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The quantization of the induced two-dimensional gravity on a compact spatial section is carried out in
three different ways. In the three approaches the supermomentum constraint is solved at the classical
level but they differ in the way the Hamiltonian constraint is imposed. We compare these approaches es-
tablishing an isomorphism between the resulting Hilbert spaces.
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I. INTRODUCTION

Generally covariant theories in a two-dimensional (2D)
space-time collect the advantages of both being much
simpler than the corresponding theories in 3+1 and 2+1
dimensions and of having a suSciently rich structure
which can shed light on the issues that appear in quantiz-
ing higher dimensional theories. Several years ago
Jackiw and Teitelboim [1,2] proposed the equation

AR+—=0
2

as the natural analogue of the vacuum Einstein equations
with a cosmological term. This equation can be obtained
from a local variational principle if a scalar field, playing
the role of a Lagrangian multiplier, is incorporated in the
theory. The above equation can also be derived from the
induced 2D gravity [3]:

f&—g (Za-'a+A) .
96m

This action is nonlocal, but it is preferable to convert it
into a local one by introducing an auxiliary scalar field 4.
The action can be written as

(3)

The aim of this paper is to carry out a canonical
analysis of the induced 2D gravity theory (2) in three
different ways (we shall restrict ourselves to the case of a
compact spatial section}. The first one is presented in
Sec. III and it was spelled out in [4]. It is based on the
covariant formulation of the canonical formalism [5].
The reduced phase space of the theory turns out to be a
two-dimensional cotangent bundle and the corresponding
(geometric} quantization permits us to determine the Hil-
bert space. In Sec. III we introduce the Arnowitt-Deser-
Misner (ADM) formulation of the theory. By gauge
fixing and imposing the supermomentum constraint we
can reduce the theory to a finite-dimensional system. At

this point one can choose di8'erent ways to quantize the
theory. One way is to look for the reduced Hamiltonian
(this requires a complete gauge fixing) and then to impose
the corresponding Schrodinger equation. This is our
second approach and it is developed in Sec. IV. The
third approach (Sec. V} is based on the (reduced}
Wheeler-DeWitt equation. Throughout the paper we set
up the equivalence of these approaches establishing an
isomorphism between the corresponding Hilbert spaces.

II. COVARIANT PHASE-SPACE QUANTIZATION

The covariant definition of the reduced phase space [5]
has been very useful in determining the phase space of a
variety of field theories [6-8]. In this approach, the re-
duced phase space is defined as the set of all solutions of
the classical theory, modulo gauge transformations (see
below}. The symplectic form is defined as follows.

Let us consider a field theory with fields 4 and La-
grangian X. If we vary the fields in the Lagrangian we

get

5X=BJ "+(E L),5%' . — (4)

If we now regard 5 as an exterior derivative operator in
the space of classical solutions 4 (x), we can, in a natural
way, pull back (4) to the space of all solutions of the equa-
tions of motion, (E —L)=0 and consider j"as a vector-
valued one-form on this space.

Since 5j" is a conserved current 8„5j"=0,it is natural
to define the (pre)symplectic form to as the corresponding
conserved charge:

to= —f 5j"do„ (5)

(X is any spatial hypersurface of the space-time). With
this definition, we prevent co from depending on X or on
the time coordinate. Because 5j" is exact, so is co and
thus is closed.

The only property we cannot ensure for m is nondegen-
erateness since co as defined above can have a nontrivial
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kernel. We define now the gauge transformations as the
ones generated by the kernel of co. If now, in the space of
all solutions, we take modulus by the gauge transforma-
tions, we get a symplectic space which is called the re-
duced (or physical) phase space.

Let us apply the program above to the induced 20
gravity. The equations of motion obtained from (2) imply
the vanishing of the stress tensor T„,which is given by

T„=—V„4V,4+2V„V4+ —,'g„V4V 4
—g„,(2R + —,

' A),

and the relation of 4 with the curvature

(7)

If we use now the gauge invariance of the metric under
diffeomorphisms to bring it to a conformally Qat form

——8(y —1)=A

8

—d—8(y)A

8

b 8—(y)+aA

8

~= f""[—5C 5(a, +5 )(e+p)+5(B +8 )45p] .
X

The projection onto the space of classical solutions takes
a special form:

,' f—(B+—8 )W, (19)

If we choose the spatial hypersurface as the one defined
by t = I,o, the symplectic form can be written as

ds = —2eI'dx+dx (8)

(x = t +x,x = t —x are the light-cone coordinates), the
equations of motion split into the relation of 4 with the
curvature,

4—=2e I'B~B 4=8:——2e ~B~B p,
the Liouville equation

where 8'is given by

A
i3+ A 8

2 8 8 (d —a)A+b

X6 ink

'2

2

0= T+ =28+8 p
——el',A

(10) [(d —a) A+b] 8—
8

and the constraints

0=T = —(8 4) +28 4& —2B pB 4=0, (11)

0= T = —(8 4) +28 4—28 pB 4=0 . (12)

The general solution for the metric field g„and the di-
laton field 4 can be found easily [4] and written as

a, Aa a
2 ~ -2 4x 4x

A
1 ——AB

8

A'2 —8
+51n 1 ——AB 51n-A A 8

d —a A+b

+51 [(d —a)A+b] 51 (d —a)+5 ln 51n

for the solution (14) for 4 and by

~+AW= —51n b 8 —(d —a—)
2 8 8 8

(20)

and

4=1nA,

[(d —a) A+b] —8
8

(14)
X51n

b 8 —(d —a)—A

8

A
1 ——AB

8

2
+51n 1 ——AB 51n—b 8 —(d —a)—A A A

8 8 8

4 =1nk 2
A

b 8+ (d —a)——
8

2

+5 ln b 5 ln b 8 —(—d —a)—A A
8 8

(21)

where a, b, d are such that M = (0~ ) belong to the affine
subgroup of PSL(2, R), i.e., a =d ', and A = A(x+) and
8 =8 (x ) verify the monodromy transformation prop-
erties (we choose the length of the circle equal to unity)

A(y+1)= =M(A(y)),
d

for the solution (15) for @.
In any case, since m does not depend on the coordinate

x in (19), it cannot depend on either of the functions A or
8. So co will depend only on the classes of monodromy
transformations to which the functions A and 8 belong
and on the parameter A, in (14) and (15). Moreover, if we
transform the functions A and 8 as
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A ~h(A}. ,

——B—+h ——BA iz- A

8 8
(23}

where h is a constant aSne matrix acting as a Mobius
transformation, we get the same solution of the equations
of motion. Under the transformation (22) and (23) the
monodromy parameters transform as

M —+hMh (24)

M, 5a
CO=2

a

for the solutions in (20) and

M, 5aN= —2
a

(25}

(26)

for the solutions in (21). From (25), (26), and previous
considerations, we are tempted to assume that the re-
duced phase space is of the form

T'(6/adG} U T'(6/adG), (27)

where G is the affine subgroup of PSL(2,R). This would
lead us to a Hilbert space of the form

(28)

Thus two solutions which differ on a transformation of
the type (24) are the same point of the reduced phase
space. The only invariant quantity under the transforma-
tion (24), and hence the only allowed monodromy depen-
dence in cu, is the parameter a.

A direct computation from (20) and (21) leads to

8 2 Zpt

ds'= —2 P ' ...dx+dx-, (32)
(1—sgnAe &')

1 &
(1—sgnAe ~')

(33)
4(sinhp/2) e ~'

&
(1—sgnAe ~')

(34)
4(sinhp/2)

where e~=a =d '. On the other hand, if a =1=d, the
unique parabolic solution takes the form

dS = dx dx
2 1

~ t' (35}

@=1n4i,t (36)

We can easily see that (33) and (34) transform into each
other when we make the replacement a+-+c '=d, under
which also (25) and (26) transform into each other.
Moreover, when A) 0, (35} has the right signature and
can be obtained from (32)-(34) in the limit p~0 (a~1).
So we can conclude that the phase space for A & 0 is just

T'(R) U T'(R),

with the symplectic form

a) =25(ink, )5p .

(37)

(38)

The two sectors in (37) correspond to whether the scalar
field is expanding or contracting.

The cotangent bundle structure of the phase space
makes it easy to determine the Hilbert space of the quan-
turn theory: it will be given by the square integrable func-
tions on the configuration space. Hence in this case we
shall have

where %f=L (R,dp)SL (R,dp) . (39}

a'+'=a'-'=L'(R+ )e C' . (29)

a, a (e+p)=0. (30)

Therefore we can (and we will) choose a spatially homo-
geneous conformal gauge by imposing

4+p= @+at, (31)

where e and p are constant parameters.
If a+1, i.e., if the monodromy class is hyperbolic, the

solutions take the form

The result (28}, in which the Hilbert space has a con-
tinuum and a discrete sector, is in accordance with some
results obtained by Becchi-Rovet-Stora-Tyutin methods
[9]. However, there is also some evidence that the
discrete sector cannot be endowed with a well-defined
inner product. This result is achieved here by showing
that, in fact, the discrete sector actually does not appear.
This is a consequence of the additional symmetry
A ~—A, B~—B, a —+a, and b ~—b that identifies the
otherwise distinct parabolic (a =1 }solutions.

Let us write the classical solutions (13)—(15) in a more
explicit form. To this end we should completely fix the
space-time coordinates by imposing and additional
"gauge-type" condition. From (9) we observe that

For A(0 (35) is not positive definite nor can (36) be
obtained from (33) and (34}as a limiting case. So that the
phase space is given by

T'(R+)UT'(R+),

with the symplectic form

co=25 ink, 5p .

The Hilbert space should now be of the form

(40)

(41)

%=L R+, eL R+,d d
(42)

Although it is diScult to figure out how the Hilbert
spaces (42) can actually be realized, we shall see in the
following sections that this prediction for the Hilbert
space is consistent with other quantization approaches.

III. ADM FORMULATION

In Sec. II we saw explicitly that the classical solutions
of the theory are spatially homogeneous. As has been
shown in [10] for a wide class of 2D dilaton gravity mod-
els, this is so because the theory (3) has a Killing vector
whose Qow determines a natural coordinate system on the
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where N and N' are the lapse and shift functions, respec-
tively. To derive the canonical form of the action we can
use the two-dimensional identity

&—g R = —28, (aK)+2t}„[a(KN' —a N')],
where E is the extrinsic curvature scalar:

1K= (N, )
—aa) .

a N
(45)

cylinder where the metric and the scalar field takes a
homogeneous form. The existence of the Killing vector
requires that the metric equations of motion be satisfied.
At this point it is important to remark that one can
indeed reduce the theory to a finite number of degrees of
freedom by imposing the supermomentum constraint
only.

To this end let us now present the basic ingredients of
the ADM formulation of the induced 2D gravity (see also
[11]). First, we introduce the standard parametrization
of the two-dimensional metric

—N +NiN' Ni
(43)

and also N =N (t).
The momentum mc, is still a function of both t and x.

However, we can integrate the action in (46) with respect
to the compact coordinate and the resulting expression is

5=fdt(n, a+O f dx n~ N—C ), (S5}

where now

C =
—,', an., —

—,
'n.,f dx nq, a. A—. (56)

1 A=0, m= —N — m+—2

2

O=Nna, a =N[ ,'an, —
—,'—n@],

From now on ~@ stands for the momentum conjugated to
O(t), i.e., n+(t)= Jdx n@(t,x}. Although (55) corre
sponds to a minisuperspace approach to the theory, it
must be regarded instead as a reduced form of the theory
in an appropriate gauge choice and not as a mere approx-
imation to the theory.

For the sake of completeness we write down the equa-
tions of motion and the symplectic form obtained from
(55):

Removing total time derivatives we arrive at

S=fd x(n, d+neO . NC N'—C, ),—
a) =5n~5O+5n, 5a . (58)

where the canonical momenta are

4
n = (O' N' O—}-

N

(O'N —O)+ [(aN )' —a—]
2a, ) 4
N N

(47)

(48)

C, =O' n.c,
—n.,'a,

1 .2C= —'an. ——'n. n~ —aA ——O' +4(aO')' .

(49)

(50)

and the supermomentum and Hamiltonian constraints
are given by

IV. REDUCED PHASE-SPACE QUANTIZATION
IN THE CONFORMAL CHOICE OF TIME

In this section we shall develop a genuine Hamiltonian
quantization of the reduced theory (55}. In this approach
the choice of time is done before quantization and the
constraint C =0 is solved classically (see, for instance, the
review [12]). In this context, the choice of time is noth-
ing other than a gauge-fixing condition. This gauge fixing
is required to be complete in the sense that no further
gauge freedom must be left, but also we must not lose in-
formation, i.e., actual solutions to the equation of motion.

I.et us choose the conformal gauge

a=a(t) . (51)

In addition to this, and due to the time reparametrization
invariance, we can also make a choice of time. All the
above considerations suggest the following class of spa-
tially homogeneous definitions of the internal time vari-
able:

Making use of the spatial diffeomorphism invariance of
the theory we can fix the space coordinate and assume
that

2 n@f

a =4 F@ e

~ (1—sgnAe )

(60)

Solving now the constraint 8=0 for am, we find the
solutions

(59)

which implies, according to the equations of motion (57)
[see also (32)], the following implicit de6nition of the time
variable:

'T(O, a}=y(t),
where y is a generic function. This implies that

O=O(t) .

(52)

and

1
am, =4m@,

1+sgnAe
(61)

n. =n, (t) (54)

Now, if we impose the supermomentum constraint we
easily obtain

—m'@ t
1+sgnAe

(62)

which remind us of the c1assica1 twofold solution for the
field C.
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Once the choice of time has been made, the effective
Hamihonian associated with it, i.e., the function that
gives the proper classical time evolution for the remain-
ing fields, is (minus} the conjugate momentum of time.
Substituting (61) and (62) into (58) we find

a) =5m.@,54—2~@
1

, 5m~5t .
1+sgnAe

(63)

Since this two-form must project down to the (reduced)
symplectic form of the model, the Hamiltonian fiow of
the vector field in the kernel of (63) should provide the
remaining trajectories of motion (see, for instance, [13]).
Therefore, the effective Hamiltonian should fit the ex-
pression

%(n.e,=0, t) =0, (70)

a restriction that is preserved by the time evolution.
Therefore, for A & 0, the Hilbert space will be given by

=L (R+ dart, )SL (R+ dn'c) (71)

which can be identified with (42}.

However, for A&0 we must prevent the wave func-
tions from taking any non-null value in m+=0 since at
this point the gauge fixing condition (60) is not well
defined. So, we must impose on the wave functions the
restriction of vanishing at n.+=0,

co =5m.rt54 5H5t —.
So, we obtain

(64)
V. QUANTIZATION

VIA THE WHEELER-DEWITT EQUATION

27r@t
1+sgnAe

77+ kn@t=n@—(k)2 ln(1+sgnAe )

1 kent—2—Polylog(2, —sgnAe ) .t' (65}

The Hamiltonians in (65) can be converted into each oth-
er by means of the change art~ yr@ or t~—t Th—us., in
this system, reversing the arrow of time is equivalent to
changing the sign of the momentum ~@.

The quantum system will be described by the wave
functions W n.rt„t) that obey a time-dependent
Schrodinger equation:

i A 4'(n~, t—) =H(n~, t)% (me„t) .
t (66)

Since the Hamiltonian functions at different times com-
mute, the Schrodinger equation (66) can be solved im-
mediately to give

l t
%(n +, t) =qr(n @)exP —— dz H(n e„z) (67)

The scalar product of two wave functions %(n.rt„t)and
p(n rt„t)will be taken as the natural one:

~ ~a+iti~ y
—1 —2~ ya —iti

~is Pg

Pa
) (gy+irr~ g

—y —ie —1

+~y+ in —1~ ~
—y —icr )p (72)

where a, P, y, and cJ are arbitrary factor-ordering param-
eters. We can separate variables in the Wheeler-DeWitt
equation by expanding the wave function 4 in Nc, eigen-
states:

In this section we shall quantize the reduced theory
(55) without any identification of time prior to quantiza-
tion. This essentially means to impose the operator ver-
sion of the classical Hamiltonian constraint, i.e., the
Wheeler-DeWitt equation. To propose the Wheeler-
DeWitt operator C for (56) we face at once the problem
of the operator ordering ambiguities and the inequality
a & 0 of the scale variable. The second difBculty
can be solved by using the affine algebra [tt,P, ]=if@
[p, = —iiyia(B/8, )], instead of the Heisenberg-Weyl alge-
bra, as the basic one to define the quantization [14]. The
reason is that the operator it', = —iR(B/Ba} fails to be
self-adjoint on L (R+,da), whereas the affine operator
p, =iiila(8/Ba) is self-adjoint in L (R+,da/a).

Imposing that the Wheeler-DeWitt operator be self-
adjoint with respect to the measure (da/a)d4 we can
write the following expression for C:

(%~P) =f dart, %"(m@, t)P(n@, t)= f d'art, 'P'(mrt, )qr(mrt, ) . Iq+/hy (73)

The Hilbert space for A )0 is hence given by

&=&'+'e&' '

=L (R d~e)L (R dye@)

(68)

(69}

Inserting (73) into the equation C 4=0, where C is given
by (72), we obtain that the functions 4 (a}obey the equa-
tion

d 1 d 1 2 A+—(1—2g) + (g2 —2)+4 % (a)=0,
pa 2 a 4)a a ~

The two sectors correspond to the double sign of the
efFective Hamiltonian (65} and represent whether the
two-dimensional universe is expanding or contracting.
Thus we recover the result of Sec. II. Note that the
monodromy parameter a =e ~ in Sec. II must be
identified with the constant of motion e

where

I+4~+2i y
1 i
2 fi

(74)

(75)
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2
v2= — 1 —16 —8y +4a(a+ 1)+16+(cr—y }4 g2

To determine the Hilbert space we should find out the
range of variation of the order v. Because of the small x
behavior or the modified Hankel functions, the wave
functions will be normalizable when

The solutions of the above equation are

%qa =a „a (77)

where Z„are ordinary (modified} Bessel functions for
A )0 (A (0) with order v.

In constructing the Wheeler-DeWitt operator we re-
quired Hermiticity with respect to the standard inner
product

q e'~ "a~C q x (79)

In canonical quantum gravity it is therefore natural to
propose (78) as the scalar product for the solutions of the
Wheeler-DeWitt equation. This proposal for the scalar
product is problematic in the sense that we are integrat-
ing over one of the configuration variables that could
have been defined as the "internal" time variable [12].
However, we shall insist on using it, but keep in mind
that (78) could be divergent and therefore require some
sort of regularization.

Let us analyze now the situation for the case of a nega-
tive cosmological constant. We can expand the general
solution to the Wheeler-DeWitt equation in terms of the
modified Bessel and Hankel functions 2 and R,. How-
ever, because of the exponential behavior of the functions
J' for large x [x —=2( I Al

'~ /fi)a], they do not lead to nor-
malizable wave functions and therefore should then be
excluded from the physical Hilbert space. The physical
wave functions should be of the form

v =— l —16
$2

The constant shift qo of q in (81) can be chosen according
to the classical theory. On the covariant phase space the
constant of motion m+ is proportional to the monodromy
parameter lna. Because of the absence of classical solu-
tions for a =1, the constant qo should vanish to exclude
the quantum solution +~=0. Therefore we are finally led
to the expression

v =— 1 —162 g
4

(82)

which corresponds to a =P=y = cr =0 in (76}.
Now we want to determine the Hilbert space when the

cosmological constant is positive. According to (77) the
general solution to the Wheeler-DeWitt equation can be
expanded as (Rev ~ 0, Imv ~ 0)

4= f dq a' + ' ~ e' "[A (q)d"„(x)+B(q)JV,(x)],

(83)

where A (q) and 8(q) are arbitrary complex functions
and v is given by (82). The norm of the wave function
(83) with respect to (78) is given by [k =2(IAI' /1)]

To obtain the maximum range of variation for v as q
varies over the real line we should choose the factor or-
dering parameters in such a way that (76) turns out to be
of the form

& +I+ &
=—f dq f dx[l ~(q)l'Id", (x}l'+l&(q}l'l~„(x}l'+~ '(q)&(q)+„'(x)~„(x)+~ (q)& "(q}+.(x}~„*(x)].

(84)

Because of the asymptotic behavior of the Bessel functions for large x the above integral are divergent. We can define
a regularized scalar product by substituting the integration measure dx in (84) by dx/x' (e ~ 0). In the limit E~O the
new inner product turns out to be

f dq[[cos(~v)(IA I'+i@I')+sin(~v)(a'W —W'a)]O( —v')+[Is I'+i@I']O(v')],
~-o 2n.k

(85)

where 8 is the step function. We can eliminate the
overall divergent factor I (e)/2' to define the physical
scalar product. The elementary normalizable solutions
with respect to the regularized scalar product can be
classified immediately. They are cP„ for vE[0, —,'] or
Rev=O, and JV„for vC[0, —,'[ or Rev=O. Note that the
unique normalizable solution for v= —,

' is 8„.
Next we would like to relate the quantization obtained

via the %'heeler-DeWitt equation with the approach

I

developed in the preceding sections. The main point is to
see how the Hilbert space L (R+)L (R+) [or
L (R)sL (R), depending on the sign of A], obtained
from the covariant and reduced phase-space quantiza-
tions, can be realized in terms of the normalizable solu-
tions of the Wheeler-DeWitt equations. Let us first con-
sider the ease of negative cosmological constant. Any
normalizable solutions 4 of the form (79}can be decom-
posed as %=%'+'+4' ', where [we have redefined the



50 REDUCED CANONICAL QUANTIZATION OF THE INDUCED. . . 907

gy(
—)— r(-,'+v)r(, —v)

k

1 /2+ 2i (q /A) iq(4/fi) g( )
q ~„~x

(8&)

function C(q)]
1/2

e(+'= r(-'+ v)r(-' —v)
k

7Th
2 2

"dq a ~/2+»(q«~ieiq(q'/slC(+ i(q)y( (x)
)

X

(86)
1/2

The scalar product takes the form

(+~+)= f dq~C'+'(q)~'+ f dq~C' '(q)l', (88)

and this shows the coincidence with the Hilbert space de-
rived in Secs. II and IV.

When the cosmological constant is positive, the Hilbert
space of normalizable solutions of the Wheeler-DeWitt
equation can also be decomposed into two orthogonal
subspaces. Any normalizable solution %' of the form (83)
can be split as %=%'+'+4' ', where

' 1/2

gg(+ )— k
2R

1/2+zi(q/s) iq(q'/s) g (+)(

' 1/2
( ) k

2'

X(8(q)tii, (x)+8( —q)Icos[m Im(v)]'/ JV„(x)+sin[n Im(v)]Icos[n Im(v))] ' gati„(x)]), (89)

I /2+2i(q/s) iq(4/i() g ( —)(

X(O( —q)dt„(x)+8(q)[cos[n Im(v)]' JV,(x)+sin[m Im(v)][cos[n Im(v)]] ' ot„(x)]) . (90)

The resulting expression for the scalar product turns out
to be

(+le ) =f dq[~ ~'+'(q) ~'+
~

a'-'(q) ~'] (91)

and shows the equivalence between the Hilbert space de-
rived from the Wheeler-DeWitt equation and the one ob-
tained from the covariant and reduced phase-space ap-
proach.

VI. FINAL COMMENTS

In this paper we have constructed the quantum theory
of the induced 2D gravity in three diff'erent ways: (i) co-
variant phase-space quantization; (ii) reduced ADM
phase-space quantization; and (iii) reduced Wheeler-
DeWitt equation. We have explicitly shown the coin-
cidence of the Hilbert space of these approaches. The
first approach is based on the space of classical solutions
and it permits us to determine the "size" of the Hilbert
space. The other approaches lead to two different reali-
zations of the Hilbert space. The comparison between
the different approaches allaws us to understand the rale
played by the classical solutions in the quantum theory.

The absence of normalized wave functions for v =
—,',

when A &0, can be understood as the absence of classical
parabolic solutions. Furthermore, the existence of a
unique wave function for v =

—,', when A) 0, find its clas-
sical counterpart in the existence of a unique classical
parabolic solution (up to an additive constant for the sca-
lar field).

Finally we want to remark that one could obtain an
inequivalent quantization if both the Harniltonian and
the supermomentum constraints were imposed at the
quantum level. Solving the supermomentum constraint
classically prevents the emergence of the "Schwinger
term" in the algebra of surface deformations generated by
C1 and C (the central extension involves both Hamiltoni-
an and supermomentun constraints [2]).
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