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Fractal basins and chaotic trajectories in multi-black-hole spacetimes

C. P. Dettmann and N. E. Frankel
School of Physics, University of Melbourne, Parkville Victoria 3052, Australia

N. J. Cornish
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S1A7

(Received 11 February 1994)

We investigate the phase space for trajectories in multi-black-hole spacetimes. We find that complete,

chaotic geodesics are well described by Lyapunov exponents, and that the attractor basin boundary scales as a

fractal in a diffeomorphism-invariant manner.

PACS number(s): 04.25.—g, 04.40.Nr, 04.70.8w, 95.10.Fh

Chaos is an aspect of general relativity which has only
recently been explored. Its existence is expected as general
relativity contains generalizations of well-known chaotic
systems from Newtonian physics such as the three-body
problem. Moreover, the nonlinearity of Einstein's equations
may give rise to chaos in systems whose Newtonian ana-

logue is nonchaotic. The characterization of chaos in general
relativity is complicated by the dynamical nature of time,
which necessitates a careful generalization of the parameters
which quantify chaos, such as Lyapunov exponents.

Relativistic systems in which chaos is known include
charged particles in a magnetic field interacting with gravi-
tational waves [1], particles near a magnetized black hole

[2], and particles near a black hole interacting with gravita-
tional waves [3], as well as particles in Majumdar-
Papapetrou (MP) geometries, described below. There is also
the general, sufficient but not necessary, criterion that chaotic
geodesics will occur if the phase space is compact and the
Ricci scalar is negative [4]. In MP spacetimes the Ricci sca-
lar is identically zero, so this criterion is inapplicable.

Cosmological models such as the mixmaster universe

[5—7] and Robertson-WaIker models containing dynamical
fields [8] have been found to show some of the characteris-
tics of chaotic systems; however, there is difficulty in defin-

ing coordinate invariant measures of chaos for these models

[9].
MP geometries [10,11] are the static solution of the

Einstein-Maxwell equations with metric and electrostatic po-
tential given by

the MP metric corresponds to a system of extreme Reissner-
Nordstrom black holes with equal charge and mass M;&0
and horizons at (x;,y;,z;). Note that the MP coordinates are
singular at these points, mapping a horizon of finite proper
area to a single point. They also showed that if U takes
certain, specific, forms different from the above expression,
the spacetime contains naked singularities.

Chandrasekhar [13] and Contopoulos [14] have investi-

gated the timelike and null geodesics of the two-black-hole
system from the point of view of the periodic orbits and the
weak field limit. For particles with elliptic (bound) energies
the trajectories fall into several categories. There are stable
periodic and quasiperiodic orbits, chaotic orbits trapped be-
tween periodic orbits, trajectories which fall into one or other
of the black holes, and chaotic trajectories which lie on the
boundary of these regions. This structure, together with the
fact that the weak field limit is integrable, makes the MP
geodesics problem a particularly interesting example of
chaos in general relativity.

Working from the equations of motion, Contopoulos
showed that the weak field limit of the two-black-hole sys-
tem was integrable for uncharged test particles with zero
angular momentum about the axis of symmetry. Using
Hamilton-Jacobi methods [15],we have generalized this re-
sult to include test particles of arbitrary charge, energy, and
angular momentum. In the background spacetime generated
by two black holes with masses Mi, Mz centered at (0,0,0)
and (O, m, 0) in prolate spheroidal coordinates, (t/t, 8, P)
[14], we find the super-Hamiltonian for a test particle of
charge e and mass m is given by

ds =-U dt +U (dx +dy +dz ),

(2)

8S 1 t8S e t 1 t BS)

Bk 2 i8t U 2U Q (8fj

and the spatial components ofA „arezero, with U a function
of the spatial coordinates satisfying Laplace's equation

~r' U(x, y, z)—=U„,+Ur~+U„=O. where

I' as~ ' 1 (&glz

2U Q ~ 88) 2(Usinht/lsin8) ~ 8$t
(5)

N
M;

U=1+g
;=i P(x —x;) +(y —y;) +(z—z;)

(4)

Hartle and Hawking [12] showed that if U is of the form
U=1+W/Q, Q=sinh /+sin 8,

W= (M, +Mz) cosh/+ (M, —Mz) cos8.

Since t and p are cyclic coordinates, the canonically conju-
gate momenta 7r, = —(F. e) and rr&=L, are —constants of
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the motion. E and I., are the particle's energy and angular
momentum at infinity. Invariance of the particle's rest mass
along the trajectory affinely parameterized by X gives rise to
a third constant of motion m . We see that the system is
separable, and hence integrable, if

4 ~

1
2S= ——m k (E—e)t+—L, P+S&(r/r)+Se(8). (6)

2.

Substituting this expression into (5) and using the weak field

expansion

g U"=g+ n W+ 0(W'/g),

Z

we find -2 .

S&= ' (E +m )sinh i/1+2(Mi+M2)

2

X(2Ez+m2 —Ee)cosh/ —. h2
+a

sinh )

1/2

df, (8)
-2

Se= (E +m )sin 8+2(M, M2)(2—E +m Ee)cos—8

L
2
Z

sin 8

'I 1/2

d8.

FIG. 1.A two-dimensional section of phase space determined by
v=0, y=0. The black regions are trajectories which fall into the

black hole of mass 1/3 at (0,1).The white regions are those which

fall into the black hole of mass 1/3 at (0,—1).

v= U [(vp+ v —evp/m)VU —vv. VU], (10)

x=U v,

The separation constant a is a fourth constant of the motion,
which in turn guarantees the system is integrable.

The next order in the weak field expansion destroys sepa-
rability in prolate spheroidal coordinates. While this does not

prove the system is nonintegrable, it does show that if chaos
is present, it is due to relativistic effects. In this case, the
chaos is related to the relativistic perihelion advance of el-

liptic trajectories, which invalidates Bonnets theorem for
motion with two centers [13].

For MP geometries with three or more black holes, even
the Newtonian limit is nonintegrable. The one exception to
this occurs in the Newtonian regime for "extremal" test par-
ticles with e=m, since then the gravitational and electro-
static forces cancel exactly. This cancellation breaks down in

general relativity where gravity couples to all forms of en-

ergy, including kinetic energy. The scattering of an extremal
test particle by an extremal black hole of mass M illustrates
this effect since we find the scattering angle 6P differs
from the Newtonian value (b, g=o) by AP= —(M/b)[3
+ u /4+0(u, M/b)) The impact p.arameter b is related to

L, and the asymptotic velocity u via L,= mbu/ g1 —u . This
result leads us to expect that the trajectories of extremal test
particles in MP geometries will be chaotic beyond the New-
tonian limit, thus providing another example where chaos
arises due to relativistic effects.

For rapid numerical calculations we use the original MP
coordinates (t,x,y, z), because the equations of motion do
not contain transcendental functions. Writing the upper com-
ponents of the four-velocity in an orthonormal basis as

(vp, v), the equations of motion are

t= UUp, (12)

vp= $1+v (13)

where an overdot indicates the derivative with respect to

proper time. The conserved energy is given by

E= U '(mvp —e). (14)

We have integrated the equations using a fourth-order
Runge-Kutta technique with adaptive stepsize [16].The re-
sults are shown in Figs. 1—3 for the case e =0. These figures
show two-dimensional sections of the phase space given by
the initial conditions v= 0, Y

=0.All of the points shown fall
into one of the black holes and are color coded accordingly.
The boundary between the basins of attraction clearly has a
complicated structure, which may be quantified using the

concept of fractal dimension.
There are a number of different fractal dimensions defined

in the literature [17].The box-counting dimension of a set
embedded in an E-dimensional Euclidean space is obtained

by finding the minimum number N(e) of E-dimensional
cubes needed to cover the set, and calculating

in%
da = 11m

~~p 1116
(15)

assuming that this limit exists. The generalization to Rie-
mannian or pseudo-Riemannian spaces is direct, since dz is
invariant under diffeomorphisms, so all choices of coordi-
nates give the same value. If the basin is defined on some
spatial hypersurface, as is the case here, the dimension may
depend on the chosen slicing of spacetime.
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FIG. 2. A small region of Fig. 1 showing the fractal structure.
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FIG. 3. The v=. The v=0, y=0 section of phase space for the 3-hole
pmblem. The black holes of mass 1/3 are situated at (0,1),(,— / ), and (—v3/2, —1/2), corresponding to gray, black,3/2 —1 2
and white, respectively.

The value of dz of the fractal boundary for a region of
phase space near that shown in Fig. 2 was evaluated using
the above equation. The region, containing 2520 points,
was covered by a grid. Each square of size e (e being a
factor of 2520) was counted if it contained trajectories lead-

ing to both black holes. Figure 4 shows a plot of lnN vs
inc. Thene. e straight line is a fit to all but the three largest and
smallest values of e, and gives a dimension of 1.464. . . .
This result clearly demonstrates that the 8-dimensional

FIG. 4. The dimension dz of a region of the fractal boundary
near that shown in Fig. 2 is equal to 1.464. . . .

boundary as a whole is a fractal, thus giving us a diffeomor-
phism invariant measure of chaos.

For complete geodesics, a useful characteristic of chaotic
systems is the presence of positive Lyapunov exponents,
which emonstrate that the system is noninte bl 18 .

ese are defined in Hat spacetime by choosing a point x in

phase space, at the center of a ball of radius e(&1. After a
time r the ball evolves to an ellipsoid with semiaxes ek(r),
where k ranges from one to the dimension of the phase
space. The Lyapunov exponents are

1 ek(t)
kk(x) = lim Iim —In

Ot
(16)

again assuming the limits exist. The Xk are constant along a
trajectory, and are often constant over larger regions of hase
space, such as the basin of an attractor. Numerically thy ese are
ca cu ated by integrating the linearized equations. d. an peri-
o ica ly performing a Gram-Schmidt orthonormalization to
ensure that the exponentially growing solutions do not cause
overflow errors [19].

There are a number of subtleties associated with the defi-
nition and calculation of Lyapunov exponents in curved
spaces, and in particular, in the MP spacetimes. The defini-
tion of the Xk requires a.metric on phase space to calculate

istances, but the Xk are independent of this metric if the
phase space is compact, since the trajectory passes arbitraril
close to at least one point an infinite number of times at
unbounded values of t, causing the metric terms appearing in
the ratio of radii to effectively cancel out.

Inn relativity, there is no unambiguously defined global
time in general. If this is the case, the only reasonable option
is to use the particle's proper time as t in Eq. (16). This
approach emphasizes the quasilocal nature of Lyapunov ex-
ponents, that is, their relation to particular trajectories, and
not (necessarily) the system as a whole. If the system has a
timelike Killing vector, and hence a global time t, then this
may be used in the definition of the exponents. The results of
t is approach correspond to measurements of stationary ob-
servers. We choose the latter approach, following Ref. [2].

In the MP case, there is an additional difficulty in that
many of the geodesics are incomplete. Particles may cross
the horizon of a black hole after finite proper time and en-
counter a singularity, rendering the limit in Eq. (16) unde-
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fined. Thus, we attempt to calculate Lyapunov exponents
only for those trajectories which survive for an infinite

proper time. This is not a problem for the regions of phase
space which are nearly integrable, but for the basin boundary
special techniques are required. It is impossible to find a
point which is exactly on the boundary in general, and a
trajectory which begins near the boundary will eventually
move away and fall into a black hole. One solution is to
periodically check that the trajectory is sufficiently close to
the boundary, using a criterion based on whether the particle
subsequently survives for a given proper time. If the criterion
is not met, the trajectory is adjusted by making small random
shifts until it is. We have checked that this procedure does
not cause the exponents or energy to drift significantly over
the integration times used. We have calculated the Lyapunov
exponents for the two-black-hole system using the
4-dimensional submanifold of phase space (x, z, U, , U,),
defined by (L,=0, m = const), for the initial values
(3.33467,0.23509,0,0), and found them to be
)i.k=(0.03609,0.00006, —0.00006, —0.03609). The
statistical uncertainty is about 0.00009. Note that the

Lyapunov exponents are measured in the eigendirections of
the linearized evolution operator, and do not correspond to
the above coordinate system.

As in nonrelativistic mechanics, the symmetries of the

system impose constraints on the Lyapunov exponents [20].
Liouville's theorem implies that they sum to zero; time re-
versal symmetry implies that they come in +/ —pairs; the

presence of a constant of the motion requires that one pair of
the exponents be zero. Since the phase space for our system
is eight dimensional, we require four constants of motion to
ensure the vanishing of all four pairs of Lyapunov exponents.
For geometries with three or more black holes, there will

generally only be two constants of motion, necessitating the
calculation of two pairs of Lyapunov exponents. These re-
sults will be presented in a future study. The two-black-hole

geometry furnishes three constants of motion, leaving one
pair of nonzero Lyapunov exponents as given above.

Finally, we note that recently the MP solutions have been
generalized to include a positive cosmological constant

[21,22]. These solutions may describe coalescing extremal
black holes in a de Sitter —type universe. It would be inter-

esting to investigate this system, and how its dynamical na-

ture and negative Ricci curvature might affect the chaotic
structure of the geodesics.

A long follow-up paper to this work will appear elsewhere

[23].
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