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Relativistic scattering and bound-state properties in a special Hamiltonian model
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We present numerical results for fermion-boson scattering cross sections and bound-state form
factors in an elementary model of relativistic renormalized light-front Hamiltonian dynamics. The
model Hamiltonian describes a fermion emitting and absorbing one scalar boson. Renormalization
of the coupling constant leads to triviality and the cutoff cannot be arbitrarily large. Nevertheless,
the resulting total fermion-boson scattering cross section is found to be practically independent
of the cutoff within the triviality bounds. We also study cutofF dependence of the fermion-boson
bound-state form factors. The cutoff dependence is negligible for boson masses considerably smaller
than the fermion mass even for momentum transfers exceeding many times the fermion mass, as long
as the momentum transfer is small compared to the cutoff. For heavy bosons the cutofF dependence
of the fermion-boson sector contribution is stronger but the bound-state structure is dominated
by the cutoff-independent bare fermion component. Thus, the model Hamiltonian leads to almost
cutofF-independent results in a whole range of mass and coupling parameters within the triviality
bounds.

PACS number(s): 11.10.Ef, 11.10.Gh, 11.15.Tk, 13.40.Gp

I. INTRODUCTION

The goal of light-front /CD is to compute wave func-
tions of hadrons by solving for the eigenvalues and eigen-
states of the /CD Hamiltonian [1,4]. Physical observ-
ables which characterize hadrons, such as form factors
and structure functions, can be calculated once these
wave functions are known [3,6,16,19]. However, light-
front Hamiltonians for quantum field theories pose very
difm. cult renormalization problems [2,7]. It is useful to
do model studies of renormalized light-front Hamiltonian
dynamics which help in building the intuition and under-
standing required to attack light-front /CD.

Recently, Glazek and Perry [8) have constructed a rel-
ativistic model Hamiltonian with a Yukawa interaction
in 3+1 dimensions which yields a nontrivial covariant
fermion-boson scattering amplitude and a fermion-boson
bound state. The Hamiltonian acts in a space of two Fock
sectors: a sector with one fermion and a sector with one
fermion and one boson. This feature makes the model
resemble a sector of the Lee model [9,10]. The major
difFerence is that the Lee model or its relativistic exten-
sions are usually constructed using an equal-time form of
dynamics while this model is constructed using renormal-
ized light-front dynamics. Puda has considered a similar
model [11]but did not discuss renormalization issues.

Strong limitations on the space in which the model
Hamiltonian acts violate rotational invariance, which has
to be restored. There are two kinds of terms in the model
light-front Hamiltonian which restore covariance: seagull
terms, which correspond to the fermion-antifermion pair
creation in the equal-time dynamics, and renormalization
counterterms, which remove divergences and whose finite

parts have to be carefully chosen in order to obtain re-
sults which possess the full symmetry required by special
relativity.

The model exhibits a special kind of triviality due to
the restriction on the number of particles. It should be
stressed that the triviality of the truncated model does
not imply that the full Yukawa theory is trivial. In order
to prove that the full theory is trivial, one would have to
exclude the possibility of the existence of an ultraviolet
6xed point. This cannot be done without solving the full
theory. The triviality of the model presented in Ref. [8]
and here is in qualitative agreement with the perturba-
tive leading log calculation. A similar but different type
of triviality appears in the case of two-fermion bound-
state Hamiltonians [5].

The triviality bound forces us to keep the ultravio-
let relative transverse momentum cutoff 6nite. One can-
not make the cutoff go to in6nity, as is possible in the
case of asymptotically free theories. This raises the ques-
tion of how strong the dependence of observables on the
large but 6nite cutoff actually is. The answer determines
whether it is useful to consider such cutofF models with-
out asymptotic &eedom. We are primarily concerned
with making physical observables independent of the cut-
off when the invariant mass of a state under considera-
tion is well below the cutoff. We do not try to remove
the cutoff dependence as the cutoff is approached. This
would require arbitrarily many irrelevant operators even
in an asymptotically free theory, and it is not possible in
a theory plagued by triviality.

In this paper we present results of numerical studies
of the model from Ref. [8]. We present formulas for
renormalized scattering amplitudes and the bound-state
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form factors. Then we present the triviality curves, total
fermion-boson scattering cross sections, and numerical
results for the form factors for various choices of masses,
couplings, and cutoffs.

The paper is organized as follows. In Sec. II we review
the model, calculate the triviality bounds on various pa-
rameters in the Hamiltonian, and evaluate the fermion-
boson scattering cross section. We demonstrate that the
cross section is insensitive to the cutofF, even for very
large center of mass momenta of the incoming fermion-
boson states. Section III presents form factors of the
fermion-boson bound state, considering only the + com-

ponent of the current, j+(q), with the momentum trans-
fer q chosen such that q+ = 0. We calculate form fac-
tors F) (q ) and F2(q ) for various choices of the fermion
and boson masses, and study their dependence on the
ultraviolet cutofF in order to establish in what range of
parameters and momentum transfers the model can pro-
vide cutofF-independent predictions within the triviality
bounds. Section IV concludes the paper.

II. THE MODEL

The model Hamiltonian has the form [8]

H =Hf+Hfb+H, +H, +H3

p~' q m' k~'+ p,
'

H~' = ) [dp][dk][pA, k), +, (pA, k[,p'

H, +Ha = g) /]dp]]dp ]]dk]8('A' —~')2(2m)~6 ]p+ k —p')

y+
™+ I I + I — I y+ +
2p" 2p/+

H. "& jl =nil]dr, ]l »II 4]e(~ .i)o]~ .l) 2(2-)'~—'(&i+»—s2 k2)

~+
x ~p2A, k2) u(p2, A) u(pq, o) (p) cr, kq ~,

2(p+, y k~+)

where m is the mass of the fermion in the fermion-boson
sector, which equals the mass of the physical fermion,
mq is the bare mass of the fermion in the one-fermion
Pock sector, p is the mass of the boson, p, p' denote
momenta of fermions, I(.. denotes the boson momentum,

+g2 J
[dp] —= 2(2.) „.

~pA) = bt(p, A) ~0), ~pA, k) = bt(p, A)a (k) ~0),

I+A:~ —I+3.~ is the transverse relative momentum, v = "
+ &+"

and bm = mq —m.
We follow here the notation from Ref. [8], except for a

change to the convention that the fermion carries x and
boson (1 —x) fraction of the total P+.

Notice that the cutofF A limits the relative trans-

Z(P) = a(M)P ~ P(M)m,

where n(M) and p(M) are

(2)

verse momentum but the total momentum is not lim-

ited. There are additional cutofFs imposed. Namely, all
boson. 's longitudinal momenta must be greater than 6+,
and all fermion's longitudinal momenta must be greater
than f+

A mass counterterm provided by g2u2 and the ratio
of infrared cutoffs b+ and f+ are chosen in such a way

that the fermion self-energy has a covariant form. Then
both b+ and f+ are allowed to go to zero with their ratio
Axed. Recently, Burkhart and Langnau studied similar
fermion self-interactions in perturbation theory [12].

The self-energy given in Ref. [8] has the covariant form

1

a(M) = — dr. O(A —r ) dx-
4(2~) 2

])
—M2x(l —x) y p2x ~ m2 (1 —x) ~ ~2 —is '
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O A'- ' e A'- "
'(M) I'

x 2m +p M +mM

(12)

and vary the coupling o. up to the triviality limits. The
cross sections are practically cutofF independent up to the
center of mass momenta comparable to the cutofF. The
cutofF depend. ence, although negligible, increases with in-
creasing boson mass and for the boson mass 6xed, with
increasing coupling, as one can see especially well on Fig.
2(c). The extreme case is when p = 1Gm, and the cou-
pling constant can reach values up to 25 for A = 10m.

where p2 is the center of mass momentum, and

M = Qm2+@2+ Qp2+p2

Figures 2(a), 2(b), and 2(c) show the total fermion-
boson scattering cross section as a function of the cen-
ter of mass momentum. We use A = 10m, 50m, 100m,

III. FORM FACTORS

We consider fermions to carry a charge e = 1 and
bosons to be uncharged. The physical fermion state is a
superposition of a bare fermion state and bare fermion-
boson states:
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FIG. 2. Total cross sections for unpolarized fermion boson scattering as a function of the center of mass momentum for
difFerent values of coupling constant and cutofF. The uppermost curves correspond to the largest value of coupling constant
and lower curves to lower values, successively. The full line is used for A = 100m, dashed line for A = 50m, and dot-dashed
line for A = 10m. (a) Boson mass p = O. lm, a = O. l, 1.0, 2.0 for each of the following values of cutofF: A = 10m, 50m, 100m;
and a = 3.5 for A = 10m. (b) Boson mass p = m, a = 0.1, 1.0, 2.0 for each of the following values of cutofF: A = 10m, 50m,
100m; and a = 3.5, 5.0 for A = 10m. (c) Boson mass y, = 10m, a = 0.1, 1.0, 2.0, 3.5 for each of the following values of cutofF:

A = 10m, , 50m, 100m; n = 5.0 for A = 10m, 50m; and a = 10.0, 20.0, 25.0 for A = 10m.
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approaches a pointlike fermion as the boson mass goes
to infinity, and the form factor F~ is consistently close to
unity no matter what the cutoK is.

In conclusion, our study shows that it is reasonable
to consider trivial renormalized light-front Hamiltonian
models with finite cutofFs and without asymptotic free-
dom. This is encouraging from the point of view of rel-
ativistic nuclear physics, where asymptotic freedom does
not appear.

We would also like to stress the need for extending the
current study to the matrix elements of other compo-
nents of the current operator j" for p g + and to the
case when q+ g 0. The two major reasons are follow-

ing. First, our understanding of the composite nature of
elementary particles hinges on the quality of our models
for relativistic bound states, and we need to learn how to
construct models which unambiguously lead to fully co-
variant and conserved currents in quantum field theory in
order to be able to address the basic issues of composite-
ness of elementary particles [16]. Light-front Hamiltonian
approach to this problem is an interesting alternative to
other approaches. Second, it is known that naive calcu-
lations of matrix elements for q+ g 0 or p g + lead to
results which depend on the arbitrary choice of the z axis
and the current is not conserved. Renormalization the-
ory suggests that the bare current operator may need a
modification and further counterterms may be necessary
in a Hamiltonian which includes the coupling to external
fields in the bound state dynamics. This kind of prob-

I

lems is known in the equal time dynamics and recently
has become more widely recognized in light-front models

[11,14,15,17—21,23].
Finally, we wish to mention that the model provides

an opportunity to study the bound state deep inelastic
structure functions using fully interacting scattering final
states. For example, such studies have been carried out
in equal-time dynamics using some model bound state
equations for scalar particles but avoiding renormaliza-
tion problems through the use of arbitrarily chosen form
factors in the strong interaction vertices [22]. Analytic
expressions for deep inelastic structure functions in the
present renormalized Hamiltonian model including final
state interactions are given in Ref. [24].
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APPENDIX A

Starting with n(M) given in Eq. (3) one finds the
imaginary part

Imn(M) =—1 1
x ——x

16m 2

Q(M2 m2 + p2)2 4M2p2 (M2 m2 + 2)1—
16m M2 2M2 (A1)

and the real part

1 A2+m z+ p (1 —z) —M z(1 —z) 1 t (1 —xi)Ren M dzl —z ln +x, 1 ——z, ln
4(27I.)2 M~ z,

( 1 5 (1 —x2) 3 1
++~ 1 ——z~

l
l~ + ———(*1+*~))2 ) x2 2 2

(A2)

where zi, x2 are solutions to M x(1 —z) —m z —p (1 —z) = 0.
Similar expressions can be found for P(M). The imaginary part is

and the real part

ImP(M) =—1

16' X2 Xg

1 Q(M2 —m2+ p2)2 —4M2p2

16' M2 (A3)

1 A2+ m2x+ p2(1 —x) —M2x(1 —z) (1 —xi) (1 —x2)= —4(2, 2
&»n

2 +xiln +x2ln +2 . A4
m &1 X2

Now we can calculate m and g2 from Eqs. (6) and (7):

g (m)(1 —g (m)[Ren(M) —n(m)])
(1 —g2(m) [Ren(M) —n(m)])2 + [g (m)Imn(M)]

(A5)
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I M g (m)lma(M)
Img M

(1 —g2(m) [Reer(M) —n(m)])2 + [g (m)lmo(M)]

Rem(M) = m jI + Reg (M) [Reo.(M) —n(m) + Rep(M) —p(m)] —Img (M) [Imo'. (M) + Imp(M)]),

Imm(M) = m (Reg (M) [Ima(M) + Imp(M)] + Img (M) [Rea(M) —n(m) + Rep(M) —p(m)]) .

(A7)

APPENDIX B

Functions I(q) and J(q) from Eqs. (20) and (21) are

and

I(q) =

(1 —z)' ga& —[-,' (i—*)q]

J(q) = dz (1+z)m
2rr o 2 0

1 21 —z
dz (1+z)m'

o 2

QAr —[-', (1—q:)q]'

X
A ——,

' (Z —*)Q

duP~ (u, z, m, p, q)

2
duPr (u, z, m, tt, q) —are tan [Pr (u, z, m, tr, q)]

I
.

1 x 1 —* gx ['{x *)~] 1
dz du (1+z) m ——(1 —z) q +u Pr(u, z, m, tt, q))(2~)' o 2 o 4

V'A'-[l ('-*)&]'
du (1+x)'m' ——(1 —z)'q'+ u' P&(u, z, m, y, , q)

(2K) 0 2 A—tr (1—q:)q 4

2
x —arctan[Pr (u, z, m, tt, q)]

I

Il and P2 are

Pq (u, z, m, y„q) =
(1 —z) 2m2 + z][t2 + -'(1 —x) 2q2 + u2

1
X 1 1

((I —z) 2m2 + zy2 + [u —
~~ (I —z)q]2) ' (1 —z) 2m2 + zp2 + (u + ~~ (1 —z)q)

2

and

P2 (u, z, m, y„q) = l(1 —z)2m2+ zp2+ (u —~(l —z)q)2] [(I —z)2m2+ zp2+ (u+ ~~(1 —x)q)2

(A2 (
~ (1 z)q)2 u2) I(1 z)2m2 + zp2 + ~ (1 z)2q2 + u2]
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