h( —f)=h*(f) obeyed by real functions h(t). With the

above expression for the Fourier transform the SNR (12),
using (10), takes the form

—7/3 4

C(8kk)~ cos g pk(f)beak df,
0 n k 1

(14)

where &.k= kk —kz. As in the Newtonian case the SNR is

independent of the individual parameter values of the signal
and the template: For all signal-template pairs that have the

same differences in times of arrival, phases, and chirp times

one obtains the same SAR. Consequently, constancy of the

distance, measured using the scalar product (10), between

two nearest neighbor filters, that is required in making a

choice of filters, translates into the constancy of the distance,
measured using the difference in their parameter values.

We now seek to analyze the behavior of the SNR (14)
when the template's parameters are mismatched with those
of the signal. While it is essential to do the analysis for noise

power spectral density in real laser interferometers, such as
the one discussed by Finn and Chernoff [13], the results

obtained in that case are qualitatively the same as in the case
of white noise [14].In order not to divert attention from the
main theme of discussion, here I will only quote the results

for white noise. C(beak) traces out a four-dimensional sur-

face as we vary &.k. In what follows I consider the two-

dimensional subspace obtained by maximizing C(&.k), over

t, and 4, for every Pair of ~z and ~pl~ of the signal keePing

the parameters of the template v~ and v.p1~ constant. Thep p

surface so obtained is plotted for white noise [i.e., S„(f)=
const] in Fig. 1. Since the parameters of the template are

constant I have shown on the x and Y axis of Fig. 1 (and Fig.
2) the parameters of the signal rN and rpl~ and not the

difference Bvz and B~p1N. The same surface is obtained

irrespective of what values we choose for the parameters of
the template provided we keep the range of the signa1 param-
eters the same. In this sense, the correlation surface in Fig. 1

only depends on the difference in the parameters of the sig-
nal and the template and not on their absolute values. For the

astrophysically relevant range of the masses of the two stars

(say, M, ,M2 ~ [1,10]M~) and for f,= 100 Hz,
E [4,0.08] s and rpltt E [0.3,0.03] s. In Fig. 1 the post-
Newtonian chirp time is varied over the whole of its relevant

range while the Newtonian chirp time is only varied over a

portion of its relevant range. The contours of this surface
shown in Fig. 2 are almost straight lines 7.= v&+7'p1&=
const, except for the innermost one or two contours. The
value of C corresponding to the innermost contour is 0.9 and

reduces by 0.1 with successive outer contours.
A useful interpretation of the surface in Fig. 1 is the fol-

lowing: Imagine that we have a template with parameters

corresponding to the center of the grid. It obtains an SNR of
unity with a signal whose parameters are exactly matched

onto it. The SNR that it obtains for other wave forms is in

general less than unity but, as is evident from Fig. 1, the

SNR is almost equal to unity for every waveform whose total

chirp time is the same as its own total chirp time. Thus, if we

choose our search templates along the curve perpendicular to
the contours of Fig. 2 then we will in effect be covering the

entire subspace of the signal. In other words ~e can

span the two dimensio-nal (r&, rpiN) subspace of the four
dimensional parameter space ~ith just one parameter. This
curve is an appropriate one of a family of straight lines

7~—7'pl~ + const. Consequently, as far as the choice of fi1-

ters is considered we need only work with three parameters,

namely (t, ,4, r) This reduction .in the effective number of
parameters can be traced to the fact that there is a strong

covariance between the parameters ~z and ~pl~. This result,

together with the details of a Monte Carlo simulation dem-

onstrating the effectiveness of the claim made in this paper
and the results of including higher-order post-Newtonian cor-

rections, and noise envisaged in real interferometers will be

published elsewhere [14].
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Let me conclude by making two cautionary remarks. The
first one concerns the choice of parameters: It should not be
thought that the effective dimensionality of the parameter
space is three only when the set (t, ,@,rN, rpitt) is em-

ployed in constructing a lattice of filters. After all the reduc-
tion of dimensionality is related to the property of the scalar
product (10) which is reparametrization invariant. The ad-
vantage of the set used in this Rapid Communication is that
it allows us to conclude about the effective dimensionality
without recourse to complicated mathematical analysis.
However, the final justification has to come from a more
rigorous analysis which will be taken up in a future paper
[14].The second comment is about the scope of the reduced
dimensionality of the parameter space itself. The parameter
space would be truely three-dimensional provided the corre-
lation function is a constant in the direction rN+7p1~=
const. However, as can be inferred from Figs. 1 and 2,
strictly speaking, this is not the case. The correlation func-

tion slowly decreases as we move away from the maximum

of the correlation function in the direction rN+ 7 p1N —const.
This means two things: (i) The argument about the reduction
in dimensionality is only valid as long as the correlation
function has not dropped too much (ideally less than about

1%) along lines of constant r~+Tpltt and (ii) a post-
Newtonian filter of a given total chirp time cannot be re-

placed by a Newtonian filter of the same chirp time. In other
words, the presence of the post-Newtonian term cannot be
mimicked by a Newtonian filter alone. However, for the as-

trophysically relevant range of the parameter vp1N it turns
out that we need only use a three-dimensional lattice of fil-
ters or at worst two sets of a three-dimensional lattice.
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[1]C. Cutler et'al. , Phys. Rev. Lett. 70, 2984 (1993).
[2] L. Blanchet and B.S. Sathyaprakash, Class. Quantum Grav. (to

be published).

[3]B.F. Schutz, in Gravitational Collapse and Relativity, Proceed-

ings of the Fourteenth Yamada Conference, Kyoto, Japan,
1986, edited by H. Sato and T. Nakamura (World Scientific,
Singapore, 1986), pp. 350—368.

[4] D. Markovic, Phys. Rev. D 4$, 4738 (1993).
[5] K.S. Thorne, in 300 Years of Gravitation, edited by S.W.

Hawking and W. Israel (Cambridge University Press, Cam-

bridge, England, 1987).
[6] B.F. Schutz, in The Detection of Gravitational Radiation, ed-

ited by D. Blair (Cambridge University Press, Cambridge, En-

gland, 1989), pp. 406-427.

[7] B.S. Sathyaprakash and S.V. Dhurandhar, Phys. Rev. D 44,
3819 (1991).

[8] R. Balasubramanian and S.V. Dhurandhar, Phys. Rev. D 50,
6080 (1994).

[9]K. Kokkotas, A. Krolak, and G. Tsegas, report (unpublished).

[10]R.V. Wagoner and C.M. Will, Astrophys. J. 210, 764 (1976);
215, 984 (1977).

[11]C. Cutler and E. Flanagan, Phys. Rev. D 49, 2658 (1994).
[12]S.V. Dhurandhar and B.S. Sathyaprakash, Phys. Rev. D 49,

1707 (1994).
[13]L.S. Finn and D.F. Chernoff, Phys. Rev. D 47, 2198 (1993).
[14]R. Balasubramanian, B.S. Sathyaprakash, and K. Jotania (in

preparation).




