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Information in black hole radiation for initial mixed states
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The question of whether black holes deplete the Universe of information is usually addressed in terms of
initial gravitationally collapsing pure states. Pure states are nongeneric, having null prior probability of occur-
rence. The more realistic case of initial mixed states is, thus, examined here. The average information in an

m-dimensional system in a random mixed state is found to approach asymptotically, as m —+~, an upper limit

of 6 nats, that is, 6 ln 2 or 0.240449 bits. Also, the average information in an m-dimensional subsystem A of an

mn-dimensional system AB proves to be smaller if AB is in a random mixed state than in a random pure state.
This ending reinforces the recently drawn conclusion of Page that information in black hole radiation may
come out initially so slowly that it would never show up in an analysis perturbative in Mz»„,&/M.

PACS number(s): 04.70.Dy, 02.50.Sk, 03.65.—w, 05.30.Ch

The "cosmic information paradox" is a topic of much

current interest [1—3]. It is typically posed in terms of a
black hole forming from matter in a pure quantum state.
However, in a certain generic or prior sense, the probability
of a pure state occurring is null. "The wave-function lan-

guage applies strictly only to pure states which seldom—
some physicists would say never~ccur in nature. " [4] "In
practice, nature usually presents us with states that are not

pure, and it is the preparation of pure states that provides the
greatest challenge" ( [5], p. 156). It had been indicated by
Hawking [6] that "in fact, the initial situation in general will
also be described by a density matrix because of the hidden

surface occurring at earlier times. . . In general, the initial
situation will not be a pure quantum state either because of
the evaporation of black holes at earlier times. "

Here, we investigate the cosmic information paradox in

the more realistic case of initial mixed states. In pursuing this
line of analysis, heavy reliance is placed on the recent work
of Page [7] and Foong and Kanno [8].They were concerned
with the average entropy (S „=(Sq)) of an m-dimensional
subsystem A of an mn-dimensional system in a random pure
state ~t/1)(tel~. The average was defined with respect to the
unitarily invariant Haar measure on the space of unit vectors
~tel). Here, the counterpart to their work when AB is in a
random mixed state is desired. The average will then be de-
fined with respect to the unitarily and reparametrization-
invariant measure

~ p~
t+' over the q X q density matrices (p)

[9], taking q=mn (It should .be noted that as ~p~=0 for a
pure state, such states are assigned null measure. ) Previous to
the recent work [9], the opinions had been expressed that
"There does not seem to be any natural measure on the set of
all mixed states" [10] and "the more realistic experimental
case of mixed input states does not admit such a nice Bayes-
ian treatment (the problem lies in selecting a good prior on
mixed density matrices)" [11].

The relative (unnormalized) probability of the density ma-
trix of an m-dimensional subsystem A of an mn-dimensional
system AB in a random pure state, having eigenvalues

p, , . . . ,p, was expressed in Ref. [8] as
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P(pt . ,p )... . dp;

I
=b 1—gp,

) 1~i(j&m
(p; p, ) —(pt" dpk)

k=1

Note that if n is set equal to 3m+ 1, the rightmost product is
simply the suggested measure over the m Xm density matri-

ces,
~ pz~

+', the determinant of a matrix equaling the prod-
uct of its eigenvalues. It should also be observed that the
other product, of ordered squares of differences of eigenval-
ues, is present in the joint probability density function for the
eigenvalues of matrices from a Gaussian unitary ensemble
(the ensemble of Hermitian matrices with equally probable
real and imaginary parts) ( [12],Theorem 3.3.1). The prob-
abilities of such matrices are invariant under unitary trans-
formations.

In Ref. [8] the entropy of the eigenvalues, —X, tp;Inp;,
was weighted by (1) and integrated over the (m —1)-
dimensional simplex of possible vectors of eigenvalues. %ith
an appropriate normalization, it was shown that

1 m 1
S (m &n),

k 2nk=n+1
(2)

as conjectured by Page [7].For large m and n [7],

(3)

Expression (1) for the relative probability of the eigenval-
ues of pA can be compared with the joint distribution of the
eigenvalues of an m Xm matrix pA having a central complex
Wishart distribution with n degrees of freedom and scale or
covariance matrix X. This joint distribution takes the form
[[13],(3 8)]
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TABLE I. Average entropies for selected m and n (1.) S „3 „+,=S „.(2) S 2 „+,. (3) S„2 „+„+,.

2
2
2
2
2
2

3
3
4
4
5

6
7

50
1000
10'
1010

2
3
4
5
6

25

3
4
4
5
5
6
7

100
1000
10'
1020

1n mn

1.386 29
1.791 76
2.079 44
2.305 29
2.484 91
3.912 02
2.197 22
2.484 91
2.772 59
2.995 73
3.218 88
3.583 52
3.891 82
8.517 19

13.815 5
41.446 5
69.077 6

1.242 53
1.638 48
1.922 07
2.142 99
2.323 93
3.746 53
2.038 6
2.323 93
2.61
2.832 23
3.054 68
3.418 52
3.726 35
8.350 54

13.648 8
41.279 9
68.910 9

1n m

0.693 147
0.693 147
0.693 147
0.693 147
0.693 147
0.693 147
1.098 61
1.098 61
1.386 29
1.386 29
1.609 44
1.791 76
1.945 91
3.912 02
6.907 76

20.723 3
23.025 9

0.625 481
0.643 425
0.653 847
0.660 657
0.665 455
0.685 872
1.038 16
1.051 09
1.335 68
1.344 67
1.566 61
1.754 85
1.913 57
3.909 54
6.907 51

20.723 3
23.025 9

1n n

0.693 147
1.098 61
1.386 29
1.609 44
1.791 76
3.218 88
1.098 61
1.386 29
1.386 29
1.609 44
1.609 44
1.791 76
1.945 91
4.605 17
6.097 76

20.723 3
46.051 7

0.625 481
1.015 57
1.297 19
1.517 25

1.697 76
3.11983
1.038 16
1.321 73
1.335 68
1.557 3
1.566 61
1.754 85
1.913 57
4.600 22
6.907 51

20.723 3
46.051 7

(2)+(3)-(I)

0.008 437 1

0.020 517 9
0.028 959 6
0.034 911 6
0.039 281 8
0.059 175
0.037 719 1

0.048 888 7
0.061 355 8
0.069 738 1

0.078 532 9
0.091 189 5
0.100 792
0.159 218
0.166 167
0.166 667
0.166 667

m(m —1)

I&l "exp(-«& 'p~)lpAI" . . . . (p; pi)'-
I' (n)I' (m)

where the complex multivariate gamma function [[14],(83)]

I „(a)= m~ ~ ' I'(a —i P 1). (5)

Sm —Sm 3m+ (6)

where S is the average entropy of an m-dimensional sys-
tem, without regard to any possible imbedding in a larger
system.

Let us consider the mn-dimensional system AB in a ran-

dom mixed state to have an mn-dimensional complex central
Wishart distribution with degrees of freedom 3mn+1 and

covariance matrix, the fully mixed mn X mn density matrix.
The subsystem A will then have an m-dimensional marginal

complex central Wishart distribution with degrees of free-
dom 2mn+ m+ 1 and the covariance matrix, the fully mixed
m X m density matrix. Similarly, the n-dimensional sub-

system B will have such a marginal distribution with degrees
of freedom 2mn+n+1 and the fully mixed n Xn density
matrix as its covariance matrix (cf. [15], Corollary 3.2.6;

(The Wishart distribution is a multivariate generalization of
the univariate I' distribution. ) One can take X to be the di-

agonal density matrix corresponding to the fully mixed state,
with diagonal entries 1/m. Then, the exponent in (4),
—trX 'pz, can be seen to serve as a constant, since the

density matrices have unit trace. With the imposition of the 8
function to ensure a unit trace, it is clear that (1) and (4) are
proportional, differing by only some constant factor [cf. [8],
(3), (14)].With a choice of degrees of freedom, n =3m+ 1,
the suggested measure

i pz i

+ appears in (1) and (4). Then,
we have the general result

I „=lnm —S „(m~n),
=m/2n (1((m (n),
= lnm —Inn+I„(n(m),
- lnm —inn+ n/2m (1((n~m),

(8)

(10)

[16], sec. 6). With these choices of degrees of freedom, the

three density matrices (pz, pa, p„a) will all be raised to the

power 2mn+1 in their associated density functions, since
3mn+1 —mn=2mn+m+1 —m=2mn+n+1 —n. Now, by
(6), the average entropy associated with AB (an mn
dimensional system in a random mixed state) will equal
S „3 „+&. By the results of Refs. [7] and [8], the average

entropy associated with A will equal S 2 „+ +& and with

B, S„2 „+„+&.For certain selected values of m and n, the

values of these three expected entropies have been tabulated
(Table I). For m, n~7, the exact formula (2) was employed,
while for larger values, the asymptotic result (3) was utilized.
From (3) and (6),

S =lnm —1/6 (1((m(n).

Also, for large m and n, S~ 2 „+&+~=lnm and

S„2 „+&+„=inn, which results explain the asymptotic limit
1/6=0. 166 667 in the last rows of the table.

The Araki-Lieb inequality [17] requires that the entropy
of pcs be no greater than that of pA plus that of ps (that is,
subadditivity must be satisfied). The results of the table, ob-
tained by averaging over such entropies, respect this inequal-

ity, as the last column has all positive entries.
For a system AB in a random pure state, Page [3]studied,

in detail, the case in which the product mn of the dimensions
of the black hole and radiation subsystems equaled
2 3 5 =291 600-e (about the number of states very na-

ively expected for a black hole near the Planck mass). (Then,
because of the assumed purity, the entropy of subsystem A
had to equal that of B.) He plotted and analyzed the average
information in the m-dimensional (radiation) subsystem A:
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m, n ~m, 2mn+ m+ 1~ (12)

=m/(4mn+ 2m+ 2) (1(&m). (13)

(12) holds for all m, whether smaller or larger than n, since
m is always less than 2mn+ m+ 1, and (2) is applicable. For
n=1, (13) approaches 1/6 as m increases. [In comparison,
for n=1, (11) approaches lnm ([3], Fig. 1).] Since (13) is
uniformly less than (9), Page's conclusion regarding the ini-

tial slow rate of information escape is reinforced in the case
of an initial mixed state (cf. [18]).

The suggested measure [9], ~p~
', over the dXd den-

sity matrices (p) is induced by the (Fisher) information met-

ric [19].There are, of course, nondenumerable other mea-
sures over the d-dimensional quantum states which are
similarly unitarily invariant. Two examples of special interest
are the measures induced by the Bures metric [20] and by the
von Neumann entropy [21].These two appear to lend them-

selves less readily to exact integrations. In addition, such
alternatives lack the feature of reparametrization invariance,
a desideratum first formulated by Jeffreys [22]. (His objec-
tive had been to broaden the applicability of Bayes' theorem

[23] by developing a general principle for generating suitable
prior distributions. ) In the context of the study here, the term
"reparametrization" refers to the parameters of a
d-dimensional complex multinormal distribution having a
zero mean vector and p as its covariance matrix [24]. Let us

present the underlying argument in the following manner.

and concluded that "if all the information going into gravi-
tational collapse escapes gradually from the apparent black
hole, it would likely come at initially such a slow rate or be
so spread out (requiring so many measurements) that it could
never be found or excluded by a perturbative analysis. "

In the mixed state case under consideration here,

The d X d density/covariance matrix p can be transformed
to a 2d X 2d covariaace matrix

1(Q, -Q, l0=-
2( Q.

of a 2d-diinensional real multinormal distribution [25]. (The
real symmetric part of p is Qi and its skew-symmetric part is

Qz, so p= Qi+Q2. ) Then, the Jacobian of the transforma-
tion O~Q ' is ~Q~

+'
( [15], Theorem 2.1.8). The Jef-

freys (diffuse, vague, noninformative, invariant) prior distri-
bution [23(a)], which is the volume element on the
Riemannian manifold of possible probability distributions
with respect to the information metric [19], is then taken to
be the square root of this Jacobian, that is ~Q~( +')'2. Since
(A~ =(2 "(p~), the suggested (unnormalized) form

~ p~

for the prior measure over the d X d density matrices is ob-
tained [9(b)].

It might be observed that the convenient and simplifying
choice in (4) of X as the fully mixed density matrix corre-
sponds to what could be called a quasi-infinite-temperature
scenario. (The resultant Boltzrnann-like exponential factor is
then constant across states —although, of course, the under-

lying prior measure or quantum structure function,
~ p~

itself is not. ) It would appear, in line with basic properties of
the Wishart distribution [15,25(a)], that X should be selected
to be the mean of what is conceived to be the (cosmic) dis-
tribution of initial states. To a similar end, one could also
seek the (posterior) distribution closest in the sense of rela-
tive entropy (information distance) to the normalized form of
the prior,

~ p~
"+, which satisfies constraints on certain ex-

pected values.
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