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We present numerical results for fermion-boson scattering cross sections and bound-state form
factors in an elementary model of relativistic renormalized light-front Hamiltonian dynamics. The
model Hamiltonian describes a fermion emitting and absorbing one scalar boson. Renormalization
of the coupling constant leads to triviality and the cutoff cannot be arbitrarily large. Nevertheless,
the resulting total fermion-boson scattering cross section is found to be practically independent
of the cutoff within the triviality bounds. We also study cutoff dependence of the fermion-boson
bound-state form factors. The cutoff dependence is negligible for boson masses considerably smaller
than the fermion mass even for momentum transfers exceeding many times the fermion mass, as long
as the momentum transfer is small compared to the cutoff. For heavy bosons the cutoff dependence
of the fermion-boson sector contribution is stronger but the bound-state structure is dominated
by the cutoff-independent bare fermion component. Thus, the model Hamiltonian leads to almost
cutoff-independent results in a whole range of mass and coupling parameters within the triviality
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I. INTRODUCTION

The goal of light-front QCD is to compute wave func-
tions of hadrons by solving for the eigenvalues and eigen-
states of the QCD Hamiltonian [1,4]. Physical observ-
ables which characterize hadrons, such as form factors
and structure functions, can be calculated once these
wave functions are known [3,6,16,19]. However, light-
front Hamiltonians for quantum field theories pose very
difficult renormalization problems [2,7]. It is useful to
do model studies of renormalized light-front Hamiltonian
dynamics which help in building the intuition and under-
standing required to attack light-front QCD.

Recently, Glazek and Perry [8] have constructed a rel-
ativistic model Hamiltonian with a Yukawa interaction
in 341 dimensions which yields a nontrivial covariant
fermion-boson scattering amplitude and a fermion-boson
bound state. The Hamiltonian acts in a space of two Fock
sectors: a sector with one fermion and a sector with one
fermion and one boson. This feature makes the model
resemble a sector of the Lee model [9,10]. The major
difference is that the Lee model or its relativistic exten-
sions are usually constructed using an equal-time form of
dynamics while this model is constructed using renormal-
ized light-front dynamics. Fuda has considered a similar
model [11] but did not discuss renormalization issues.

Strong limitations on the space in which the model
Hamiltonian acts violate rotational invariance, which has
to be restored. There are two kinds of terms in the model
light-front Hamiltonian which restore covariance: seagull
terms, which correspond to the fermion-antifermion pair
creation in the equal-time dynamics, and renormalization
counterternis, which remove divergences and whose finite
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parts have to be carefully chosen in order to obtain re-
sults which possess the full symmetry required by special
relativity.

The model exhibits a special kind of triviality due to
the restriction on the number of particles. It should be
stressed that the triviality of the truncated model does
not imply that the full Yukawa theory is trivial. In order
to prove that the full theory is trivial, one would have to
exclude the possibility of the existence of an ultraviolet
fixed point. This cannot be done without solving the full
theory. The triviality of the model presented in Ref. [8]
and here is in qualitative agreement with the perturba-
tive leading log calculation. A similar but different type
of triviality appears in the case of two-fermion bound-
state Hamiltonians [5].

The triviality bound forces us to keep the ultravio-
let relative transverse momentum cutoff finite. One can-
not make the cutoff go to infinity, as is possible in the
case of asymptotically free theories. This raises the ques-
tion of how strong the dependence of observables on the
large but finite cutoff actually is. The answer determines
whether it is useful to consider such cutoff models with-
out asymptotic freedom. We are primarily concerned
with making physical observables independent of the cut-
off when the invariant mass of a state under considera-
tion is well below the cutoff. We do not try to remove
the cutoff dependence as the cutoff is approached. This
would require arbitrarily many irrelevant operators even
in an asymptotically free theory, and it is not possible in
a theory plagued by triviality.

In this paper we present results of numerical studies
of the model from Ref. [8]. We present formulas for
renormalized scattering amplitudes and the bound-state
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form factors. Then we present the triviality curves, total
fermion-boson scattering cross sections, and numerical
results for the form factors for various choices of masses,
couplings, and cutoffs.

The paper is organized as follows. In Sec. II we review
the model, calculate the triviality bounds on various pa-
rameters in the Hamiltonian, and evaluate the fermion-
boson scattering cross section. We demonstrate that the
cross section is insensitive to the cutoff, even for very
large center of mass momenta of the incoming fermion-
boson states. Section III presents form factors of the
fermion-boson bound state, considering only the + com-
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ponent of the current, j*(g), with the momentum trans-
fer ¢ chosen such that g© = 0. We calculate form fac-
tors Fy(q?) and F»(q?) for various choices of the fermion
and boson masses, and study their dependence on the
ultraviolet cutoff in order to establish in what range of
parameters and momentum transfers the model can pro-
vide cutoff-independent predictions within the triviality
bounds. Section IV concludes the paper.

II. THE MODEL

The model Hamiltonian has the form [8]

H:H({+H({b+H1+H2+H3,

Hf = Z/{dpllp/\> {
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where m is the mass of the fermion in the fermion-boson
sector, which equals the mass of the physical fermion,
m; is the bare mass of the fermion in the one-fermion
Fock sector, p is the mass of the boson, p,p’ denote
momenta of fermions, & denotes the boson momentum,

_ dptd?pt
[9p] = 2

[pA) = bT(p, A)[0), |pA, k) = bT(p, A)al(k)|0),
K is the transverse relative momentum, k' = ’i’;—i;—:i‘i
and ém = m; — m.

We follow here the notation from Ref. [8], except for a
change to the convention that the fermion carries £ and
boson (1 — x) fraction of the total P+.

Notice that the cutoff A limits the relative trans-

_

1

’U,(p170'

){p10, k1l (1)

verse momentum but the total momentum is not lim-
ited. There are additional cutoffs imposed. Namely, all
boson’s longitudinal momenta must be greater than b*,
and all fermion’s longitudinal momenta must be greater
than fT.

A mass counterterm provided by g?w? and the ratio
of infrared cutoffs b* and f* are chosen in such a way
that the fermion self-energy has a covariant form. Then
both b* and f* are allowed to go to zero with their ratio
fixed. Recently, Burkhart and Langnau studied similar
fermion self-interactions in perturbation theory [12].

The self-energy given in Ref. [8] has the covariant form

E(P) = a(M)P + B(M)m, (2)
where a(M) and (M) are

x

a(M) = —4(2—1”)2/01,;2@(1&2 - nz)/ dz

0 —M2z(1 — z) + p2z + m2(1 — z) + k2 — ie’
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and

1

1 1
AM) =~ 15 /d"ze("z - "2)A el —2) & e + Al —2) R —ic “

The T matrix for the fermion boson scattering is [13]

1
(¢l T(E)|¢5) = (b:lHr + HImT(E)|¢j),
1
= (¢ilHr + Hig—p—— ot ie

= 2(2m)38%(P; — Pj)g*tm(pi, 0:)

Notice that a(M) and B(M) are divergent functions of
the cutoff A.

The physical fermion is an eigenstate of the Hamilto-
nian. The bare mass satisfies the relation

my = {1 —g? [a(m) + ,B(m)]} m (6)

in order to cancel the divergence in S(M) in the self-
energy in the T matrix. The remaining divergence due
to a(M) is canceled by introducing the renormalized cou-
pling constant

G (M) = ﬁ(—m,
_ #(m)
= T=7(m) [a(M) —a(m)]’ @)

Substituting this expression into Eq. (6) one obtains the
running mass

(M) = {1+ §*(M)[a(M) — a(m) + B(M)
—B(m)]}m. (8)

The renormalized scattering amplitude is given in Eq.
(11) below.

For scattering states, both the renormalized mass and
the coupling constant become complex. Expressions for

their real and imaginary parts are presented in Appendix
A.

A. Triviality limits

The requirement that the bare coupling constant is
finite and real in Eq. (7) imposes triviality limits on the
maximal value of the renormalized coupling constant at
a given cutoff:

Jmax(m) 1

= = — . 9
Ymax 4w 4ra(m) ©)

Figure 1 shows the triviality curves for different values

of the boson mass. The curves behave like (ln %)

for large A. This implies that for larger boson masses
stronger renormalized couplings are allowed.

-1

I+"'l¢j)7

1
P —my — g2%(P) + i€

Um (Pj, 05)- (5)

B. Total cross section

The total cross section in the center of mass frame is

1 2
ofi = W/dﬂ > IMg (10)

pol

where My; is the invariant scattering amplitude and M
is the invariant mass of the scattering state. In this
case, My; is just Ty; from Eq. (5) without factors
2(2m)383(Ps — P;). Substituting renormalized quantities
from Egs. (7) and (8) into Eq. (5) one finds

3*(M)
P_—rh—(]vf)u"‘(p’ A), (11)

where P = P; = P; and P?2 = M?2. This leads to the
total cross section,

Mg = (', X)
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FIG. 1. Triviality curves [i.e., maximum allowed coupling
a(m) versus the cutoff A] for mass of the boson p = 0.01m,
0.1m, m, 10m, 100m, respectively. The uppermost curve cor-
responds to the largest ratio u/m and lower curves to lower
values, successively. The maximum allowed coupling increases
with increased boson mass and behaves like (In %)_1 for large
A.
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_ 1
T 8w M?

lc'z) |§(M)|4
|M? — m2(M)|?

o O(A% - k%)O(A? -
X{(2m2 +p?)[M? + i (M)|?]

+4mM+/m?2 +p2Re'rh(M)}, (12)

where p? is the center of mass momentum, and

M = \/m? + p? + \/u? + p2.

Figures 2(a), 2(b), and 2(c) show the total fermion-
boson scattering cross section as a function of the cen-
ter of mass momentum. We use A = 10m, 50m, 100m,

10-8 C L P Lol I N

0.01 0.1 1 10 100 1000
p2 / m?

10000

and vary the coupling a up to the triviality limits. The
cross sections are practically cutoff independent up to the
center of mass momenta comparable to the cutoff. The
cutoff dependence, although negligible, increases with in-
creasing boson mass and for the boson mass fixed, with
increasing coupling, as one can see especially well on Fig.
2(c). The extreme case is when p = 10m, and the cou-
pling constant can reach values up to 25 for A = 10m.

III. FORM FACTORS

We consider fermions to carry a charge e = 1 and
bosons to be uncharged. The physical fermion state is a
superposition of a bare fermion state and bare fermion-
boson states:

0.0* 0.1 1 10 100 1000 1000C
p2 / m?

103 p——rrrrrm——rrrenr
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FIG. 2. Total cross sections for unpolarized fermion boson scattering as a function of the center of mass momentum for
different values of coupling constant and cutoff. The uppermost curves correspond to the largest value of coupling constant
and lower curves to lower values, successively. The full line is used for A = 100m, dashed line for A = 50m, and dot-dashed
line for A = 10m. (a) Boson mass p = 0.1m, a = 0.1, 1.0, 2.0 for each of the following values of cutoff: A = 10m, 50m, 100m;
and a = 3.5 for A = 10m. (b) Boson mass y = m, a = 0.1, 1.0, 2.0 for each of the following values of cutoff: A = 10m, 50m,
100m; and o = 3.5, 5.0 for A = 10m. (c) Boson mass g = 10m, a = 0.1, 1.0, 2.0, 3.5 for each of the following values of cutoff:
A = 10m, 50m, 100m; a = 5.0 for A = 10m, 50m; and a = 10.0, 20.0, 25.0 for A = 10m.
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IP,X) = N6'(P,N)[0) + 3 / [dp][®k]2P (2m)°

x8*(P —p — k) f;b' (p,0)a’ (k)|0), (13)

where
O(A2 — k?) _
f2= Ngmz _ "24m? _ *—:+E’ U (P, 0) i (P, ),

and N is the state normalization constant, which also
gives the result F;(0) = 1.

We extract the form factors from matrix elements of
the current j* = ¥vy*1 for 4 = +, between states with
the same P* so that the momentum transfer g = 0.
This is a standard procedure, see Ref. [16] and references
therein. In this way one can avoid contributions from the
pair creation by the current (see Refs. [14] and [15] for
numerical significance of this choice). Explicitly,

(PN (0)|P,A) = @im (P, X)

Fa(e®) .,
X [Fl(qz)’fr + —22(7%)%10 +

XU (P, A), (14)

where ¢ = P’ — P and o¥* = % [7¥,v*] . The bare matrix
elements are

<0|b(Pl’Al)j+(0)bf(P’ A)lO) = am(PlaAl)'y+um(P’ A) (15)
and

(0lb(p', 0" )a(k")5* (0)b! (p, 0)a’ (k) 0)

=2(2m)°k* 6% (k — k') (p', 0') ¥ um(p, 0). (16)

Then, j*(0) matrix elements between the physical
fermion states are

(P', N5t (0)|P,A) = @ (P, N )eN? [’y+

2 /
g dx 2 1 00
+2(21r)3/a:2(1—w)d " DD

x (1/’ + m) 7t (1/+ m)]um(P, 2,

(17)

where § = 0(A? — k2), 0 = §(A% — x'?), and D, D’ are
the light-front energy denominators, D = m? — it—"‘z -
%,D'Emz—#—%,andn’* =rl-(1-
z)gt. Calculations can be simplified using the facts that
the spinors u,,(P’, ') and u,, (P, ) are solutions of the
Dirac equation and that (y*)? = 0 which implies that
neither p~ nor p'~ contribute to Eq. (17). Namely,

Um (P, X)(#' +m) v (F+ m) um (P, )
= U (P, X) [(1 +z)m + n'l'yL] vt

x[(1+z)m + nJ"yJ‘] Um (P, ). (18)

Substituting k- = ut + 1(1 — z)¢* and using commu-
tation relations for v matrices, the above expression can
be written as

U (P, /\'){ l:(l +z)2m? — %(1 —z)%¢® + u'szl 't
q_L
+i7n—al+(1 ~—m2)m2}um(P, A). (19)

We use this result in Eq. (17) and perform the angu-
lar integration. By comparison with Eq. (14) one can
identify the form factors

2
Fi(¢?) = 1+4°I(q) (20)
1+ g%1(0)
1.0 '
0.8 f
b
0.6
0.4 . : .
0.0 5.0 10.0 15.0 20.0 25.0 30.0
Q2 / m?
1.0 T
08 | —== - - _
b
0.6 |
0.4 L
0.0 5.0 10.0 15.0 20.0 25.0 30.0
Q2 / m?

FIG. 3. Form factors F;(g®) versus Q%/m? for a = 0.1,
1.0, 2.0. The uppermost curve corresponds to the smallest
value of coupling constant and lower curves to larger values,
successively. Full line is used for A = 100m, dashed line for
A = 50m, and dot-dashed line for A = 10m. The dashed
line concises with the full line. (a) Boson mass g = 0.1m,
cutoff A = 10m, 50m, 100m. (b) Boson mass g = m, cutoff
A = 10m, 100m.
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and

g°J(q9)

F(¢%) = T+ 21(0)°

(21)

Expressions for the functions I and J are given in Ap-
pendix B.

The denominator in Egs. (20) and (21) is provided
by the normalization factor N%. Note that the form fac-
tors are expressed through the bare coupling constant.
We have to express them in terms of the renormalized
coupling constant, and after that they become

_ 1+ 3%1(q) + g%a(m)

F@) = T35571(0) 1 g%a(m)

and

_ 3*J(q)
14 g%1(0) + §%a(m)’

Fa(¢%)
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F2
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FIG. 4. Form factors F3(q?) versus Q*/m?® for a = 0.1,
1.0, 2.0. The lines correspond to cutoffs as in other fig-
ures, although the dashed line is not visible. (a) Boson mass
p = 0.lm, cutoff A = 10m, 50m, 100m. (b) Boson mass
p = m, cutoff A = 10m, 100m.

where § = g(m) and a(m) is given in the previous section.
The integral I(q) is divergent, but the divergent part
of the integral I(q) is canceled by the divergent part of
the integral in a(m). This kind of cancellation is famil-
iar from perturbation theory. The divergent logarithmic
cutoff dependence vanishes for very large A. However,
there is still some finite cutoff dependence left since the
cutoff cannot be sent to infinity. The cutoff dependence
comes from the fermion-boson sector of the theory and in-
creases with the coupling strength for other parameters
fixed. To the first order in A~2 and neglecting spurious
sharp cutoff effects, the cutoff dependent terms in F;(q?)
are
a [p*  1g
6m | A2

Figures 3(a) and 3(b) illustrate these formulas. Figure
3(a) shows F; for p = 0.1m and different values of a and
A. For u = m the cutoff dependence increases in compar-
ison with the former case and reaches a few percent. The
two. particle sector which builds the composite structure
of the physical fermion, is strongly suppressed for heavy
bosons.

Figure 4 illustrates a couple of typical results for F5.
F3(q?) is practically cutoff independent since the integral
J(q) is finite in the limit of large A.

IV. CONCLUSION

The model Hamiltonian is regulated by an ultraviolet
cutoff which limits relative transverse momenta, while
the total momentum is unlimited. Therefore, the Lorentz
covariance can be restored in the fermion-boson scat-
tering amplitude by a special choice of the Hamiltonian
counterterms, even for the fermion-boson center of mass
momenta up to the order of the cutoff. The model is
not asymptotically free, and triviality prevents us from
taking the cutoff to infinity. Therefore, there might be
important finite cutoff-dependent corrections to physical
observables. This raises the question of whether it is at
all useful to consider few-body renormalized models.

We have examined the finite cutoff dependence for the
fermion-boson scattering cross sections and for the bound
state form factors. We find a very small cutoff depen-
dence of these quantities, on the order of a few percent
or less, provided that the mass of the boson is small. The
cutoff dependence is smaller for a smaller boson mass
and is very weak for light bosons, which is a physically
interesting regime. On the other hand, for heavy bosons
the cutoff dependence is strong. The cutoff dependence
originates from the momentum-dependent fermion spin
effects. For light bosons fermions do not move much and
for heavy bosons fermions move a lot with their momenta
ranging up to the order of the boson mass. However,
when the boson is heavy, the contribution of the two-
particle Fock sector is strongly suppressed. Even though
the triviality allows much stronger coupling constants in
this case, the allowed increase in the coupling does not
compensate for the decrease of the probability for emis-
sion of a heavy boson. In other words, the bound state



50

approaches a pointlike fermion as the boson mass goes
to infinity, and the form factor F; is consistently close to
unity no matter what the cutoff is.

In conclusion, our study shows that it is reasonable
to consider trivial renormalized light-front Hamiltonian
models with finite cutoffs and without asymptotic free-
dom. This is encouraging from the point of view of rel-
ativistic nuclear physics, where asymptotic freedon1 does
not appear.

We would also like to stress the need for extending the
current study to the matrix elements of other compo-
nents of the current operator j* for 1 # + and to the
case when ¢t # 0. The two major reasons are follow-
ing. First, our understanding of the composite nature of
elementary particles hinges on the quality of our models
for relativistic bound states, and we need to learn how to
construct models which unambiguously lead to fully co-
variant and conserved currents in quantum field theory in
order to be able to address the basic issues of composite-
ness of elementary particles [16]. Light-front Hamiltonian
approach to this problem is an interesting alternative to
other approaches. Second, it is known that naive calcu-
lations of matrix elements for gt # 0 or u # + lead to
results which depend on the arbitrary choice of the z axis
and the current is not conserved. Renormalization the-
ory suggests that the bare current operator may need a
modification and further counterterms may be necessary
in a Hamiltonian which includes the coupling to external
fields in the bound state dynamics. This kind of prob-
J
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lems is known in the equal time dynamics and recently
has become more widely recognized in light-front models
[11,14,15,17-21,23].

Finally, we wish to mention that the model provides
an opportunity to study the bound state deep inelastic
structure functions using fully interacting scattering final
states. For example, such studies have been carried out
in equal-time dynamics using some model bound state
equations for scalar particles but avoiding renormaliza-
tion problems through the use of arbitrarily chosen form
factors in the strong interaction vertices [22]. Analytic
expressions for deep inelastic structure functions in the
present renormalized Hamiltonian model including final
state interactions are given in Ref. [24].
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APPENDIX A

Starting with a(M) given in Eq.
imaginary part

(3) one finds the

1 1,]*
Ima(M) = T [:c 5% }zl
__L\/(Mz—m2+u2)2—4M2u2 1 (M? —m? + p?) Al
T 16m M? B 2M?2 (A1)
and the real part
1 ! A% +m2z + p?(1—z) — M2z(1 —z) 1 (1—zq)
M= —— — P h Sl 74
Rea(M) R {/{; dr(l —z)ln e +z(1 571 In P
1 1-z 3 1
+.’E2(1—§$2)1 ( s 2)+§—§($1 +.’132)}, (Az)
where x;,z, are solutions to M2z(1 — z) — m?z — p%(1 —z) = 0.
Similar expressions can be found for 3(M). The imaginary part is
1
1 M2 —m?2 + u2)2 — AM2,2
___* \/( m? 4 p?) K (A3)
167 M?
and the real part
_ 1 ! A%+ miz + p?(1l —z) — M%z(1l —z) (1-=z;) (1-z2)
Re,B(M)——m{/(; dzln - +z:1ln p +wgln—zz—+2 . (A9)
Now we can calculate = and §2 from Egs. (6) and (7):
=2 _ 52 _

(1 g% (m)[Rea(M) — a(m)])? + [§2(m)Ima(M)]?’
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ma?(M) = §4(m)Ima(M)
m3" (M) = = 52 0m) Rea(M) — a(m)))? + [3(m)ima (M) (A6)
Rem(M) = m {1 + Reg*(M)[Rea(M) — a(m) + ReB(M) — B(m)] — Img* (M) [Ima (M) + ImB(M)]}, (AT)
mm(M) = m{Reg M)[Ima(M) +ImB(M)] + Img?(M)[Rea(M) — a(m) + ReB(M) -—ﬁ(m)]} ) (A8)

APPENDIX B

Functions I(g) and J(g) from Egs. (20) and (21

) are

1 LI AZ-[3(1—=)q]? 1
I(q) 2 / dz / du (1 + x)zmz - _(1 - $)2q2 + ’U.2 Pl(uvxsm1u’ q)
(2 ) 2 0 4

1 /1d 1_:5/\/“—[%(1—3)&1]’
- r—
(27!')2 2 A—%(l—z)q

2
x —arctan[Py(u, z, m, i, q)] }
T

and

J(q) =

(2

VAZ=[3(1-=)q)?

11-2)Q

X

/ 1_:‘}3)21—4~a:)m2
N

P; and P, are

u

du{ [(1 + z)?m? — 2(1 —z)%¢% + uz] Py(u,z,m,pu,q)

1 1 (1 _ )2 Az—[%(l_z)‘ﬂz
E / d:c—2—(1 + z)m2/ duPy(u,z,m, p1,q)
0

2
d’U,Pl('U., T, m, L, q);arctan [PZ(ua T, m, H, q)] } .

Pi(u,z,m,p,q) =

(1 —2)?m? + zp? + 1(1 — )22 + u?)

1

X

{(1—w)2m2+xu2+[u— ~(1—a:) q]? }

and

[

[(1 —z)?m?2 +zp? + (u + 2(1 - $)q)2] :

V1= 2)2m? + 22 + (u— 1(1 = 2))?] [(1 - 2)?m? + 242 + (u + 3(1 - 2)q)?]

Pz(u’m7m7ﬂa q) =

(A% = (1 - 2)q)? - w?) [(1 — 2)?m? + ou? + §(1 — 2)%¢* + ]

[1] K. G. Wilson et al., Phys. Rev. D 49, 6720 (1994).

[2] St. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863
(1993); 49, 4214 (1994).

[3] K. G. Wilson, in Lattice 89, Proceedings of the In-
ternational Symposium, Capri, Italy, 1989, edited by
R. Petronzio et al. [Nucl. Phys. B (Proc. Suppl.) 17
(1989)].

[4] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). Ex-
tensive listing of recent light-front literature is available
from A. Harindranath at hari@mps.ohio-state.edu and
from the electronic light-front library at lflib@fuw.edu.pl.

[5] S. Glazek, A. Harindranath, S. Pinsky, J. Shigemitsu,
and K. Wilson, Phys. Rev. D 47, 1599 (1993).

(6] S. J. Brodsky and G. P. Lepage, in Perturbative Quan-
tum Chromodynamics, edited by A. H. Mueller (World
Scientific, Singapore, 1989).

[7] R. J. Perry and A. Harindranath, Phys. Rev. D 43, 4051
(1991).

[8] S. D. Glazek and R. J. Perry, Phys. Rev. D 45, 3740
(1992).

[9] T. D. Lee, Phys. Rev. 95, 1329 (1954).

[10] E. M. Henley and W. Thirring, Elementary Quantum



Field Theory (McGraw-Hill, New York, 1962).

[11] M. G. Fuda, Phys. Rev. D 41, 534 (1990).

[12] M. Burkardt and A. Langnau, Phys. Rev. D 44, 3857
(1991).

[13] M. Gell-Mann and M. L. Goldberger, Phys. Rev. 79, 398
(1953).

[14] S. Glazek and M. Sawicki, Phys. Rev. D 41, 2563 (1990).

[15] M. Sawicki, Phys. Rev. D 46, 474 (1992).

[16] S. J. Brodsky and S. D. Drell, Phys. Rev. D 22, 2236
(1980).

[17] V. A. Karmanov and A. V. Smirnov, in Proceedings of
the 1991 EPS Nuclear Physics Conference on Hadronic
Structure and Electroweak Interactions, Amsterdam, The
Netherlands, edited by J. J. Engelen, J. H. Koch, and P.
K. A. DeWitt [Nucl. Phys. A546, 691 (1992)].

S0 RELATIVISTIC SCATTERING AND BOUND-STATE. .. 979

(18] G. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 43, 246
(1979), and references therein.

(19] G. P. Lepage, S. J. Brodsky, T. Huang, and P. B.
MacKenzie, in Particles and Fields 2, edited by A. Z.
Capri and A. N. Kamal (Plenum, New York, 1983).

[20] N. Isgur and C. H. Llewellyn Smith, Phys. Rev. Lett. 52,
1080 (1984).

[21] R. P. Feynman, Photon-Hadron Interactions (Benjamin,
New York, 1972).

[22] W. Koepf, L. S. Celenza, and C. M. Shakin, Phys. Rev.
C 43, 425 (1991); 44, 2130 (1991).

[23] G. P. Lepage and S. J. Brodsky, Phys. Rev. Lett. 43, 545
(1979), and references therein.

[24] St. D. Glazek, Acta Phys. Pol. B24, 1315 (1993).



