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Rotating charged black string solution
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A rotating charged black string solution in the low energy effective field theory describing five-

dimensional heterotic string theory is constructed. This solution is labeled by mass, electric charge, ax-

ion charge, and angular momentum per unit length. The extremal limit of this solution is also studied.
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The construction of classical solutions in string theory
has received much attention in recent times [1—7]. The
study of these solutions has shown the existence of black
hole and extended black holes, i.e., black strings and
black p-brane-type structures. Solvable conformal field
theories are known in some cases [8]. These black holes
and extended objects in string theory are very different
from those which occur in general relativity because of
the presence of the nontrivial dilaton field. In Einstein-
Maxwell theory, all stationary black holes are described
by the Kerr-Newman solutions pararnetrized by three
quantities: namely, the mass M, charge Q, and the angu-
lar momentum parameter a. When a =0, the solution
describes the charged black hole solution or the
Reissner-Nordstrom solution in general relativity. When

Q =0=a, the solution reduces to that of the
Schwarzschild solution. The vacuum Kerr family of
solutions have Q =0 and they describe the rotating un-
charged black hole solution. The generalizations of all
these solutions to higher dimensions have also been dis-
cussed in the literature.

The study of these classical solutions in string theory is
important as string theory is expected to provide us with
a consistent quantum theory of gravity and also it will
help us in understanding the basic nature of string theory
itself. There exists a vast amount of literature in this area
of research and we shall not go into the details of it. For
a recent review, see Ref. [9]. In this paper, we shall only
concentrate on the rotating charged black string solution
which can appear in the low energy heterotic string
theory. Rotating charged black hole solutions in string
theory have been obtained by Sen [10]. These solutions
have been obtained from the Kerr solution in general re-
lativity by using the method of twisting [11—18]. The
method of twisting basically means that, in string theory,
if we have an exact classical solution which is indepen-
dent of d of the space-time coordinates, then we can per-
form an O(d)XO(d) transformation on the solution,
which produces new inequivalent classical solutions satis-
fying the same equation of motion derived from the low
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energy string effective action. Similarly in the case of
heterotic string theory, the space of classical solutions
which are independent of d of the space-time directions
and for which the gauge field configuration lies in a sub-
group that commutes with p of the U(1}generators of the
gauge group, has an 0(d }XO(d +p } or more generally
O(d —1, 1)XO(d +p —1, 1) symmetry and using this
transformation, one can generate new inequivalent classi-
cal solutions starting from the known ones [13]. Various
interesting solutions have been constructed by using this
twisting method and the application of this solution has
been widely studied [10—18]. The same philosophy has
been used in Ref. [10] to generate the rotating charged
black hole solution in heterotic string theory starting
from the Kerr solution.

It is also important to study the black string solution in
order to have a deeper understanding of the string theory
itself. Black strings are one-dimensional extended objects
surrounded by event horizons. There exists a rich variety
of extended black hole solutions in ten-dimensional string
theory and they are closely related to the string soliton
solution as well as to the fundamental strings [19]. These
solutions are labeled by mass and axion charge per unit
length. Rotating black string solutions have also been
obtained by Horne and Horowitz [20], where the solution
is parametrized by mass, axion charge, and angular
momentum per unit length. However, they have not in-
cluded the Maxwell field in the low energy effective ac-
tion. In this paper, we construct the most general rotat-
ing charged black string solution carrying mass, electric
charge, axion charge, and angular momentum in the
five-dimensional low energy field theory describing
heterotic string theory. Once again we use the method of
twisting to obtain this solution starting from a four-
dimensional Kerr solution with an extra Hat direction.
We study the extremal limit of this solution to know the
behavior of extremal black string when both charge and
rotation are present. We find that angular rnornentum
dominates over the charge in the extrernal limit which is
also a characteristic feature of rotating charged black
hole solution.

We start with the low energy action for heterotic string
theory in five dimensions. Apart from the five-
dimensional string metric, we have dilaton, antisym-
metric tensor gauge field, and the Maxwell field. We do
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not consider the massless fields arising due to
compactification and also we retain only terms with two
or less number of derivatives in the action. Such an ac-
tion is given by

5= d x —ge —R —4 T@ + —,', H +—,'F

Here, g„and 4 denote the metric and the dilaton
field. R is the five-dimensional Ricci scalar and
I'„„=d„A,—8 A„ is the field strength corresponding to
the U(1) gauge field A„. The three-form H is given by

H„=B„B„„+cyclic permutations —[Q3( A ) ]„„

where B„ is the antisymmetric tensor gauge field and
[Q3( A)]„z is the gauge Chem-Simons (CS) term. The
Lorentz CS term has been neglected as they involve more
than two derivatives in the action.

Given a solution 6„,B„„,4, and A„, of the classical
equation of motion, we would like to obtain the new
transformed solution which also satisfies the same equa-
tions of motion derived from the action (1), by using the
twisting procedure. For this purpose, we define an
11X 11 matrix JPL as [13]

(R —ri)g '(R rI) (R——r})g '(R+ i) ) (R r—i)g ' A-

JK= (%' +ri)g '(%—i)) (%' +rI)g '(%'+i)) —(%' +ri)g 'A
—A g '(A —il) —A g '(R+g) A "g 'A

(3)

where

and

Bp gpv 4~ A„A (4)

A, '=QJAQ, 4,
' —

—,
' in&detg'=4 ,' in&—d—etg (6)

where Af' is the same matrix as JK but with the new vari-
ables g„', B„'„and A „'. Q is an O(5,6) matrix satisfying

QLQ =L (7)

where

l. =diag(i)„ —i16) .

We want to generate the electrically charged rotating
black string solution as an application of this transforma-
tion. Basically one starts with the four-dimensional Kerr
solution describing the rotating black hole and adds one
extra dimension to it. The corresponding metric is given
by

(b, —a sin 8)
d i 2a sin 8(r +a —b } d dds dt- dr dx X

(r+a ) b,a sin8 . z8d 2—
sin 8d

i)„=diag( 1, 1, 1, 1, —1 ) .

Here, g„and B„are 5 X 5 matrices and A& is a five-

dimensional column vector. So given the solution of the
equations of motion [as derived from action (1}],one can
generate the new inequivalent solution, where the two
solutions are related through the relations

— = 1
gxx =

gxx

gaP =gaP

B
gxa=

gxx

gxagxp BxAxp

gxx

gxa
Bap BagBx =

gxx

4=4+ —,
' lng „.

2gx (cPp]x

gxx

In fact this was the approach taken by Horne and
Horowitz to construct the rotating black string solution
with a nonzero axion charge. Their solution is given by

1 —Z 2 2aZscn 8
ds = — dt- dtd

B +1—u

+ (r +a )+a sin 82 2 Z
B

sin 8dp + dr—
+XdO +B dx (12)

where Z =2mr/X. The dilaton and the nonzero com-
ponents of the antisymmetric tensor field are given by

I

nonzero axion charge, one Lorentz boosts the solution to
produce a nonzero linear momentum along the x (extra
fiat) direction and then uses the o model duality relations
to convert this momentum to charge [21]. This is a novel
way of adding the axion charge to a static-and transla-
tionally invariant solution. One knows that given a solu-
tion g„„,B„,and 4 with a translational symmetry in the
x direction, the dual solution is obtained from the rela-
tions [22]

+ dp +Xd8 +dx (9) 4 = —lnB,

where h=r +a —2mr; X=r +a cos 0; and a is the
angular momentum parameter. We also have

v ZB Bxf
1

2 B2 & xf
aZv sin 8

B +1—u
(14)

+=0, B„=O, A„=O .

In order to obtain the black string solution with a

Here v is the boost velocity. This solution is very much
similar to the Kaluza-Klein black hole, which was ob-
tained for the dilaton coupling parameter a=~3 [23].



50 ROTATING CHARGED BLACK STRING SOLUTION 949

We can always perform an O(d, d) transformation on this
electrically neutral solution to obtain the charged rotat-
ing black string solution. But instead of doing this, we
shall perform the O(d, d) transformation on the four-
dimensional Kerr solution with an extra flat direction
[Eq. (9)], which will automatically generate the rotating
black string solution with a nonzero electric as well as ax-
ionic charge. In order to obtain the inequivalent field
configurations, we consider a mixing between the coordi-
nates t,x and one of the internal coordinates y corre-
sponding to one of the non-Abelian gauge fields included
in the action. So the most general transformed solution is
obtained by first considering a boost in the t-y (y is the
coordinate in the internal space} direction, followed by a
boost in the t-x direction. The matrix 0 is given by

cosha2 sinha2 0 cosha& 0 sinha&

R = sinha2 cosha2 0 0 1 0
sinha

&
0 cosha,

(16)

where a& and a2 are arbitrary parameters. So the matrix
0 is given by

'ls

cosha, cosha2 sinha2 cosha2 sinha,

sinha2 cosh'& cosha2 sinha& sinha2

sinha& 0 cosha&

with the Lorentz transformation, respectively. We
choose the matrix S to be the identity matrix. The ma-
trix R is chosen to be

(15)

where S and R are O(1,1) and O(2, 1) matrices associated
I

With this choice of 0, we determine the transformed
solutions from the relation, A' =QAQ . The trans-
formed metric is given by

2(1—A)
X mr(1 ——A)

+ dr +Xd8 +d—xX

[X(h—a sin 8}—P m r ) 2 2Pmr

[X—mr(1 —A)]z X—mr(1 —A}

2Pmra sin 8
d d

2mra sin 8[(1+A}X+P mr]
dx d dtd

X—mr(1 —A) [X—mr(1 —A)]'
r

(r +a ) di,a sin 8 .— m r a sin 8+ sin 8+
2gr X d~z

[X mr(l —A)—]

(18)

The nonzero components of the gauge field and the an-
tisymmetric tensor field are given by 4'= —ln 1 — (1—A )

mr
X

' 1/2

(22)

and

2pplrf

X mr(1 ——A}

A'= —2mrya sin 8
X—mr(1 —A)

Ax 0

pmr
X—mr(1 —A)

8'„= —Pmra sin 8
X—mr (1—A )

8', = mra(1 —A) sin 8
X—mr(1 —A)

Here,

P= sinhazcosha„ y = sinha~ A = coshai cosha2

(19)

(20)

From the above expressions, we see that in the limit

a&,a2~0, the solution reduces to that of the Kerr solu-
tion with a flat direction. In the limit a2~0, this solu-
tion reduces to that of the rotating charged black hole
solution of Sen, with an extra flat direction and with a re-
placement of 4~24. In the limit when a ~0, this solu-
tion exactly matches with the black string solution ob-
tained by Hassan and Sen when we compactify five of the
flat coordinates [13]. The Einstein metric is obtained by
multiplying expression (20) with e, i.e., g„'„
=e g„'„. We shall not here give the complicated ex-
pression for the Einstein metric. This solution has both
an event horizon and an inner horizon at
r+ =mk+m2 —a, respectively. The physical mass per
unit length is computed by using the Arnowitt-Deser-
Misner (ADM} mass formula and the expression is given
by

(21) M= —(1+A) .m

2
(23)

satisfying the relation A =1+p +y . The dilaton field
is given by The electric charge Q and the magnetic moment p are
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J =
—,'ma (1+ A ) . (25)

The gyromagnetic ratio is obtained from the standard
expression

p2 M
J (26)

For the rotating black string solution with only a
nonzero axionic charge [20], the gyromagnetic ratio g is
2 —u . So in the ultrarelativistic limit, when U ~1, g be-
comes equal to 1. In the limit when U~O, the g factor
becomes equal to 2.

The extremal limit of the solution corresponds to
m =a, where both the horizons coincide, i.e., r+ =r
The angular velocity 0 at the horizon is given by

r

2m[m+&m —a ]
1+A

2

2

1+ . (27)

In the limit a„o,2~0, this reduces to that of the ex-
pression for the Kerr solution. In the limit a2 —+0, it
reduces to that of the four-dimensional rotating black
hole solution of Sen. In the limit when a ~0, the angular
velocity goes to zero. In the extremal limit (m =a ), 0
goes as 1/2a along with quantities depending on a„a2.
Now if one considers the a~O limit, we find that 0
diverges. This is also true for the electrically neutral ro-
tating black string solution.

We also compute the surface gravity of the black string
which is given by

l™r-r g r)r+ giI ~e=o

determined from the asymptotic form of A, and A&, re-
spectively, and the corresponding expressions are given
by

Q =2m sinha&,

p=2ma sinhe& .

The expression for the angular momentum J is ob-
tained by knowing the asymptotic form of the component
g,'& of the metric and is given by

This expression shows that in the extremal 1imit, sur-
face gravity goes to zero. In the limit a ~0, surface grav-
ity is proportional to 1/4m. In fact it is given by

1+A
2

1+ 1+A (29)

In the limit when a&, az~O, it reduces to that of the
expression for the Kerr solution and when az —+0 it
reduces to that of the four-dimensional rotating black
hole solution. The Hawking temperature can be calculat-
ed using the relation T=~/2n. For the rotating black
string, Hawking temperature goes to zero in ihe extremal
limit unlike the nonrotating case, where it diverges in the
extremal limit.

To summarize, in this paper we have constructed the
most general electrically charged rotating black string
solution in the five-dimensional low energy heterotic
string theory using the powerful method of twisting,
which allows us to generate new nontrivial solutions from
the known ones. We have also studied the extremal limit
of this solution carrying mass, electric charge, axion
charge, and angular momentum per unit length. The an-
gular momentum was found to dominate over the charge
in the extremal limit. The extremal limit is basically in-
dependent of Q. The extremal nonrotating black string
corresponds to the fundamental string itself and is boost
invariant in the x tplane-[19]. This was also shown to be
true for the nonrotating charged black string [16). Rotat-
ing black string is quite di8'erent and we do not know
whether in the extremal limit it can be viewed as the field
outside the fundamental string as we expect the solution
for the fundamental string to be spherically symmetric.
The study of black strings and p branes is certainly in-
teresting because of their close relationship with the
string soliton solution as well as the fundamental strings
themselves. Also, it has been shown in Ref. [21] that the
dual solutions describing the extremal black strings are
equivalent to plane fronted waves, which means that the
corresponding metric describes a string moving at the
speed of light. One ~ould 1ike to ask similar questions in
the case where both rotation and charge are present. The
other question we mould hke to ask is regarding the sta-
bility of these solutions. A more detailed study of black
strings and p branes will hopefully shed some light on
these issues.

&(m —a )
T

2m [m ++m —a ]
1+A

2

(28)
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