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Collisions of boosted black holes: Perturbation theory prediction
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We consider general relativistic Cauchy data representing two nonspinning, equal-mass black holes boosted
toward each other. When the black holes are close enough to each other and their momentum is sufficiently

high, an encompassing apparent horizon is present so the system can be viewed as a single, perturbed black
hole. We employ gauge-invariant perturbation theory, and integrate the Zerilli equation to analyze these time-

asymmetric data sets and compute gravitational waveforms and emitted energies. When coupled with a simple

Newtonian analysis of the infall trajectory, we find striking agreement between the perturbation calculation of
emitted energies and the results of fully general relativistic numerical simulations of time-symmetric initial

data.

PACS number(s): 04.70.—s, 04.25.Dm, 04.25.Nx, 04.30.—w

I. INTRODUCTION

The collision of two black holes is expected to be an

important source of gravitational radiation for gravity wave
detectors currently under construction. A major theoretical
effort is underway to compute the gravitational waveform
from the orbiting inspiral and coalescence of black-hole bi-
naries. Post-Newtonian theory should provide a sufficiently
accurate waveform for much of the inspiral phase and enable
the extraction of considerable information about the param-
eters of the system [1].However, it is anticipated that a fully

general relativistic treatment will be necessary to predict the
waveform from the final stages of coalescence.

Recently, the seminal calculations of Smarr and Eppley
[2] for the head-on collision of two equal-mass holes starting
at rest from a finite separation have been redone [3]with the
benefit of new numerical techniques and theoretical tools, as
well as vastly increased computational resources. The basic
conclusions reached by the modern calculations are remark-
able for their similarity to those of the original study. The
maximum amount of energy radiated is small, less than 0.1%
of the mass of the system. Also, the waveforms are indistin-

guishable at the level of the numerical accuracy from quasi-
normal mode oscillations of a black hole.

Compelled by these results, Price and Pullin [4] analyzed
the Misner initial data for two black holes at a moment of
time symmetry as if it represented a single, perturbed black
hole. Using gauge-invariant perturbation theory and the Zer-
illi equation, they were able to compute the initial distortion
of the black hole, and the resulting asymptotic waveforms
and energy fluxes as a function of separation. For small sepa-
ration, when the approximation of the merged system as a
single, perturbed black hole is expected to be most valid, the
agreement between the radiated energy from perturbation
theory and the results of fully relativistic simulations [4] is
excellent, apparently within the error bars of the numerical
calculation. The quadrupole waveforms are also remarkably
similar when read off at the same radius. Only when the
initial separation of the black holes is somewhat larger than
the cutoff for encompassing apparent horizons is there sub-

stantial discrepancy between the perturbation theory and
evolution results for radiation efficiency.

Previously (Ref. [5], hereafter paper 1), the current au-
thors had used a similar perturbation theory analysis to study
spurious radiation in time-symmetric and -asymmetric two-
black-hole data sets in the opposite limit —that of large sepa-
ration. These data sets represent the direct extension of Mis-
ner data allowing the two black holes to have nonvanishing
initial linear and angular momenta. In this paper, we apply
these gauge-invariant perturbation techniques, in the spirit of
the Price and Pullin paper, to the close limit when the two
black holes have an encompassing apparent horizon, and ex-
amine the gravitational radiation waveform and the amount
of energy radiated for time-asymmetric initial data.

There are several motivations for this study of boosted
black-hole initial data. In the final plunge phase of binary
black-hole coalescence, the black holes are likely to have
substantial infall velocities. Although the actual collision is
not expected to be head-on, axisymmetric calculations of
boosted head-on collisions are an interesting limiting case of
full three-dimensional plunge simulations. In addition, these
calculations extend the regime where perturbation calcula-
tions can be fairly compared with the fully relativistic simu-
lations. It is clear that, for time-symmetric initial data with
no event horizon, the perturbation theory calculation should
greatly overestimate the distortion of the merged black hole,
and thus the radiated energy. For these cases the merged
black hole does not form until the individual black holes
have evolved toward each other and have some infall mo-
mentum. It is this merged black hole that one would like to
analyze with perturbation theory and compare against the
evolution results.

II. METHODOLOGY

In this paper, we will be concerned with two equal-mass
nonrotating black holes, each with axisymmetric inward-
pointing momentum P (the slice has zero net-momentum).
Initial-data sets representing one or more black holes with
individually specifiable linear and angular momenta are con-
structed using the conformal-imaging approach developed by
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York and co-workers [6].The case of two black holes with

axisymrnetric momenta was implemented numerically by
Cook [7].The data sets used for this study were constructed

using a code based on the Cadez-coordinate approach de-
scribed in that work. The reader should refer there for details

regarding the construction of the data sets and for further
descriptions of the parametrization of the data sets described
below. The separation of the holes is parametrized by p,
which is related to the bispherical-coordinate separation pa-
rameter po by the relation p, a= arccosh(p/2) in the case of
equal-mass holes. The code is used to compute the inversion-
symmetric (with minus isometry condition) extrinsic curva-
ture K;, and to solve the Hamiltonian constraint for the con-
formal factor P. Once the full initial data are computed,
several physical quantities characterizing the system are
computed. Of interest in this paper are the Arnowitt-Deser-
Misner (ADM) mass of the initial-data slice M, the proper
separation of the holes 8, and the masses of the individual

holes m
&
= m2 defined in terms of the area of the marginally

outer-trapped surface associated with each hole. We also de-

fine the total or bare mass of the system by m=m&+m2.
Note that the difference between m and M is due to the

binding energy of the system. Given an initial-data set, we
use the boundary-value-problem method described in paper 1
to locate all marginally outer-trapped surfaces surrounding
the two holes (if they exist) and identify the apparent hori-

zon(s). We should note that there is nothing unique about our
choice of initial data for representing two colliding black
holes. One could imagine, for example, considering data
with Euclidean topology with the black holes represented by
boosted matter collapsed inside its horizon. Our initial data
were chosen for the convenience of their highly refined nu-

merical treatment [7] and earlier physical exploration (paper
1).

Like Price and Pullin [4], for purposes of our analysis we
treat the spacetime as a perturbation (but not necessarily a
time-symmetric one) of Schwarzschild. First, we establish a
Schwarzschild-like coordinate system around the two black
holes in terms of the (background space) isotropic coordi-
nates used in the numerical solution r = r;(1+M/2r;) Note.
that the background space of the numerical solution can be
directly parametrized by the isotropic radial coordinate r;
even though the numerical solution is found in Cadez coor-
dinates. The total ADM mass of the slice M is used as the
Schwarzschild background mass. Tortoise coordinates are
also defined in the usual way: r, =r+2Mln(r/2M —1).
Computation of wave perturbations involves the calculation
of multipole amplitudes by surface integrals. These are per-
formed over constant Schwarzschild radial-coordinate two-
spheres. The integrands involve the conformal factor
Schwarzschild-coordinate extrinsic-curvature components
K;~, and their Schwarzschild-coordinate radial derivatives.
Calculation of these quantities at their required locations is
achieved with bicubic spline interpolations and a series of
coordinate transformations.

The gauge-invariant function Q~ is formed out of mul-
tipole projections of f and P „computed by numerical inte-
grations over a coordinate two-sphere (cf. Refs. [8—10]).For
this paper we compute only the case of Q=Q2o. We also
require the Schwarzschild time derivative of the gauge-
invariant function 8,Q. This time derivative is computed as

B,Q = n9', Q,

where .%, is the Lie derivative along the slice-normal con-

gruence n and the factor a= g(1 2—M/r) comes about from
the transformation from the slice-normal time coordinate to
the Schwarzschild time coordinate. The Lie derivative of Q
is calculated using the extrinsic curvature (and its radial de-
rivative) via the definition

W~„g;,= —2K;, . (2)

The gauge-invariant perturbation function and its time de-
rivative, known as a function of radius surrounding the
merged black hole, serves as initial data for integration of the
Zerilli equation. The numerically generated initial perturba-
tion is interpolated onto a fine grid (typically 8000—16 000
zones) that is even in r„and extends from r~ = —500M to
r, = 2000M. The Zerilli equation (cf. Refs. [8,10,4]) is then
integrated forward in time until the whole perturbation has
been propagated to ~r,

~

~~. Approximate asymptotic wave-
forms and energy fiuxes are computed at large radii.

Our code for calculating the initial black-hole perturba-
tion from numerically generated initial data was checked by
comparing it against the time-symmetric results of Price and
Pullin [4]. It should be noted that they analytically expanded
the metric perturbation about Schwarzschild in powers of the
parameter e= I/~ln~~ and retain only the leading term in e.
In the limit of small separation, the initial perturbation we
obtain numerically agrees closely with their analytic results
(for p&3.25 the agreement is better than 5%). Not surpris-

ingly, for larger separations the differences become larger.
For the horizon cutoff point of p=4.17 or p,o=1.36 (the
largest separation allowing an encompassing apparent hori-
zon for time-symmetric initial data), the analytic prediction
for the energy radiated is about 60% higher than the result
from the full solution. It is interesting to note that neglecting
the higher-order terms in e always seems to lead to a greater
amount of radiated energy.

III. WAVEFORMS AND ENERGY FLUX

The perturbed black-hole approximation assumed in this
paper is not valid if the two black holes have not merged
(have no common event horizon). For separations small
enough that an encompassing apparent horizon exists, we
find that the addition of inward-pointing linear momenta
makes the encompassing apparent horizon more spherical
and the maximum radiation efficiency (defined as the ratio of
M minus the mass of the apparent horizon to M) decreases.
Moreover, we find that the metric perturbation Q always gets
smaller. We, therefore, contend that our treatment of time-
asymmetric initial-data sets with inward-pointing linear mo-
menta is always at least as valid as the study of the time-
symmetric solution.

In paper 1 we located the horizon-formation line for
boosted black-hole initial data. For a given separation param-
eter p, we searched for the smallest value of inward linear
momentum for which an encompassing horizon surrounded
the holes. The momentum as a function of proper hole sepa-
ration for this horizon line is displayed in Fig. 1.The horizon
cutoff point mentioned previously, at p =4.17 and P =0, lies
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on this line. For larger values of P, it is necessary to give the
holes inward momentum in order for an encompassing ap-
parent horizon to exist. We note that this horizon line is only
an estimate of where the actual encompassing event hori-
zons will form. Along this horizon-formation line, we have
computed the radiated energy for the initial-data sets using
the gauge-invariant perturbation formalism and Zerilli-
equation integration method described above. In Fig. 2, the
radiated energy is plotted as a function of proper separation
8/m. For the points shown, the inward momentum on each
hole ranges from P/m =0.0355 to P/m=1. 738. One inter-

esting feature is that the radiation efficiency appears to satu-
rate at about 2%, substantially below the maximum radiation
efficiency based on area theorem arguments. This suggests
that it may be impossible to obtain high radiation efficiency
for black-hole collisions, even if they merge with very large
momenta. As a gauge of what constitutes a large momentum,
we estimate below the momenta of two holes at the moment
of horizon formation assuming a parabolic infall from rest at
infinite separation.

At each point on the horizon-formation line, we have a
value for the separation 8/m and momenta P/m of the holes.
Treating the black holes as point particles and using New-
tonian dynamics, we can estimate the separation (8/m)o at
which the holes were at rest:

8/m

1, m 1 —8(P/m) (8/m)
(3)

Clearly, if we assume infall from rest, the maximum mo-
menta the two holes can obtain at the point of horizon for-
mation is estimated by the point on the horizon-formation
line where the denominator of Eq. (3) vanishes, i.e.,
(8/m)o~IX. We find this point to be P/m=0. 249 and

FIG. 1. The apparent horizon-formation line. The inward linear

momentum on each hole P/m is plotted as a function of proper
separation 8/m.

FIG. 2. Radiated energy along the apparent horizon-formation
line. The radiation efficiency (the total radiated energy as a fraction
of the ADM mass) computed with perturbation theory is plotted for
initial data along the horizon line, parametrized by the proper sepa-
ration of the holes 8/m. In the inset we show the radiation effi-

ciency plotted as a function of the separation of the corresponding
time-symmetric initial-data set, (8/m)o, computed using Eq. (3).
The logarithm is to base 10.

I, '/m = 2.01. At this point, the implied radiation efficiency is
less than 0.16%. In the inset of Fig. 2, we show the radiated

energy from points on the horizon-formation line plotted as a
function of the Newtonian estimate for their proper separa-
tion when at rest. We find striking agreement between our
calculation of total energy radiated and the simulations of
Anninos et at. [3].For cases where their initial data had an

encompassing horizon, it is clearly correct to compare with
the perturbation analysis of Misner data. For cases with
greater separation, the time-asymmetric analysis gives excel-
lent results. For example, for p, a=2.2 or (8/m)o=3. 97, the
radiation efficiency from perturbation theory of the corre-
sponding horizon-line initial-data set is E/M = 7.9x 10, as

—4

compared with E/M = 1.7X 10 from the time-symmetric
analysis of p, o

=2.2 Misner data and E/M =5.5 X 10 from
the fully relativistic simulations. A post-Newtonian calcula-
tion of the infall trajectory might improve this comparison.

The agreement between the time-asymmetric perturbation
theory and fully relativistic numerical simulations lends sup-
port to the notion that most of the radiation from head-on
collisions is emitted when the black holes are close together
(in the form of quasinormal modes) and that the long-
wavelength infall radiation contributes little to the total en-

ergy. A simple calculation based on the quadrupole formula
for Newtonian trajectories shows that about three quarters of
the infall energy from infinity is emitted after the holes are
within 3M of each other.

In Fig. 3 we show a typical waveform from a boosted
head-on collision observed at a radius of r = 200M. The case
shown is for a separation of P=4.275, P/m =0.1225, and
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FIG. 3. Waveforms from time-symmetric and -asymmetric two-

black-hole initial data. The top curve shows the quadrupole wave-

form from analysis of a time-symmetric data set with P=4.275.
The lower curve shows the quadrupole waveform from analysis of a

time-asymmetric initial-data set with the same value of P and

P/m =0.1225. Both waveforms are extracted at a radius

r = 200M.

8/m =1.948. For comparison we show the waveform from
time-symmetric data with the same P. Both waveforms are

dominated by normal mode oscillations within about 10M
after the black-hole surface is causally apparent at the extrac-
tion radius. The addition of ingoing momentum considerably
increases the amplitude of the oscillation and reverses the

sign of the waveform The pre.sence of momentum (extrinsic

IV. DISCUSSION

Anninos et al. [3]have shown that for collisions resulting
from large initial separations there is excellent agreement
between the emitted energy and the well-known results for a
test particle falling into Schwarzschild corrected for equal-
mass objects, finite infall distance, and horizon heating. Price
and Pullin [4] demonstrated that a perturbation analysis of
time-symmetric initial data could reproduce the results of the

fully relativistic simulation in the case that the black holes
have small initial separation. Here we have shown that the

perturbation analysis can be extended to larger separations,
including the regime in which point particle analysis is valid,

by considering appropriate time-asymmetric initial-data sets.
Adopting this perspective, one can accurately predict the to-
tal emitted energies over the entire range of separation, from
the close limit to parabolic trajectories starting at infinity.
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