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Enhancing the top-quark signal at Fermilab Tevatron using neural nets
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We show, in agreement with previous studies, that neural nets can be useful for top-quark analysis at the

Fermilab Tevatron. The main features of tt and background events in a mixed sample are projected on a single

output, which controls the efficiency, purity, and statistical significance of the tt signal. We consider a feed-

forward multilayer neural net for the CDF reported top-quark mass, using six kinematical variables as inputs.

Our main results are based on the exhaustive comparison of the neural net performances with those obtainable

from the standard experimental analysis, by imposing different sets of linear cuts over the same variables,

showing how the neural net approach improves the standard analysis results.

PACS number(s): 14.65.Ha, 02.50.Sk, 13.85.Qk

The announced evidence of the top quark by the Collider
Detector at Fermilab (CDF) [1] at the Tevatron has caused
great excitement in the scientific community. Although the
statistics are too limited' to establish the existence of the top
quark, it is however natural to interpret the excess of events
as tt. The experimental situation will certainly improve in
the next months and the top quark will hopefully be con-
firmed. From the theoretical point of view, the consistency of
the standard model demands the top to be the partner of the
bottom quark, ensuring the absence of flavor-changing neu-
tral currents [3]. The CDF value of the top mass,

m, = 174~ 10+,z GeV [1],is consistent with recent theoreti-
cal studies on radiative corrections combined with precision
measurements of the Z boson mass and the strong coupling
constant at the CERN e+e collider LEP leading to
m, =165 I4 I9 GeV [4].

The dominant top production mechanism at the Tevatron
is qq~tt, followed by gg~tt. Once produced, the top de-
cays into bW, with the subsequent W—+Iv, qq' decay, in the
detector. There are therefore three possible final states for the
tt signal which, with increasing branching ratios, are (1) two
charged leptons, missing energy and two jets, (2) one
charged lepton, missing energy and four jets, and (3) six jets.

They need different strategies for top searches and differ-
ent backgrounds have to be considered respectively. The first
channel suffers from a small branching ratio and the pres-
ence of two undetected neutrinos that makes top reconstruc-
tion unfeasible. It has been analyzed in terms of the correla-
tions among the charged leptons [5] and, recently, it has been
suggested to be separable from its possible backgrounds [6].
The most investigated channel so far is the one containing

CDF has reported on 12 events, with 6 events for the estimated

background, with a 0.26% probability of observing background
fluctuation. DO instead has no clear signal of the top quark [2].

one charged lepton [7]. It has a sizable branching ratio with

a moderate background. Still the neutrino escapes detection
and hence the event cannot be completely reconstructed. The
third channel, six final jets, is the most likely and allows full

top reconstruction but at the expense of a huge QCD back-
ground. Recently, it has been pointed out that tagging of a b
quark can help to obtain acceptable signal-to-background ra-
tios for m, (180 GeV [8].

All mentioned channels need some specific experimental
cuts for detecting jets and/or hard leptons, as well as for their
isolation. This, together with detector performance, implies a
sensible reduction on the number of possible tt candidates,
and demands a good efficiency for discerning real from fake
tt background events. We consider to use neural nets (NN's)
for the analysis of experimental data trying to maximize the
signal-to-background ratio without significant losses in sta-
tistics, in particular to the top analysis at the Tevatron. NN's
are by now well known for their ability in pattern recognition
giving, after proper training, an approximation to the prob-
ability that a given event belongs to some class [9].They are
being used as classifying tools in several high energy appli-
cations [10].Some examples are the Higgs boson search at
the CERN Large Hadron Collider (LHC) [11],b and r analy-
sis [12],quark and gluon jets analysis [13],determination of
Z to heavy quarks branching ratios [14], or bottom jet rec-
ognition [15].Some applications of these techniques to the
top-quark search have been discussed already in the literature
with emphasis on different aspects: In [16] a feed-forward
net is trained for m, =100,120,140 GeV, values that are
somewhat below the CDF top mass, relying on PYTHIA [17]
for the top quark and the background estimations, thus ne-
glecting spin correlations. The results are favorably com-
pared with the performance of a specific set of linear cuts on
several variables, some of which are not used as inputs of the
NN, and also compared with the Bayesian decision limit
based on probabilities. (In Ref. [18] the results of [16] are
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compared with the binary decision tree method. ) In Ref. [19]
Kohonen's learning vector quantization NN is used and corn-
pared to statistical methods and to the Bayesian limit.

In this paper we compare the performance of a multilayer
feed-forward NN with the usual procedure for signal-to-
background optimization, using exact tree level matrix ele-
ments and the CDF reported top-quark mass. (We do not
make a comparison with the Bayesian limit since we know
from Ref. [9] that NN's are only approximations to such a
limit, as pointed out explicitly in [16,19].) In fact, given a set
of kinematical variables, we compare the NN result using
these variables with the best usual procedure (in fact with

many of them) by varying the possible linear cuts over the
same variables. We restrict our study at the parton level,
without considering detector acceptance, resolution effects,
efficiencies, etc., since we are only interested in the perfor-
mance of the NN versus the usual procedure for enhancing
the signal-to-background ratio.

We focused our analysis to the one charged lepton chan-
nel

pp « Ivj ii)

with l=e-, p, —,using the exact tree level amplitudes with

spin correlations [20]. The main background to this process
is [21]

pp~Wjj jj~lvjii (2)

together with

PP ~ WW( WZ) JJ'~ I i'J'J JJ

pjr pz.gr)20 GeV.

and the jets and lepton pseudorapidities

&z.

and, requiring jet and lepton isolation,

AR JI,AR, ,)0.7,

(4)

(6)

%'e thank %; Giele for making the vpcBos code available to us.

which is an order of magnitude smaller [22]. We have only
considered the first mechanism and have used vEcBos [23]
for its evaluation.

We have taken m, =174 GeV and have normalized the
total tt cross section at the Tevatron to 5.1 pb, a value that

takes into account O(n, ) corrections and the resummation

of leading soft gluon corrections to all orders in perturbation

theory [24]. CDF measures a rt cross section of 13.9+~a pb

[1]which is a factor around 2.5 bigger than the theoretical
value we have used. Notice that using the CDF value, the
signal-to-background ratio would increase by the same fac-
tor. We have used the Harriman-Martin-Roberts-Stirling
(HMRS) set 1 structure functions [25] at the scale Q=m,
(Q=(p, )) for the top signal (background). We generated
events satisfying reasonable acceptance cuts for the jets,
charged lepton, and missing transverse momentum,

where b R = g(h rJ) + (b, p) is the distance in the lego plot.
These cuts are intended to simulate the experimental cuts
needed to detect jets and hard leptons inside the detector and

to select good candidates for top production (from now on

these cuts will be referred to as acceptance cuts). The cross
section after the acceptance cuts is 0.35 pb (1.2 pb) for tt
signal (background) in good agreement with Ref. [26]. We

generated 4000 tt and 4000 background events. The total
number of events is essentially limited by the time needed to
generate a statistically significant sample for the background.
(More efficient generation techniques, which would hope-

fully circumvent this problem, have been recently proposed

[8] )
Notice that the acceptance cuts have to be supplemented

either with additional cuts or any other criteria, as a NN for
instance, on some kinematical variables in order to assign a

single event as signal or background, leading to a reduction

of the tt and background event samples. (b tagging, for ex-

ample, reduces the signal by a factor of order 0.3 [27].)
We have considered six kinematical variables in our

analysis: (i) pr ', the transverse momentum of the leptoni-

cally decaying W; (ii) Er, the total transverse energy; (iii)

m+, the invariant mass of the hadronically decaying W;
JJ

(iv) m„the reconstructed top mass; (v) S, sphericity; (vi) A,
aplanarity.

Variables (i) and (ii) are completely defined when assign-

ing the missing transverse momentum to the undetected neu-

trino. The third variable requires pairing of two jets with

invariant mass close to the W mass. Variables (iv), (v), and

(vi) need the knowledge of the longitudinal momentum of
the neutrino, which is not measured. It can, however, be
inferred assuming that the l v pair comes from an on-shell 8'.
This leads to a twofold ambiguity which can be resolved to
some extent by requiring tt reconstruction in the lines sug-
gested by Ref. [26] to which we refer for details. The sphe-

ricity and aplanarity, computed for the lepton plus neutrino

plus four-jet momenta, take into account the topology of the
events expecting larger values from the signal than the back-
ground distributions.

The usual strategy for classifying signal- or background-

type events is by applying different cuts on the kinematical
variables considered, the six mentioned above in our case.
These cuts are usually given by simple expressions (for in-

stance, vari ) cut1 and var2 ( cut2), so that the different
regions are separated by hyperplanes in the variable space
(from now on these cuts will be referred to as kinematical
cuts). Denoting by T (B) the number of top signal (back-
ground) events passing our selection criteria, and T, the total
number of tt events selected after the acceptance cuts, Eqs.
(4)—(6), one would like to find the best combination of cuts
on the kinematical variables such to maximize the efficiency
rJ=TIT, or the purity P= T/(T+B) or both —simultaneously.
In the latest case, a method could be to maximize the statis-

tical significance of the filtered subsample, S,=Tl QB, a cri-—
terion that can be used to enhance a new signal from its

expected background. In any case, this gives rise to subtle
fine-tuning on the cuts to reach the maximization that can
become a hard issue for a larger number of kinematical vari-
ables considered.



50 ENHANCING THE TOP-QUARK SIGNAL AT FERMIIAB . . . R5475

We are interested in the separation of the signal and back-
ground using a layered feed-forward NN which, as we will

show, avoids fine-tuning in a multivariable space. A feed-
forward NN consists of several layers of units called neu-
rons. Among the layers, we can distinguish one input layer
where the information comes in, one or several hidden layers
where the information is processed, and one output layer
which yields the output of the NN.

The input of the neuron i in layer l is given by

1000 .-

100 .-

I'=y w'S' +B' 1=2,3, . . . , (7)
10 .-

(8)
1

0 0.2
I

0.4 0.6 0.$

where in is the set of kinematical variables for event e, the
sum is extended over the neurons of the preceding layer

(1—1), S,
' is the state of the neuron j, w,', is the connec-

tion weight between the neuron j and the neuron i, and

B,. is a bias input to neuron i. The state of a neuron is a
function of its input S,=F(I,'), where F is the neuron

response function. In this Rapid Communication we take

F(I;)= 1/[1+ exp( —I,.')], the so-called "sigmoid
function, "which is similar to the response curve of the bio-
logical neuron and offers more sensitive modeling of real
data than a linear function.

The parallel behavior of NN's has the capacity of learning
over a set of given examples. A very popular learning algo-
rithm is the error back propagation (BP) [28].The main ob-
jective of the BP is to minimize an error function, also called
energy,

1
E=E(in, out ',wq~, B„)= —g (o ' —out '

) (9)

by adjusting the w~~ and B„parameters and o&'~ being the
state of the output neuron, out&') its desired state, and e runs
over the event sample. Taking the desired output as 1 for
each signal event and 0 for each background event, the out-

put of the net, after training, gives the conditional probability
that given the observed quantities for a single event, this
event is a signal [9], provided that the ratio of signal to
background in the learning sample corresponds to the real
one.

We have used a three layer NN with six input neurons that
are activated with the kinematical variables mentioned in the
previous section (normalized to 1 for convenience), a hidden

layer with six neurons, and a unique output neuron which
desired output is 1 for the signal and 0 for the background.
We have found that using six neurons in the hidden layer
optimizes the minimum energy.

For the training step we have used 2000 top events and
2000 background events which do not correspond to the ex-
pected ratio of cross sections. However, since we are not
interested in the conditional probability mentioned above but
to study the efficiency and purity as a function of the cut on
the output activation of the NN, this fact will not produce
any trouble and the learning results will be more efficient. As
a test sample, we have taken 570 (2000) top (background)
events statistica11y independent from the training ones. The

FIG. 1. Distribution of the signal (dashed) and background

(solid) events as a function of the NN output activation for the test

sample consisting of 570 (2000) top (background) events. Values

close to 1 (0) correspond mainly to top (background) events.
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FIG. 2. Efficiency (solid) and purity (dashed) as a function of
the NN output cut.

top/background ratio of the test sample is chosen equal to
that obtained from the expected cross sections. All results
presented have been obtained from the test sample.

Figure 1 shows the distribution of signal and background
events as a function of the NN output activation for the test
sample. We see two peaks close to 1 and 0 corresponding
mainly to the signal and background, respectively. It is clear
from this plot that, cutting on the output of the net, we can
have samples richer on signal or in background as desired.

The solid (dashed) line in Fig. 2 shows the efficiency
(purity) as a function of the net output cut. It is clear that we
have to choose an output cut close to 1 if we want high
purity or a cut close to 0 for high efficiency. The highest
output cut to improve the purity, given a fixed luminosity,
would be the one leading to still enough signal events (five at
least). This cut will be very close to 1, due to the fact that the
efficiency is larger than 0.9 for any value of the output cut
except for values very close to 1.

Figure 3 shows the efficiency versus the purity (solid line)
when varying the NN output cut from 0 to 0.99998. The
points correspond to some hypercubic cuts applied over the
six input variables, and have to be considered as the tradi-
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smallest values of the output cut correspond to the highest
purity and highest efficiency, respectively. Notice that output
cuts very close to 1 are not included in the allowed region,
although this is not visible in the plot.

Our results indicate that NN's are suitable for top analysis
at Tevatron. Although we focused our study in a particular
channel and worked at the parton level, we expect similar
behavior for the other channels with the corresponding back-
grounds and when performing more realistic analysis includ-
ing hadronization and detector simulation. We claim neither
to have used the best kinematical variables for our analysis,
nor to find the best NN topology. Our aim was only to study
the potential use of NN's as a cross check to the traditional
analysis in terms of cuts on a multidimensional variable
space. More elaborated studies are postponed for a forthcom-
ing publication.

In conclusion, we have shown that a NN trained with a
mixed sample of tt and background events learns the main
features of the different samples in a multivariable input
space and projects them on a single output. This output turns
out to be very useful for discrimination between signal and

background events, as it was previously noticed by Baer
et al. [16].A comparison among the NN's, trained with a

given set of kinematical variables, and a large number of
possible combinations of linear cuts, over the same variables,
shows that the NN performances (for signal-to-background
optimization) are higher than those obtained from the usual

experimental procedure for any efficiency and purity. We ex-
pect similar behaviors for any set of kinematical variables
eventually used. This is indeed partially confirmed by (and
can be viewed as a generalization of) the results of Ref. [16],
where a NN analysis, using a different set of kinematical
variables, was favorably compared with the performance of a
unique set of cuts, applied using additional variables in the
latter case. Finally, the uncertainty on the background esti-
mation is mapped to a window of possible NN output cuts
such that the signal can still be distinguished from the back-
ground.
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