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I.ow energy states of (1+1)-dimensional 4 field theories via the coupled cluster method
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The boson field theory with 4 and 4 coupling in (1+1) dimensions is investigated. Rigorous duality

relations covering the whole range of coupling constants are derived. Vacuum, one-, and two-particle

states are computed via the coupled cluster method in the four-particle approximations. Outside a criti-
cal region around second-order phase transitions the method works very well even in regions with first-

order phase transitions and bound states.

PACS number(s): 11.10.Lm, 03.70.+k

I. INTRODUCTION

The coupled cluster method (CCM) is one of the non-
perturbative tools for dealing with quantum field
theories. It has been applied to the 4 field in 1+1 di-
mensions [1—4], both in the "S4" [or "four-particle sub-
system" (SUB4) approximation], as well as more recently
in the "S6 approximation" [5]. In this scheme all terms
with more than 4 (6) virtual particles in the
exponent operator S=g S„ for the vacuum state
have been omitted and the remaining equations for
S„.. . , S4(S„.. . , S6 ) have been solved exactly. The
corresponding approximations also have been made in
the equations for the one and two meson states. Except
for a certain "critical region" around the phase transition
this method works quite well. There are some recent pa-
pers applying the CCM in modified form to lattice gauge
theories [6-8] with very encouraging results. (For a rath-
er complete list of the relevant literature see [8].) Some
confidence in this method stems. from its wide use and its
successes in quantum chemistry [9].

In the present paper an application of this method in
the SUB4 approximation to the same field theory, but
with both 4 as well as 4 coupling, will be described.
This model (from now on called the "4 model" for
short) is a nontrivial extension of the 4 model. It is
known to support two-particle bound states [10,11],
whereas the 4 field very likely does not [12,13]. It cer-
tainly has phase transitions of partially unknown charac-
ter [14] and some complex duality relations [15].

This paper is organized as follows. First, the model is
described together with some exact results which were
only partially known before. In Sec. III a short overview
of the Gauss approximation is given, followed in Sec. IV
by a description of the CCM as applied to the vacuum
and one- and two-particle states. The results are present-
ed in Sec. V and summarized in Sec. VI.

II. HAMILTONIAN, BOGOLUBOV TRANSFORMATION,
AND DUALITY

The Hamiltonian density is
r

(Note that there is no factor —,
' in front of A,4 as occurs in

most papers on the 44 theory. Thus the present )L,4 is —,
'

times the A,4 of the older papers. ) Here N means normal
ordering with respect to the mass parameter m. It has
been introduced to remove a trivial infinite constant. It
renormalizes the 4 and 4 terms. The Hamiltonian
then is

a= fdxH. (2.2)

mH= (V4}—+—II + 4 +A, 4 +A, 4 D. (2.3}—
Here the "bare parameters" A,z and mz are given by

X,=Z, + ISX,f 4&cok

and

(2.4)

'2

m =mtt+12A4f ,
—90k,6 f, (2.5}

47Tcok 47Tcok

with

co =+k +mk (2.6)

D is an irrelevant infinite constant. To obtain a finite
lower bound of the energy only the case A,6

& 0 and A,4 & 0
for A,6=0 will be considered. For the field amplitudes
and the usual creation and annihilation operators in

+=fdk
1/ 4$Yok

eikx+ate —ikx} (2.7)

the standard boson commutation relations are assumed.
To optimize the starting point for calculations and to
learn something about duality, a Bogolubov transforma-
tion to new creation and annihilation operators is per-
formed:

All spatial integrations are from L /2 to —L/2, where L
is the normalization volume. The recipes for performing
the transition from non-normal ordering to normal order-
ing are standard [16]. The non-normal ordered form of
the Hamiltonian density (2.1) is

mH=N —(Ve) +—II + 4 +A, 4 +A. eIrt 2 2 4 6

(2.1)

~k+~k ~k 6k
Qk= bk+ b k+ Qmtoot5(k) . (2.8)

& k"
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There is a new Fock vacuum ~4b ) with $k ~@& ) =().
the wave operator shift introduced to facilitate a nonvan-
ishing field expectation value (i.e., symmetry breaking),

(2.9)

and ek is a new (theoretical) single-particle energy. Both
t and eI, will be determined later. From now on we work
only with 4„, and thus omit the subscript new. %ith
some standard manipulations [16], including normal or-
dering Xb with respect to the bk and bk, one now obtains
the Hamiltonian in the form

%=LV+a(bo+bo)+ f dk Pkbkbk+ f dk Qk(bkb k+bkb I, )

+f3Nb f dx 4 +f4' fdx 4' +f5Nb f dx 4 + X6Nb f dx

Here,

K-
Eo

2
V= f (~k —ek)2+ t2+g&t4+)(6t6+g(6$4t2+15A6t )+36, (A4+15A6t )+15k h6

8m@k 2
' 1/2

dt

(2.10)

(2.11)

(2.12)

Ek= [cok+ek+12A, qt +30k,6t +126,(k +415k, t6}+90k,65 ],
26k

(2.13)

Qk=
2

f, =t [4k,~+20k,6(t2+3b, )],
f4=A~+15A6(t +6),
f~ =6k.6t,

(2.14)

(2.15)

(2.16)

(2.17)

f dk (2.18)

V is the expectation value of the Hamiltonian density with respect to the new Fock vacuum
~ 4t, ) .

The Bogolubov transformation can be used to derive rigorous duality relations which in turn are quite desirable for
checking the numerical reliability of the calculations described below. The reason for the occurrence of dualities is the
fact that the solutions of Eqs. (2.4) and (2.5) are not unique. In other words, two Hamiltonians &; and % are equal,
except for a constant, if the bare parameters are equal:

(A6);=(A6} =A6, (As);=(Aq) (2.19)

or

(x, ),
—isa, f 4mcok

L

=(x,)J
—isa, f dk

4m')k
(ms ); =(mtt )1, (2.20}

2

—90m, f
l

=m, —12(A~)j
4&6)k m J

2

—90m, f
J

(2.21)

Substitution of (2.20) into (2.21) leads to

m =m; +12(A~);4);+90A6bj~ (2.22)

with

fdk 1 1

4~ Qk'+m' Qk'+m'
Pl)

ln
4m' pyg

2
J

(2.23)
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Using this in (2.20) we obtain

(A4). =(A4);+15k.65 (2.24)

(&4);=, , (&6);=
(A4); A6

(2.25)

From now on Hamiltonians always are meant to be res-
caled in this way. It also is convenient to introduce one
of the Hamiltonians, say &I ("model 1"), as a reference
Halniltonian (if there is more than one}. Then (2.22} be-
comes [15]

The Hamiltonians are rescaled by introducing the dirnen-
sionless coupling constants

The extrema of Vo(z) are given by d Vo/dz =0, which is
the same as (2.26). Now Vo(z)~oo for z~koo. Thus
Vo(z} llas either 01lly olle mllllIIlum or two local mllllma
and a local maximum in between, corresponding to the
zeros of (2.26).

Returning to (2.31), let us assume that we have the
maximum of Vo at ri =In I and the two minima at iMI and
vi. From (2.30) it follows that model 1 is dual to model 2
and model 3 with minima of Vo at m 2 and m 3. If Pl is a
global minimum, model 2 has the global minimum at m 2

and model 3 at P3) m 3. Similar statements are valid if vl
is the global minimum. Taking all things together one ar-
rives at the following list of regions in the parameter
space.

z0=1—e ' —2az +Pz.

with

(2.26) One minimum: region "0",
Two minima:

2
mj 3 ~ 45

z =ln, a= (A4)I, P= (A6}i . (2.27)m' ' 2~ '
8~2

1
'~

This equation has either one or three solutions (crossing
of an exponential with a parabola). It always has the
solution z =0 with m =m

l used as the reference Hamil-
tonian. From (2.5) and (2.22) it also follows that if to a
"model 1" with a pair of coupling constants (24)„(A6)I
(with mass parameter m 1}there exist two additional solu-
tions vl and iII I of (2.22), then there exist two dual models:
"model 2" with z2%0 p, Am I and (A,6)2%(A,6)I and
"model 3" with zIAO vl&m I and (26)IA(26)I. Here,
from (2.25),

(~6)I iMI (~6)I

2
and

2
(A6)2 m I (A6)2 m,

with [from (2.24)]

(~4)1 15 (~6)2
($4)2

——(&6)2 + ln
4~

(~4) I 15 (~6)3
(14)2=(&6)I +

(A6) I
4Ir (A6) I

(2.28)

(2.29)

2 —2 —2 2 2 2 (2.30)

Without loss of generality one may assume Pl) vl. Let
pz, v2, r2 (for z2%0} and pl, vl, rl (for zlAO} be the solu-
tions dual to the model 1 with solutions pl, vl, ri (for
z =0). Since all three (unscaled) Hamiltonians are identi-
cal, one has

2 ) 2
Ploc min max ' glob min '

v~glob min I max+ ioc min '

region" 1",
region "2",

2 . 2 .-2 CC+gg
Pglob min) Vmax 'loc min ' regiOn 3

2
~inc min P'max "glob min '

2
Pglob min ' max "loc min '

2
Ploc min 'max "glob min '

region "4",
region "5",
region "6" .

Here all 7 =m
I and for instance "loc min" means "local

minimum". Thus in regions "1","4", "6" the Hamil-
tonians are mutually dual and the same is true in the re-
gions "2", "3",and "5". Furthermore, selecting one re-
gion of each trip'le plus the region "0" gives a complete
description of the Harniltonian. This was observed be-
fore in Ref. [15]. For instance, the combined regions
"0","1",and "2",or as well "0","2",and "4"will con-
tain all information. It is quite remarkable that the small
"weak coupling" regions "2" and "4" (plus region "0")
describe the Hamiltonian also for "strong coupling".
The concepts of "strong" or "weak coupling" clearly
have lost their meaning as strong or weak physical in-
teraction. The different duality regions can be identified
numerically by scanning V(z) for the parameters a and p.
Most boundaries can be determined analytically, howev-
er. Increasing a and p, starting from the origin, in addi-
tion to z =0 two additional solutions show up. Continui-
ty requires the birth of a saddle point, i.e., the first and
second derivative of V(z) must vanish at this boundary.
This yields the parametrization

P2=m2 )v2 and P3) ~&=m32= 2 --2 2 -2= 2 (2.31)

From the first and second equations (2.28) then follows
e'(z/2 —1)+1 e'(z —1)+1

and
Z2

(2.33)

Vo(z}

m
(e'—1 —z+az ——'Pz ) .

8m
(2.32}

In the coupling constant region where there are no solu-
tions with iM

= III I of (2.22) there is no dual Hamiltonian.
Now it is convenient to inspect the potential V(m, t ) of
(2.11) at the point t =0. Call this Vo(z). It is given by

This defines the border line of region "0"with "1"and"2" in Fig. 1. (Note that in this figure the region "2" is
too small to be distinguishable from the line. ) Increasing
further the distance from the origin, the new rninimurn P
becomes a global minimum, i.e., Vo(z =0) becomes nega-
tive. This yields
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Gauss phase transition

/

2 3

near the origin (in the coupling constant plane) the
minimum corresponds to t =0. Since t=(4i, I@I@i,&:—( 4& & this implies that there is the symmetric phase cor-
responding to field expectation value zero. Going away
from the origin there in any direction shows up a local
minimum and finally a global minimum with t&0; i.e.,
there is a transition to the symmetry broken phase with a
field expectation value difFerent from zero. In Fig. 1 the
boundary between both regions is shown. This phase
transition is of first order. This is known to be wrong for
the 4 model [13] and therefore to some extent must be
wrong for the 4 field theory, too.

One-particle states in the Gauss approximation are just
generated by the creation operators as

I

1'& =btk Ieb & (3.2)

FIG. 1. Duality regions for the 4 model. Region 2 is too
small to be distinguishable from the line. &= Jdp f(p)bpb ~I@,& . (3.3)

Two-particle states for total momentum zero are of the
form

2z+ 3+ (z —1)e'a=
z2

3[z+2+(z —2)e']
z3

(2.34)

f (p) then can be determined by varying the expectation
value of the energy with respect to f (p). In this way
there have been found bound states of two particles (for
A,6%0 and t =0 only) as well as the two particle continu-
um [11,15,19]. The results of the present paper later will
be compared with the Gaussian ones.

In Fig. 1 this defines the boundaries between "1"and "2"
on the one hand with "3" and "4" on the other. The
boundary between "5"and "6"with "3"and "2"appears
at a= —

—,
' where the second derivative of Vo(z=0)

changes sign because )u,
=m becomes a maximum.

Thus, for a& —1/2~k~& n/3 the—re .are minima at
p &~ and v' &~ . The transition between the region"5" and "6" corresponding to the cases p =global
minimum and v =global minimum could be determined
numerically only. The region "0"is the only one with no
duality partner.

Stevenson [15]used an alternative method based on the
Gaussian efFective potential [14] in the regions "0","1",
and "2". The remainder of the parameter space can be
transformed into this area via a renormalization group
transformation.

IV. CCM APPROXIMATIONS

A. Vacuum

I%„„&=exp(S)I@i, &

with

(4.1)

S=g S„,
n

where S„creates n virtual particles:

(4.2)

The application of the CCM to the vacuum has been
described in much detail in Ref. [3]. Thus here only the
essentials wi.11 be put down without any details. The vac-
uum state is written in the usual exponential form

III. GAUSS APPROXIMATION

The Gauss approximation corresponds to the Hartree
approximation of many body theory, minimizing the en-
ergy expectation value for a suitable Fock state. In the
present model this means variation of V in (2.11) with
respect to t and e& as necessary conditions. There are
many applications of this approach in the literature
[17—19]. The most complete one for the 4 theory is due
to Stevenson and Roditi [15]. The CCM as applied in the
present work uses this approximation as a starting point.
Using the conditions

1S„= dq, . dq„S„(qi q„)b» b»

Then the (standard) CCM equations are

(4b I exp( —S)&exp(S) I@b & =F.„„,

I exp( —S)&exp(S) I@b & =0,

~ ~

Here

(4.3)

(4.4)

BV 5V
Bt

' 5
(3.1)

(4.5)

with V from (2.11), it then is straightforward to compute
V for the t and ek determined by (3.1). It turns out that

are Pock states of n particles. The S4 approximation
takes all S„with n ~4 into account, thus leading to just
the first five equations (4.4). Furthermore, the "max-
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B. One-particle states and physical mass

One-particle states in field theory technically corre-
spond to closed shell plus one-particle states in many
body theory [21—23]. The adaption of the method to
quantum fields has been described elsewhere [24] and
even applied before to the 4 field theory [4]. Thus,
again only few details will be given here. One particle
with momentum k has the state

with

~e")=F„exp(S)~4b ), (4.6)

Fk =F0 +Fk

Here Fo is a number, and Fk is the operator

Fk =F)bkk

(4.7)

imum overlap" condition is imposed like in Ref. [3].
Thus S, and S2 are replaced by the field shift t and
single-particle energies ek. It does not make sense to
write down the explicit equations: there are 69 terms (be-
fore symmetrization}, but their derivation is based on a
straightforward reduction of the matrix elements via
Wick's theorems. The analytic form of the terms can be
found in Ref. [20].

tions are extremely large a matrix diagonalization is not
feasible. Instead, an iterative procedure has been per-
formed. As explained above, to hit upon physical one-
particle states the natural starting value is F, = 1, i.e., the
state of one bare particle. For k =0 the energy difference
E —E„, then is the physical particle mass. Above this
energy begins the continuum describing single physical
bosons moving with momenta k. Of course, approxima-
tions have to be made again. In this work all F„with
n 4 have been included. Again, the explicit equations
(with 217 terms) will not be written down and can be
found in Ref. [20]. Their derivation is straightforward,
although quite cumbersome.

C. T~o particle states

Considering only the subspace with total momentum
zero, for two bosons due to the relative motion, there is a
continuum of states beginning at twice the physical mass.
The existence of bound states will lead to states with
discrete energies smaller than twice this mass. It is re-
markable that the CCM equations for two particles are
practically the same as for one particle. The only
difference is that one now has to use another starting
point. Let G„(q) be the amplitudes for the two-particle
states corresponding to the F„". With bkb ~kgb) as
lowest free state one has

00

+ $, fdk, dk„5(k, + +k„—k)n! Gz(q) =5(q)+corrections . (4.13)

XF„"(k„.. . , k„))bk bk . (4.8)

Subtracting the vacuum
exp( —S)Fk one obtains

(E" E„„}Fk~4b )—

equation multiplied with

The operator S is taken from the vacuum problem. The
ansatz (4.6} is quite general. It contains as ingredients the
physical vacuum and dressed 1,2, . . . particle states. The
one virtual particle state should be the leading contribu-
tion. This will be incorporated by the solution technique.
One then proceeds by writing the eigenvalue equations as

exp( —S}&Fkexp(S) ~4b ) =E "Fk ~4b ) . (4.9)

Thus, after discretization one starts with

G2(q) = l, if q =0 andG2(q)~0 for coupling —+0 ifqAO .

(4.14)

V. RESULTS

A. Vacuum

The set of coupled equations (4.4) is solved by iteration,
starting from the Gauss approximation, the procedure
being practically the same as in Ref. [3]. Figure 2 gives

=exp( —S)[%F„—F„&]exp(S)~@b) . (4.10)

(E" E„„)FO= ( 4q ~% ex—p(S)Fk ~41, ),
and, for n )0,
(E E„„)F„(ki,. . . , k„ —i)5(ki+ +k„—k )

(4.11)

= ( @k . . . k ~ exp( —S )[&Fk Fk&]ex—p(S }~ 4& ) .

(4.12}

Now one again projects with the complete set of Fock
states to obtain, for n =0,

1st order phase
transition

3.:
estimate for
2nd order phase transition

4
3

(4.11) occurs because the particle number is not con-
served. It determines the (here irrelevant) constant I'0.
(4.12) is a coupled set of linear equations for the energy
difference and the amplitudes F„. Because these equa-

2 particle boun
states in CCM region not accessible

to CCM

FIG. 2. Phases in the CCM approximation.
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0.4 0.6 0.8

-10:"-

1 2 3
I

''—Qap—

-20 t

-8-

-10—

-12—

vac vac

FIG, 3. Vacuum energy density for u =2. Circles, CCM;
boxes, Gauss approximation; solid line, second-order perturba-
tion theory.

FIG. 5. Same as Fig. 3 for u = —2.

an overview of the results. The parameter u is defined by
u = —24/26. Thus, u = —~ corresponds to the pure 4
model, and u =0 to the pure 4 case. There is a small re-
gion around the origin corresponding to the (4)=0 sec-
tor. To the right there is a region where no CCM solu-
tion could be found. The rest could be computed and
corresponds to the (4)%0 phase. For negative R& the
phase transition is of first order. This can be calculated
explicitly; see the energy density in Fig. 3 for u =2 as an
example. This is in a region where the two phases coex-
ist. The energy density defined as the lower of the two
has a discontinuous first derivative. Decreasing u fur-
ther, it so happens that there is a very small region where
the CCM method fails, see Fig. 4. Here the energy densi-
ty plot for u =1 has been enlarged to make this efFect

-0.2

-0.4—

a.e-

%.8—

~vac

FIG. 6. Same as Fig. 3 for u = —~.

0.1 0.2 0,3 0.4 0.6 0.7 0.8
A P

1.5 i-

-1.5 ) to &cy &=0

3 4 A

-3—
to & e&$0

vac

FIG. 4. Same as Fig. 3 for u = 1.
FIG. 7. Averages over S3 and S4 for u =1. Circles, S4,

boxes, S3.
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FIG. 8. Sam. Same as Fig. 7, for u=—
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visible. But clearl iv . c early it still can be t t}1
r or negative h

0
p

'
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(@

A

5

FIG. 10. Ph sicysica1 mass for u =1. Fu = . For notation F' .see ig. 3.

the ex ep cted behavior. The de
'
la io ro the G

p otted here) alwa
e curves for

ays is small. B
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ran-
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1 M h
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[11
phys
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1.5—
15—
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U=l c 0

FIG. 9.. Field expect ta ion values. FIG. 11.. Physicalma f = . ornss or u =1. For nor notation see F1g.
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B. One-particle states and physical mass

Figures 10—12 present the physical mass p7lppy foI
three typical cases: u = 1, u = —1, and u = —~. The last
case corresponds to the pure 4 theory, which had been
investigated before in a lower (F3) approximation only
[4]. It shows decrease of the mass approaching the criti-
cal region, as is required by the second-order phase tran-
sition, since mpQy is the correlation length. Of course,
again the critical region is inaccessible by the CCM, in
contrast with the Gauss approximation with the wrong
type of phase transition. The second-order perturbation
theory is much worse, however. Turning to the case with
negative k4 by way of the example u =1, there is again
the coexistence of the two phases and everything is finite.
The mass of the asymmetric phase jumps to a substantial-
ly higher value in the symmetry-breaking one. In the re-
gion with A.4 & 0 the behavior becomes similar to the one
of the 4 field, see the example in Fig. 11.

C. Two-particle states

It is clear that the quality of all methods truncating at
a certain number of excited virtual particles goes down
with increasing energy. Also, since these states lie in the
one-particle continuum, there necessarily are admixtures
of those states, leading to oscillations in the numerical
solutions. Thus one cannot expect too much from the
CCM in the case of physical two-particle states. Espe-
cially, the unaccessible critical region will become larger.

Most interesting are the two-particle bound states.
They occur only for negative A,4 in the ( &0 ) =0 sector, see
Fig. 2. Their energies in units of the physical mass are

shown in Fig. 13 as function of A.4 for various u (i.e., vari-
ous A6). With increasing ~A.4~ the binding energy in-
creases for all u. Finally, the symmetry breaking phase
shows up on the figure marked by boldface arrows.
Two-particle binding could be obtained somewhat
beyond these points, as shown in the figure. But symme-
try breaking implies that the energy of the nonsymmetric
phase not supporting bound states becomes lower than
these virtua1 bound states. This means that these states
at best may be resonant states, if they have any physical
meaning at all. The Gaussian curve in Fig. 13 is valid for
arbitrary u due to the u independence in the Gauss ap-
proximation [15,19]. It is seen that even in the CCM ap-
proximation the variation with u is substantially weaker
than with A,4.

The fact that there are no bound states for the 4 mod-
el in the (4)%0 phase is in agreement with Refs. [12]
and [25]. The nonexistence of bound states in the con-
densed phase as found for this model in the present paper
is new.

The two-particle continuum should be trivial in the
sense that the states with zero center-of-mass momentum
must have an excitation energy exactly twice as large as
the physical mass. As an example the numbers for the 4
field are presented in Table I. Clearly the results are ex-
cellent where they could be computed. However, for the
reasons given above the two-particle CCM equations
could be solved reliably only rather far away from the
critical region of the vacuum state. With the present
convention for the coupling constants the ranges are
O~A, 4~0.6 and 7&A,4& ~ instead of 0 A,4&1.0 and
2. 15 &A,4~ ~ for the vacuum.

[11
phys

2.0

phys

4w

3--
1.8

u 0.25

1.7

2t

to &cp)=0
lx

1.5

2 O. 1 +.2 -0.3 . 4 , 5 . 6

FIG. 12. Physical mass for u = —~ (+ field). For notation
see Fig. 3.

FIG. 13. Energy of two-particle bound states in units of
physical mass. The points where the phase transition (to non-
vanishing ( 4 ) ) occurs are marked by boldface arrows.
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Ar4 mphys m2/m phys

TABLE I. Ratios of physical two-particle to one-particle
masses for various k4 (4 model).

TABLE II. Ratios t2lt&, (S3)2/(S3)&, etc. for dual partners
of quantities t,S3 etc. given on first column. Second column,
exact values; third column, CCM values.

0.1

0.2
0.4
0.6

~ ~

7.0
8.0
9.0

10.0
50.0

0.9934
0.9768
0.9248
0.8590

~ ~ ~

4.838
5.477
6.079
6.650

20.754

D. Using duality

1.998
1.994
1.980
1.963

~ ~ ~

2.048
2.032
2.021
2.013
1.975

Quantity

t
S3
S4

m phys

F
F3
F4

m2 ™phys
G(
G2

G3
G4

Ratioexact

1.0
1.0
1.0

14.75
0.2604
0.2604
0.2604
1.0
3.840
1.0
1.0
1.0

RatioccM

1.008
0.991
0.982

15.08
0.2557
0.2539
0.2526
0.9997
3.835
1.005
0.991
0.986

For several cases the duality relations have been used
to check the quality of the CCM approximations. As a
typical example, in Table II the results are shown for the
pair {(A&)2=10 (A4)z= —10) and ((iL&), =0.045979,
(As), = —0.341369) as the dual partner. They are located
in regions 2 and 5 of Fig. 1. The exact duality ratios of
t2 It „etc., are represented in the second column of Table
II for the quantities given in the first column. In the
third column the CCM values are listed. It is seen that,
even for the two-particle states, the agreement is excel-
lent. For more technical details see Ref. [20].

VI. SUMMARY

This work has shown that the 4 plus 4 field theory
in 1+1 dimensions has a rather rich structure. Some
nontrivial features, such as the generation of two particle
bound states, were known before. Here the CCM is quite
helpful in establishing them even in post Gaussian ap-
proximations. The occurrence of first-order phase transi-
tions in the bound state region apparently was not known
before. The Gauss approximation as such cannot be used
as an argument in favor of it, since it wrongly predicts
first-order transitions elsewhere. Considering the compli-
cated structure of this quantum field theory, the CCM
comes out quite well. The fact that both bound states
and first-order phase transitions can be obtained without
any difficulty is even somewhat surprising. Second-order

phase transitions are a different matter because of the
infinite correlation length. Here the CCM certainly fails.
One can fill the critical region around the phase transi-
tion by a suitable ansatz for the wave function and en-
force the correct phase transition [26,27]. This approach
has some merits. But this is not a derivation from first
principles and the wave function so obtained probably is
less realistic than the one obtained from the CCM. Fur-
thermore, the CCM has passed all tests one could do at
the level of the S4 truncation. In a recent paper the S6
approximation has been performed for the 4 theory [5],
giving some additional confidence in the truncation
scheme of the CCM. Unfortunately, the combination of
the CCM with the known renormalization procedures of
realistic (non super-renormalizable) theories remains an
unsolved problem [28]. In lattice formulations this prob-
lem does not exist. Thus in some recent papers the CCM
has been successfully applied to lattice gauge field
theories [6—8]. However, because of their complexity
there is a long way to go until higher orders can be
managed in lattice gauge fields.
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