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We show that in a large class of two-dimensional models with conformal matter fields, the semiclassical

cosmological solutions have a weak coupling singularity if the classical matter content is below a certain

threshold. This threshold and the approach to the singularity are model independent. When the matter fields are

not conformally invariant, the singularity persists if the quantum state is the vacuum near the singularity, and

could dissappear for other quantum states.
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I. INTRODUCTION

In the last two years there has been a lot of activity in the

study of (1+1)-dimensional models of gravity. The models
include the spacetime metric, a dilafon and N conformal mat-
ter fields, and are useful toy models to address the problem
of black hole formation and evaporation, including back re-
action effects.

The original theory proposed by Callan, Giddings, Har-

vey, and Strominger (CGHS) is [1]

1
2SCGHs= d xv —g e (R+4(VQ) +4) )2mJ

The model is exactly soluble at the classical level (tt=0).
However, the semiclassical CGHS equations have not been
analytically solved.

It is possible to modify the gravity-dilaton couplings of
the theory in order to find exactly soluble semiclassical equa-
tions [2,3]. In particular, in Ref. [3], Russo, Susskind, and
Thorlacius (RST) obtained a soluble model imposing the
classical conservation law

8~8"(p—P) =0

to be preserved at the semiclassical level. This leads to the
RST semiclassical action

'ERST CGHS (3)

d xg —gR 2R, (1)

where P is the dilaton, f; are the matter fields, and tt =N/12.
The term proportional to a is the well-known conformal
anomaly, and comes from one-loop quantum corrections.

For a=(N 24)/12 Eq. (3) describe—s a conformal field
theory with vanishing total central charge.

The RST model is not only useful for the analysis of black
hole evaporation. It has also been used to study the effect of
back reaction on the classical cosmological solutions. In par-
ticular, it has been shown that, if the classical matter content
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is below a certain threshold, the semiclassical cosmological
solutions develop a weak coupling singularity [4].This result
is in contradiction with the standard lore: quantum effects do
not help to smear the cosmological singularities but generate
new singularities at weak coupling.

Since the RST model contains an additional symmetry
that leads to the conservation law Eq. (2), one may suspect
that some of the results may not be generic, and that other
models such as the CGHS model may give qualitatively dif-
ferent results [6]. In this work we will analyze the issue of
the weak coupling cosmological singularities in a model with
arbitrary graviton-dilaton couplings

given by the inverse of the determinant of the p —P target
space metric in Eq. (4) (see Refs. [7,4]). For our model we
obtain

2 = 1
g" ~A'-4~~ '

so the weak coupling region is defined by g,&&&1 or

g, &~1. For simplicitly in what follows we will assume that
A~O and A' &&KA in the weak coupling region.

The equations of motion can be written in a simpler form
in terms of the new fields X and Y defined as

1

d'x4 —g A(4)[R+4(~4)'+41'(4')]
X= ~p+A(Q),

1
A' —A.

4K (7)

1 K--X
2. ,

' 8m~

1
d xg —gR ~R. (4) Indeed, the equations of motion read

8 8 X= —X. Ae~
We will see that, for a large class of couplings A(P) and

&(@), the weak coupling singularity is present. Moreover,
we will prove that the threshold and the leading behavior of
the scale factor near the singularity are independent of the
couplings. Finally, we will consider nonconformally invari-
ant matter fields. We will prove that, for a particular choice
of the quantum state of the matter fields, the singularity does
not disappear, However, we will also argue that, for other
quantum states, cosmological particle creation may wash the
singularity away.

II. COSMOLOGICAL SINGULARITIES

In the conformal gauge g++=g =O,g+ = —
—,
' e

the equations of motion derived from Eq. (4) are

A'8+8 —p 4A8+8 —Q 2A'8 @—8+$ e~(kk'—A+ ,'kA')=0-,

A "8+@8 P+ tr8+8 p+A'8+8 P+k Ae ~=0,

(A"—4A )(8 Q) +A '8 8~ $—2A '8~ $8 p

1, , 2
8+8 Y=

f e A'k +2kk'A ——AA'k
K

1 1
Irt =—g 8~f;8~f;+48~Y8~Y 8~X8—~X—+8 X.

/=1

(8)

For )t(4I) =0, X and Y are free fields and the equations can
be trivially solved. This fact will be important in what fol-
lows.

Let us now consider time-dependent cosmological solu-
tions. In coordinates cr- = 7.~ cr the two-dimensional metric
is given by

ds = —e ~~ d(y. +dg

To solve the equations of motion we must fix the functions
t . Since the quantum matter fields are conformally invari-

ant, a natural choice for the quantum state is the conformal
vacuum [8], in which t (cr-) =0. With this choice, the so-
lutions for P =0 are

1
+ g(8 f;) --«[(8 p) 88 p]=lrt-

i=1

X=klan + const,

Y=k27+ const,

where the prime denotes a derivative with respect to P. The
functions t (x-) depend on the quantum state of the matter
fields and come from the variation of the anomaly term.

The solutions to the above equations can be trusted only
in weak coup/ing regions where the quantum corrections to
the semiclassical action Eq. (4) are small. These quantum
corrections will be suppressed by a P-dependent coupling
given by g, -1/A' . If the quantum corrections are calcu-
lated with the action Eq. (4) that includes the trace anomaly,
they will be suppressed by an effective coupling g,& which is

A result of this type has also been found in Ref. [5] for /t/ =24 in

a different model.

W

i=1
(12)

where ki and k2 are integration constants. If X;,f; 4 0,
k1 cannot vanish and without loss of generality we can
choose the coordinate 7 such that ki = ~/T, where T is an
arbitrary time scale.

From the above solution we observe that the classical
matter content defined as m = sX, if, T must satisfy
O~m ~m„=a/4. If m exceeds the critical value m2 2 2 2

there is no solution. When m equals the critical value, P is
constant and p is a linear function of ~. The spacetime metric
describes a two-dimensional Milne universe [9].The scalar
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curvature R=2pe vanishes. This is to be expected, since
the Milne universe is merely a nontrivial coordinatization of
flat spacetime. This result is independent of the function

A(4).
We will now show that, if m (m„, the semiclassical

solutions develop a weak coupling singularity for 7.~ —oo.

Let us denote by 8' the distance between the actual matter

content and the threshold, i.e., 8—= gm„—m . We obtain

K7
X=A(P)+ icp= +const,

T

2(n-1) 1j —2R(r) =
n

(2+ic8~r~)""—e i'~~ (r~ —~).

The general result is that, as long as A '
&& M, a weak cou-

pling singularity takes place. The threshold and the leading
behavior of the Liouville field p(r) are independent of the
function A(P). Other quantities such as the subleading cor-
rection to p(r) and the scalar curvature do depend on this
function.

Up to here we assumed that the "potential" X vanishes.
It is easy to see that the results are valid for a large class of
potentials. Indeed, as long as

Y= dP A' —A = +const.
4~ T

In the weak coupling region we have A
' &) W. Therefore,

R&& max' k A,
j'

'

X +2 —. kX. (17)

A
A —2ic dcti —,=2+ic8 —+const.A' T

(14)

P(r)= ——ln 2+F8 —
~ ~—~ (r + —CD), —

y T)

/ r/ 2ic
A(r)=2+i&8 —+ 2 ln 2+ic8 —,

28~ r
p(r)= 1+ —— In 2+ic8 —,

QicjT ( T j

(15)

From this equation we see that in general A(r) is not a linear
function of r. Consequently, p= —A/ic is different from
zero and the scalar curvature R diverges for r~ —ao.

It is instructive to see the solutions in some particular
cases. The condition A' &&W is satisfied, for example, for
couplings of the form A(p) =e r~, for p~ —~. In this
case

the terms containing ) can be neglected in the equations of
motion. As a consequence, the analysis of the existence of
the singularities needs no modifications. It is worth remark-

ing that the condition Eq. (17) is not too restrictive: the sca-
lar curvature diverges like e '+ "~' times a power of 'T

while A(r) diverges linearly in r. Therefore, the above con-
ditions are satisfied unless X(P) has a strong divergence in

the weak coupling region.
Finally we point out that, when X 4 0, we cannot con-

clude from our calculations that there is no solution when the
matter content is above the threshold. Indeed, in the RST
model there is a solution for any matter content [4]. Of
course, the solution does not have weak coupling singulari-

ties when m ~m„, in agreement with the analysis presented
here.

The existence of the threshold and a similar dependence
with the logarithm of 8 [see Eq. (15)] have also been found
in the analysis of gravitational collapse within the RST
model [10].Therefore our analysis suggests that, also in that

problem, the same threshold should appear for other theories.
However, the presence of log[8] in the expression for the
mass of the black hole mould be particular of the exponential
couplings.

Similar results can be obtained for other families of cou-
plings. For example, for A(P) = P ", n) 1 we have

( fr/l zn

P(r)= 2+ic8-
T j

Irl
A(r) =2+~8 —+—2+~8 —~,

T nt Tj

p(r) = 1+ ——— 2+ic8
T n Tj

In the particular case A(P) proportional to P2, Y is proportional
to A. Therefore A is linear in r and we have a Milne universe for
any matter content. However, this particular A(P) does not satisfy

our hypothesis A' ~) scA.

III. NONMINIMAL COUPLING: BREAIDNG OF
CONFORMAL INVARIANCE

Let us now consider the case of nonconformally coupled
matter fields. We add to the classical action the term

AS=
4mg

W

d xv' —gRQ f;

where g is an arbitrary constant. In principle, one can com-
pute the effective action and the effective semiclassical equa-
tions induced by the nonconformal matter fields using an
expansion in powers of $. However, these equations are non-
local (even in the conformal gauge) and extremely difficult
to solve. We will follow here a simpler and more qualitative
approach. It is well known that breaking of conformal invari-
ance induces particle creation. The energy density of the cre-
ated particles (which we will denote by e) contributes as a
classical source, i.e., with a positive sign, in Eq. (12). There-
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fore, if e-m„ /T, then the matter content would be greater
than the threshold and the singularity could disappear.

Any of the scalar fields f; can be expanded as

1 .. 1 6 A' —2A"A

2/~ T' / A "I2
lA—

4~)

(27)

~ dk
f(r,x)=

2
e' [/2kfk(r)+a k fk*(r)),

7T

fk+[/'+4«"']f =o (20)

In terms of the functions a(r) and p(r) defined through [11]

f (2W )
—i/2[~ e

—i fwkdr+ p eifwkdr]

f 'r(w /2)
—1/2[i' e

—ifwkdr p eifwkdr]

w2=/~2+ gge2/' (21)

Eq. (20) reads

2i fwItdrPkwk

2Wk

ClkWk
e

—2i fwkdr
2Wk

(22)

with the normalization condition lakl —
lpkl =1. In what

follows we will assume that
l nkl =1,

l pkl &1. Therefore, the
equation for pk can be easily solved:

1 TT Wk
d 7 2&f 14/Ir( T )d &

I k 2 J oo Wk
(23)

where ak and ak are the usual creation and annihilation
operators. The modes fk satisfy

The couplings A(P)=e ~~ and @
" satisfy that A' -A"A

in the weak coupling region. As a consequence,

(28)

where g, -g,ir is the P-dependent coupling constant. There-
fore the energy in created particles vanishes near the singu-
larity. This means that the analysis of the existence of singu-
larities done in the previous section is valid and the solutions
can be trusted as long as e(r)(&m„ /T .

At this point one would conclude that particle creation
does not help to smear the singularities. We will now argue
that this is not always the case. We have chosen the coordi-
nate ~ in such a way that the singularity is at 7 = —~. More-
over, we assumed that the quantum state of the matter fields
is the in vacuum. This is the reason why e(r) vanishes on the
singularity.

However, the semiclassical equations for /=0 are time-
reversal invariant. As a consequence, there are solutions
where the singularity is located at 7.=+(X. If we choose
again l0;„&as a quantum state, the singularity will survive
only if, during the whole evolution, the energy in created
particles does not exceed the critical value. Whether this con-
dition is satisfied or not depends on the different parameters

((,N, 8') and on the coupling A(@). In any case, we see that
if there is enough particle creation the proof of the existence
of singularities could be fundamentally Aawed.

IV. CONCLUSIONS

Jo
d/i wkl Pk( r)

I

' (24)

From the above equations it is easy to find an upper bound
for e(r). The coefficient pk(r) satisfies

1 &r Wk 1 2$p(r)
l p, l- — dr —=- log 1+

2J ao wk 4 (25)

With this bound, one can estimate the integral in Eq. (24) by
considering the cases k &&

l $p(r) l, k
l gp(r) l, and-

i &
l (p( r) j. The result is

e(r) ~ ~NI Cp(r) I, (26)

where u is a number of order one. We will set a= 1 in what
follows.

From the solutions of Sec. II we find [see Eq. (13)]

For simplicity we assume that wI, /wz)0 in the region of integra-
tion.

where we assumed that the matter fields are in the in vacuum

[pk( —~)=0]. The energy density of created particles at
time r is given by

To summarize, in the generic dilaton-gravity theory con-
sidered here, when the matter content is below the threshold,
the quantum effects of conformal matter fields produce weak
coupling singularities as long as A '

&& M in the weak cou-
pling region.

In the particular case k =0, and when the matter content
equals the critical value, the corresponding critical solution is
the Milne universe. There is no solution for m ~m„. On the

other hand, when X 4 0, the solutions for m ~m„do exist,
but they have no weak coupling singularities.

A similar critical behavior at the onset of black hole for-
mation has been recently discovered numerically in the
S-wave sector of four-dimensional general relativity, and
analytically in the RST model [10].Our "cosmological" re-
sults suggest that, also in the black hole problem, the thresh-
old should not depend on the coupling constants of the
theory, while the scaling should depend.

Turning back to the cosmological singularities, the situa-
tion is different for nonconformal fields. In this case, if the
quantum state of the matter fields is chosen to be the vacuum
state near the singularity, then the singularity survives. How-
ever, for other quantum states, if the energy in created par-
ticles exceeds the critical value, the singularities could
disappear. Therefore, the semiclassical cosmological singu-
larities seem to be generic only when conformal invariance is
not broken.
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Breaking of conformal invariance should also be impor-
tant when analyzing the theory beyond the semiclassical ap-
proximation. Indeed, most of the works done in 1+1 dimen-
sions, including this one, assume, without justification, that
the spacetime metric is a classical object. This should be
justified in the full quantum theory. An important ingredient
in the quantum to classical transition is decoherence between
macroscopic trajectories [12].It has been shown in the con-
text of (3+1)-dimensional quantum cosmology that deco-
herence takes place if and only if there is particle creation
[13].This result is independent of the number of dimensions.
As a consequence, a theory with conformal matter fields may

not have a well-defined classical limit. Thus, in order to have
a reasonable toy model in (1+1) dimensions, conformal in-

variance should be broken. It would be interesting to re-

analyze the black hole puzzles in this context.

ACKNOWLEDGMENTS

We would like to thank Carmen Nunez for useful dis-
cussions. This research was supported by Universidad de
Buenos Aires, Consejo Nacional de Investigaciones Cientifi-
cas y Tecnicas and Fundacion Antorchas.

[1]C.G. Callan, S.B. Giddings, J.A. Harvey, and A. Strominger,

Phys. Rev. D 45, R1005 (1992).
[2] A. Bilal and C.G. Callan, Nucl. Phys. 8394, 73 (1993);S.P. de

Alwis, Phys. Lett. 8 300, 330 (1993).
[3]J.G. Russo, L. Susskind, and L. Thorlacius, Phys. Rev. D 46,

3444 (1992); 47, 533 (1993).
[4] F.D. Mazzitelli and J.G. Russo, Phys. Rev. D 47, 4490 (1993).
[5] C. Klimcik, Phys. Rev. D 48, 4693 (1993).
[6] T. Piran and A. Strominger, Phys. Rev. D 48, 4729 (1993);T.

Banks and M. O'Loughlin, ibid 48, 698. (1993).
[7] J.G. Russo and A.A. Tseytlin, Nucl. Phys. 8382, 259 (1992).
[8) N.D. Birrel and P.C.W. Davies, Quantum Fields in Curved

Spaces (Cambridge University Press, Cambridge, England,

1982).
[9]E.A. Milne, Nature (London) 130, 9 (1932).

[10]A. Strominger and L. Thorlacius, Phys. Rev. Wtt. 72, 1584

(1994); for similar results in 3+1 dimensions, see M.W. Chop-

tiuk, Phys. Rev. Lett. 70, 9 (1993).
[11]Y. Zeldovich and A.A. Starobinskii, Sov. Phys. JETP 34, 1159

(1972);A.A. Starobinskii, in Quantum Gravity II, edited by M.
Markov and P.C. West (Plenum, New York, 1984).

[12]C. Kiefer, Class. Quantum Grav. 4, 1369 (1987);J.J. Halliwell,

Phys. Rev. D 39, 2912 (1989); T. Padmanabham, ibid 39, .
2924 (1989).

[13]E. Calzetta and F.D. Mazzitelli, Phys. Rev. D 42, 4066 (1990).


