
PHYSICAL REVIEW D VOLUME 50, NUMBER 10

General effective actions

15 NOVEMBER 1994

Eric D'Hoker*
Department of Physics, University of California at Los Angeles, Los Angeles, California 90024

Steven %einberg~
Theory Group, Department of Physics, University of Texas, Austin, Texas 78712

(Received 5 July 1994)

We investigate the structure of the most general actions with the symmetry group G, spontaneously broken
down to a subgroup H. We show that the only possible terms in the Lagrangian density that, although not G
invariant, yield G-invariant terms in the action, are in one to one correspondence with the generators of the

fifth cohomology classes. For the special case of G = SU(N)t X SU(N)it broken down to the diagonal subgroup
H= SU(N) v, there is just one such term for ¹3,which for N= 3 is the original Wess-Zumino-Witten term.
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Effective field theories are increasingly used to under-

stand the dynamics of the Goldstone bosons that result from
spontaneous breaking of continuous symmetries. If the ac-
tion of a theory is invariant under a (compact) Lie group G
of global symmetries, spontaneously broken to a subgroup
H, then the Goldstone fields m'(x) in the effective action
parametrize the coset space G/H with a=1, . . . , dim G/H,
and accordingly transform under linear representations of H,
but under nonlinear realizations of the broken symmetries of
G. The power of effective field theories arises largely from
the fact that the nonlinearly realized broken symmetry allows
only a finite number of terms in the action, up to any given
order in an expansion in powers of derivatives or momenta.

A general method for constructing invariant nonlinear ef-
fective actions was given in Ref. [1]for SU(2)L X SU(2)tt and
was extended to the case of arbitrary G and H in Ref. [2].
But although this method yields the most general G-invariant
term in the effective Lagrangian, its results are not quite
complete. Wess and Zumino [3] showed that fermion loops
produce a four-derivative term in the effective Lagrangian
for the strong-interaction Goldstone octet that is not invariant
under SU(3) X SU(3), but rather changes under SU(3)
XSU(3) transformations by a total derivative, so that the
action is SU(3)X SU(3) invariant. Subsequently Witten [4]
was able to reexpress this term as the integral over an invari-
ant Lagrangian density in five dimensions. The %ess-
Zumino-Witten (WZW) action has since then been general-
ized in Ref. [5] to G/H models with arbitrary G and H.

It is natural to ask whether there are any more possible
terms in the action (not necessarily related to anomalies in
the underlying theory), that, although invariant under a non-

linearly realized symmetry G, are not the four-dimensional
integrals of G-invariant Lagrangian densities. This question
seems to us important, as the effective field theory approach
is based on our ability to catalog all invariant terms in the
action with a given number of derivatives.

The first step is to show that even where the action is not
the integral of a G-invariant Lagrangian density, its variation
with respect to the Goldstone boson fields is an invariant

density. The Goldstone boson fields m'(x) enter the action as
a parametrization of a general spacetime-dependent G trans-
formation U(m(x)), so the variation of the action under an

arbitrary change in m may be written as

BS[m]= d x Tr((U 'BU) r,J),

where a subscript A'or W~ will denote the terms proportional
to the broken and unbroken symmetry generators x, and

t;, respectively, and the coefficient J is a local function of
the Goldstone boson fields and their derivatives. Let us work
out how J transforms. According to the general formalism of
[2], under a global transformation g c G, the Goldstone bo-
son fields undergo the transformation m~ m'', with

gU(rr) =U(m')h(rr, g), (2)

where h(ir, g) is some element of the unbroken subgroup H.
Since S[m] =S[m'] for all ir, the variational derivatives are
also equal:

8S[7r'] BS[ ir]
8'm" 8'm

(Note that the derivative is with respect to 7r, not 7r', on
both sides of the equation. ) Using Eq. (1), this is

BU( 7r)
=Tr U '(ir), &(rr) . (3)

BU(7r'), BU(m)
U '(7r'), =h(m, g)U '(m), h '(7r, g)

To put this in a useful form, take the derivative of Eq. (2)
with respect to 7r', and multiply on the left with U(vr') ='

and on the right with h '(m, g):
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and so for G/H. The coordinate t, in (8) can be chosen to be any

one of these parameters. We have shown that

BU(m)
=h(m, g) U '(m), h '(m, g) . (4)

Equation (3) then becomes

BU(m)
Tr U '(m), [h '(m, g)J(m')h(m, g)]

BS[m]

Bti DM4
dxM;,

where M.=Tr((U '8UIBt')~J) are G-invariant functions

of m' and its derivatives. The general rules of [2] would

allow a wide variety of terms in M;, but these are limited by
integrability conditions. From (9) we see that

8U(m)= Tr U '(m), J(m) . (5) Since this integral vanishes for all &(x), its integrand must

be an x derivative [7]:

From linear combinations of the quantities

[U '(m) BU(m)/Bm']~ we can form arbitrary linear combi-
nations [6] of the broken symmetry generators x, , so (5)
yields the transformation rule for J:

J(m')=h(m. ,g)J(m)h '(m, g) .

Following the same arguments that led to (4), we easily see
that also

[U '(m') 8'U(m')]~

=h(m, g)[U '(m)bU(m)]~ '(m, g), (7)

This can be written in the language of differential forms, as

d,Fg= —d„F2, where

d, =—dt'8;, d =—dx"8„

and F& and F2 are the five-forms

Fi = ,', e~„p M—;d—t'dx~dx "dxl'dx,

so Tr((U ibU)~J) is invariant under G.
This result leads to a natural five-dimensional formulation

of the theory. As usual, we compactify spacetime to a four-

sphere M4 by requiring that all fields approach definite limits

as x"~~.The operator U(m(x)) therefore traces out a four-

sphere in the manifold of G/H as x~ varies over M4. If the

homotopy group m4(GIH) is trivial [as is the case for
SU(N) X SU(N) spontaneously broken to SU(N) with¹3],or if U(m(x)) belongs to the trivial element of
7r4(GIH), then we may introduce a smooth function
m'(x, t, ), such that m'(x, 1)=m'(x), and m'(x, 0)=0. In
this way spacetime is extended to a five-ball B5 with bound-

ary M4 and coordinates x" and t, . The action may then be
written in the five-dimensional form

It follows that 0 = d, Fi =d„(d,F2), so by an extension
of Poincare's lemma, in any simply connected patch we
will have d,F2= —d~F3, where F3 is a five-form

e„„~~t~kdt'dt'dt dx"dx" Continuin. g in this way, we can
construct five-forms F4 and F5 proportional, respectively,
to four and five dt factors, with d,F3 d F4,
d,F4= —d F5, and d,F5=0. Hence F—=X~,Fz is a closed
five-form on G/H:

dF =0, d=—d„+d, . (10)

Also, because 85 has tz, t3, etc., all constant, Eq. (8) may be
written

S[m]= d xdti Mt,
JB5

(8)
S[m]= F .

JB5

where M, is the G-invariant density Tr((U BUIBt,)~J)
[When m4(GIH)40, we may interpolate between m'(x)
and a fixed representative mo(x) of the homotopy class of
m'(x). The difference S[m] —S[mo] is given by the integral
over the cylinder M4 X [0,1] of the same density M& as in (8)
and the arguments to be presented below still hold. In some
cases, 0/0 may be naturally embedded into a larger space
with vanishing fourth hornotopy group, as is the case for
SU(2) embedded in SU(3), considered in [4].]

We next show that this is the integral of a G-invariant
five-form on G/K. Consider a general deformation
m(x) —+ &(x;t), where t' are a set of dim(G/H) —4 free pa-
rameters, that along with the x~ provide a set of coordinates

So far, only the term F& has been shown to be G invari-
ant. The group G acts transitively on the manifold G/H, so a
G transform of a form is always continuously connected to
the original form. Thus the two-forms are homotopic and
define the same de Rham cohomology class. One can con-
struct a G-invariant form in this cohomology class by inte-

grating the form over the group G with the invariant Haar
measure [8,9].This has no effect on (11), since the integral
depends only on F&, which is already invariant. Also, one
can similarly show that any two invariant p-forms in the
same cohomology class differ not only by an exterior deriva-
tive, but specifically by the exterior derivative of an invari-
ant (p —1)-form. Such an exterior derivative term in the
five-form F would yield a term in (8) that can be written as
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the four-dimensional integral of a G-invariant density, so the
classification of terms in S[m] that cannot be so written is
now reduced to the problem of finding the fifth de Rham
cohomology group H (G/H;R) of the manifold G/H [10].

The fifth de Rham cohomology group is well known
where G/H is itself a simple Lie group. For G = SU(N) with¹3[including the case SO(6)-SU(4)], H (G;R) has a

single generator

l
A5= 2Tr(U 'dU) (12)

H'(K, xK, ;R)= g H'i(K, ;R)PH"2(K, ;R),
k)+k2=k

(13)

which gives H (G/H;R) in terms of the cohomologies of its

factors up to degree 5. For this purpose, we need to know
that [11—13] for all simple Lie groups G, H (G;R) vanishes

for k=1,2,4 while H (G;R) has a single generator (corre-
sponding to the Goldstone-%'ilczek topologically conserved
current [14])

03= Tr( U 'd U) (14)

Also H (U(1);R) vanishes for k~ 1, while for k = 1 it has a

single generator

0,= —iTr(U 'dU) . (15)

Finally, H (K;R)=R', where c is the number of connected
components of X; for our purposes this just means that if
H (K;R) for some space K has a generator 05, then

H (KXK';R) has the same generator for any K'. To each

generator of H (G/H;R), there corresponds a WZW-like

term in the five-dimensional Lagrangian, and an independent

coupling constant. In particular, if 6 is semisimple, with

precisely p factors SU(N;) with N;~3 and all other simple
factors with H =0, then we have p different terms of the
Wess-Zumino-Witten type, each of which has an independent

coupling constant in the action. This result is of course ex-
pected for a product of groups, and is known to appear ex-

plicitly in the low energy effective action when massive fer-

mions are integrated out of the path integral [15].
When G/H is not itself a Lie group, the fifth cohomology

group of G/H may still be obtained from that of G. For any

simple group G and subgroup H, we may construct a "pro-

(Here and henceforth, we suppress wedges in the exterior
product of differential forms, reserving them for the products
of cohomology groups. ) This is in particular the case for
SU(N) X SU(N) spontaneously broken to SU(N) with
N~3, where G/H is itself just SU(N). Equation (12) is the

original Wess-Zumino-Witten term, which we now see is in-

deed unique. All other simple [or U(1)] Lie groups have
trivial fifth cohomology groups. For the original case [1]of
SU(2)x SU(2) spontaneously broken to SU(2) the cohomol-

ogy is trivial, so all invariant actions are the integrals of
invariant Lagrangian densities.

Where G/H is a product space, we use the Kunneth for-
mula [8,9]

jected" five-form on G/H that is invariant under local H
transformations [5,15—17], and is given by

&5(U; V) =
2 {Tr(U 'DU)' —5TrW(U 'DU) '

+10TrW U 'DU),

where V is the H connection V=(U 'dU)~, DU is the
H-covariant derivative DU=dU —UV, and the trace is
evaluated in any convenient representation of G, usually
taken as the defining representation. In general, 05(U; V) is
neither closed nor simply related to the generator Qz(U;0)
of H (G;R) . Rather,

E

dA5(U; V)=, d„,,W"W'W'
24m

and

05(U;V)=flq(U;0)+05(1;V)+dy(U;V), (18)

where W is the field strength W = d V+ V-, and d„„is the

trace of the symmetrized product of generators p' of H,
2d„„=Trp"(p',p'), which plays a key role in the study of
the chiral anomaly in four dimensions [18].But if d„„=0,
then the five-form II5(U; V) is closed, and also each term in

the five-dimensional Chem-Simons term A5(1;V) for the

, P'-valued gauge field V vanishes. The form Q&(U;V) then

belongs to the same cohomology class as fls(U;0) and it

can be shown that there is a one to one correspondence be-
tween the fifth cohomology generators of G/H and those of
G. On the other hand, if d„„W 0, then the projected form of
(16) is not closed and it can be shown that the fifth cohomol-

ogy is trivial in this case. For example, any coset space of the

type SU(n) H/with n~3, where H is embedded in G in such

a way that d„„=0,has one cohomology generator, given in

(16).
It is noteworthy that the simple groups SU(2), Sp(2N),

SO(N), N~7; E6, E7, Es, F4, G2 that have zero fifth co-
homology are also those that have vanishing d symbols. We
now see that for such groups, the coset spaces G/H have

H (G/H;R)=0 for all subgroups H. These properties are

easily verified for the special case of compact symmetric

spaces [12,13]. Also, when rank(G)=rank(H), a classic
theorem [13] states that all odd cohomology classes
vanish. An example of a general class of manifolds G/0
with rank(H) ~ rank(G) for which H (G;R) 4 0 and

H (G/H;R) =0 is provided [12] by

SU(n)/S(U(k, ) x. . . x U(k )), k= g

with the U(k ) embedded in SU(n) in such a way that the

defining representation of SU(n) transforms also as the de-

fining representation of S(U(k, ) X. . . X U(k~)).
Finally, if G is not simple, and H is a nontrivial subgroup,

the cohomology problem can be solved by analyzing the

restriction of the d symbols of G to the subgroup H [19].If
G is semisimple (and H is connected), two types of coho-

mology generators arise [20]. First, the projected form of
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(16) is now obtained as a linear combination of 05(U; V) on
each simple component of G with nonvanishing fifth coho-
mology. Linear combinations for which d„, on the subgroup
H vanishes yield generators of H (G/H;R). Second, there

may be generators that are linear combinations of products of
cohomology generators on G/H of degrees 2 and 3. Genera-
tors of degree 2 correspond to the field strength associated
with generators of invariant Abelian subgroups of H [i.e.,
U(1) factors]. Generators of degree 3 correspond to the
Goldstone-Wilczek current of (14), projected to G/H. When
G is not semisimple and contains extra U(1) factors, there
are also linear combinations of products of generators of de-

gree 1 with generators of degrees 1, 2, 3, and 4.
We conclude with a brief discussion of global quantiza-

tion conditions. Different interpolating maps are generally
topologically inequivalent [their equivalence classes being
given by m5(G/H)], and there is no natural way of choosing
one interpolation above another. Witten has argued that the
quantum action can be allowed to be multiple valued, pro-
vided the action changes additively by integer multiples of
2m [4]. The dependence of interpolation becomes invisible
in the quantum theory provided the coupling constants mul-

tiplying Qs as normalized in (12) are integers. In the present

case, this quantization condition must be enforced on every
independent coupling constant multiplying each nontrivial

WZW term normalized as in (12).
A slight refinement of this quantization condition is re-

quired when m4(G)=0 and mq(H. ) 4 0. For all simple

groups H we have m4(H) =0, except when H is a symplectic

group, for which 7r4(Sp(2n)) =Z2. Whenever 7r4(H)
=Z2, H has a discrete anomaly [21], even though its d
symbols vanish identically, and it can be shown that the cou-

pling constant of the corresponding term of H5(G/H;R)
must be quantized in terms of even integers to obtain a
single-valued path integral [22].
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