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We consider two-dimensional dilaton-gravity theories with a generic exponential potential for the dilaton,

and obtain the most general black hole solutions. We also show the relation of these models with higher-

derivative theories and extended Poincare gauge theories in two dimensions.
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7wo-dimensional theories of gravity have been exten-
sively studied in recent years, since they provide a large
variety of toy models whose study may help to understand
some still obscure aspects of four-dimensional gravity [1—8].
In particular, one could gain some insight on which proper-
ties of gravity, such as, for example, black hole thermody-
namics or no-hair theorems, are generic to all geometric
models and which are specific to Einstein theory. Especially
relevant is also the possibility of studying in detail the quan-
tization of two-dimensional (2D) models either in the context
of string and conformal field theories [3],or in the context of
gauge theories of the Poincare group [7]. It is hoped that
investigation of 2D models may shed some light on the
quantization of the 4D theory.

For these reasons, it is interesting to study in some gen-
erality the various models which can be constructed in two
dimensions [6,9,10]. A common feature of all the two-
dimensional gravity theories is the presence of a scalar field
(identified with the dilaton of string theory), nonminimally
coupled to gravity. The actual form of this coupling, in turns,
determines the physical properties of the theory. These can
be most clearly revealed by the study of the black hole so-
lutions [2—5,9—13], since, as is well known, black holes are
the most fruitful laboratory for investigating the relations
between gravity, quantum theory, and thermodynamics.
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In this paper we study a dilaton-gravity model with a
generic exponential potential for the dilaton. This form of the
potential is especially interesting, for example, because it can
be obtained from theories containing higher powers of the
Ricci scalar in the action [13],which may arise from quan-
tum corrections. %e give here the most general black hole
solutions for these models. %e also show the relation be-
tween our action and the extended Poincare group gauge
formalism [7,8].

The 2D action we consider is

S= d xPg(r/R+Ar/").

Defining e ~= y and rescaling g„„=e ~g„„ the action
can also be written as

S= d x age ~[R+4(V P) + Ae "@]. (2)

We shall call the metric g„, the "string" metric (in contrast
with the "standard" metric g~„) since it is the one to which
the string couples in 2D models. One can easily check that
the limit h =0 of (2) corresponds to the string-inspired action
[3],while h = 1 is the Jackiw-Teitelboim (JT) theory [1].

An action of the form (1), or equivalently (2), can be
derived from higher derivative 2D theories of the kind pro-
posed in [13].Consider, for example, the action
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S= d xggR . (3)
A

P"—2(t' = ——Ae
2 (12)

For k= 1, S is a total derivative, while for kW 1, it is easily
seen [14] that, defining a scalar field r/= dR—/dR=kRk
the action (3) is equivalent to:

whose first integral is

—2P —2(h+ 1)P
4(h+1) (13)

S= d xgg(r/R+Ar/"' ' ) (4)
Finally, from (10)—(12), one gets

h —1 (sa)

(V„V„—g„„V ) r/+ —g „r/"=0. (Sb)

Separating the trace and traceless parts, (Sb) can be written
as

V r/=Ar/", (V„V, g~„V )r/=0. — (Sc)

where A= —(k —1)k ' ', which is of the form (1) with
h = k/(k —1).

We notice that in this formalism, the string action corre-
sponds to the limit k~0 [8], and the JT theory to k—+~.
Actions of the form (2) can also be obtained from dimen-
sional reduction of higher dimensional theories.

The field equations stemming from (1) are

we'~p-"~~
p'= y'-

4Q' 4
(14)

which, derived, recovers (7) (Bianchi identity).
If C=O the equations can be immediately integrated:

~h A
2hg

2(h+ 1) ' 2h
(x+B), e P= (x+B) (15)

2(h+1) " dyx+B=—
h+& where y=e

AA Jy (16)

The metric function (15) describes an asymptotically flat
spacetime singular at x = —B. This result has also been ob-
tained in [13] in the context of higher derivative theories.

If C + 0, one has, instead,

For our purposes, it is, however, more convenient to con-
sider the equivalent field equations arising from (2):

For positive C, the solution can be written in terms of the
hypergeometric function F:

4V'@ 4(V @)—'+(I+h)Ae 2"p+R=o, (6a) 2(h+1)e 2p ( 1 h+2 e (+i)p)

~Ch/(h+ 1) (17)

—2V„V,Q —g„„—2V /+2(VQ) ——e "P =0.
(6b)

The equations (6) can be rearranged to read

2V y —4(Vy) = —Ae "P, R= 2V y A—he-
(6c)

(One may take A =1, B=0 without loss of generality. )
By inverting (17), one gets P as a function of x. In gen-

eral it is not possible to obtain it in analytical form. Never-
theless, Eq. (11) permits us to write, in terms of @ the metric
function,

We seek for a solution depending only on the spatial co-
ordinate. It is convenient to adopt the conformal gauge
ds =e "( dt +dx ), for whic—h

e2p (e
—2hP C 2P)

4(h+1)

and, with the help of (7) and (13), also the curvature

(18)

«@«h 2(p —hp)
A

2 (7)
A

(h2e "P—Ce P)h+1 (19)

y«2@&2 e2(p —hP)
A2'

A
e2(P IP)-

2

Equations (8) and (9) yield

(10)

which can be immediately integrated to give

e P=AQ'

with A an integration constant. Substituting in (8),

One can thus discuss in general the properties of the so-
lutions: the behavior of e ~ depends on the sign of C and
h. For C(0, e ~ vanishes for x~0 and diverges for a
finite value x=xo if h is positive, or for x~oo, if h&0. For
positive C, instead, one has in general two branches for the
solutions: if h~O, e ~~C "+ for x~ —oo and goes to
zero or infinity for x~O, depending on the branch consid-
ered. If h~O, for one branch e ~~0 for x~0 and

~~C /(h+&) for x~ —(x). For the other e ~—zoo for
x~oo and e ~—+C ~"+ ~ for x~ —oo. The point where
e @=C' "+ in general corresponds, as we shall see, to
the event horizon of the metric. In conformal coordinates,
this point is always at infinity. This fact renders a bit obscure
the description of the metric.
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Let us discuss the properties of the solution (18):for posi-
tive C, if h~O, a horizon is located at x= —~, but both
branches of the solution diverge at x~~. At these points the
curvature is also divergent.

For h~0, a horizon is present at x = —~. One of the two
branches is regular also at x =~, while the other diverges at
finite x. In the first case one has a regular asymptotically flat
black hole. The case h =0, in particular, yields the Mandal-
Sengupta-Wadia metric for the string [3,12], or its dual [15]:

ds =(1~Ce ") '( dt —+dx ) (20)

For negative C, if h&0, the metric and the curvature are
singular at the origin and at a point xo at finite distance,
while for h ~0 a naked singularity is placed at the origin, the
metric being regular at infinity. None of the C&0 solutions
is therefore physically relevant.

From a physical point of view is perhaps more interest-
ing to consider the "standard" metric g„,= e 8' „—= e ~ B„„which is obtained by rescaling the "string"
metric g„,. The "standard" metric is in fact the relevant one
both for the Jackiw-Teitelboim theory and for the higher de-
rivative models. It turns out that the solutions have interest-
ing properties also in this case.

For C 0 e2m (x+B) 1 —t/h and R oc (x+B)—1+1/h

These metrics are singular at the origin except for
0 &h (1, but in this case are singular at infinity.

For nonvanishing C, one has, instead,

A
[P, ,J]= e,Pb, [P, ,Pb] = —e,bI, [P„I]= [J,I]= 0

and the corresponding gauge field

A =e'P, + coJ+aI (24)

with the field strength

F=dA+A =P,T'+Jdru+I —e,be'e +da, (25)

diverges for x~~. Furthermore, from (11) and (12) follows
that e ~= —(A/2)A Pe ~. Thus the metric function e ~, as
well as the curvature R = (2/A )e ~, vanish at both
x= ~oo. The solution is hence a solitonlike regular space-
time, with a horizon at both ends. In the "standard" gauge
g „, the metric is instead given by e = —(A/2)A P and is
therefore proportional to the dilaton. The curvature turns out
to be R = —(A/2)e ~. The structure of the solution is analo-
gous to that of the "string" metric.

We conclude this Rapid Communication by showing that
our model can be written as a gauge theory of the extended
Poincare group [8], where the symmetry is broken to
U(1)X U(1) by imposing some constraints on the fields. This
formulation could be useful for the quantization of the
theory.

Consider the two-dimensional extended Poincare algebra
[8]:

and

2'
(

—2(h+1)P C)4(h+1) (21) where T' is the torsion T'= de'+ e'brue . According to [8],
the fields transform under the gauge transformations gener-
ated by 0 = O' P, + rxJ+ PI as

e '~' ' (22)

For positive C all the solutions have a horizon at
x= —~. For h&1, both branches are asymptotically flat,
while for 0&A(1 both are singular at x=+~. For h&0,
instead, one of the branches is asymptotically fiat, while the
other is singular at a finite value of x. Special examples of
these classes of solutions are the anti —de Sitter and pro —de
Sitter' solutions of the JT theory h = 1, given by
e =(e"~e "),respectively. Our general solutions 7r)1
have essentially the same properties, except constant curva-
ture.

Finally, for C(0, the solution either have naked singular-
ity at the origin if h & 1, or are singular at infinity, if h &1.

As an illustration of the method, we consider the special
cases h = —1. This case corresponds to the nonlinear action
5= fd xvgR, and is distinguished because (13) is no more
valid. The solution of (12) is, in fact,

ea~(~ —1)a (eb+ eb 8c+ d8b)

CO~ GO+ dN, (26)

a b 2a ~a —8' e,be ——8 ru+ d P+ —d 8' e,b 8,

where ~'b = Pbcoshu+ e'bsinha
One can now define the gauge multiplet of scalar fields

t7+ ( t7 7/2 r73), which permits us to construct the topo-
logical Lagrangian

M=+ r/„F"= rI, T'+ r/2dro+ r73
—e,be'e +da3 (27)

invariant under the extended Poincare group. By imposing
the constraints (possibly enforced by means of Lagrange

multiplier s)

A

2
—x = Ei( —2 @)= li(e ~) . (23) da=O, (28)

The dilaton is then given by the inverse function of the ex-
ponential integral Ei and goes to zero for x~ —oo, whereas it

which break the symmetry to U(1) X U(1) generated by J and
I, the Lagrangian can be written

'We call "pro —de Sitter" the regular, constant curvature black
hole solution discussed by many authors [10,16].

A
W= g.T'+ y,d ~+ —gh, e.,e'e'.

The ensuing field equation are

(29)
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T'=0

R+hAy2 =0,

d y, + e,curb+ A y2e, be =0,

d /2+ yg& be

(30)

The first equation implies the vanishing of the torsion and
hence the usual relation between the spin connection and the
zweibein, while the second coincides with (5a). Finally, the
last two equations, combined, yield (5b).

This way of writing the theory should lead to a straight-
forward quantization, on the lines of [8]. It would, however,
be interesting to find a mechanism of spontaneous symmetry
breaking of the extended Poincare invariance instead of in-
troducing explicitly symmetry breaking constraints. Another
interesting point which deserves further investigations are
the thermodynamical properties of the black hole solutions
we have derived. It is in fact well known that 2D models can
lead to several different kinds of thermodynamics [10,17].
All these possibilities are presently actively investigated.

I wish to thank M. Cadoni for discussions.
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