
PHYSICAL REVIE% D VOLUME 50, NUMBER 2 15 JULY 1994

Fermi coordinates for weak gravitational fields
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%e derive the Fermi coordinate system of an observer in arbitrary motion in an arbitrary weak gravi-

tational field valid to all orders in the geodesic distance from the world line of the observer. In flat

space-time this leads to a generalization of Rindler space for arbitrary acceleration and rotation. The
general approach is applied to the special case of an observer resting with respect to the weak gravita-
tional field of a static mass distribution. This allows us to make the correspondence between general re-

lativity and Newtonian gravity more precise.

PACS number(s): 04.25.Nx

I. INTRODUCTION

General relativistic studies of physical situations far
away from black holes, neutron stars, or the big bang are
often based on the linearization of Einstein s field equa-
tions and the assumption that the gravitational field is
weak enough to allow a perturbational approach. The
metric of space-time is written in the form

where g„ is the Minkowski metric and h„are small de-
viations which are treated only to first order wherever
they occur. Although this form of the metric restricts the
metric to be nearly Minkowskian, one has the remaining
freedom to choose a coordinate system. For instance, to
calculate gravitational waves as small perturbations in
the vacuum, one usually uses the freedom of coordinate
(or gauge) transformations to impose the restriction
h„,"——,'h „=0 (harmonic gauge) on the gravitational
field, thus fixing to a certain amount the coordinate sys-
tem (see, e.g. , Ref. [1]). As discussed by Faraoni [2], this
choice of coordinates is very convenient for the study of
gravitational waves, but it is difticult to describe the
motion of the observer or the detector in this case.

The study of the observer is best done in his Fermi
coordinate system [3,1]. This is in some sense a generali-
zation of the notion of a frame of reference for an inertial
observer in Oat space to curved space-time. In these
coordinates the metric tensor itself contains at least in the
approximations which have been examined only quanti-
ties which are invariant under coordinate transforma-
tions such as the proper time of the observer, geodesic
distances from the world line, and components of tensors
with respect to a tetrad.

For gravitational waves and an observer in geodesic
motion, the transformation to Fermi coordinates was
done by Fortini and Gualdi [4]. Because actual observers
are often accelerated and because the applications of the
weak-field limit of general relativity is not restricted to
gravitational waves, it is of interest to generalize their re-
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suits to the case of an observer in arbitrary motion in an
arbitrary weak gravitational field. It is the purpose of
this paper to give this generalization. To incorporate the
acceleration and the rotation of the observer, we follow
the approach of Ni and Zimmermann [5].

After the performance of the general construction in
Sec. II, we apply the result to an observer resting with
respect to an arbitrary mass distribution. This physical
situation is mostly studied in the context of Newtonian
gravity, and it is often used to demonstrate that the
Newtonian picture is a certain limit of general relativity.
While the last claim is certainly true, it was never studied
in the context of Fermi coordinates, i.e., in some kind of
reference system of the observer. We will give the corre-
sponding analysis in Sec. III. In Sec. IV, the results are
reviewed and some comments are made regarding the ex-
isting work on gravitational waves. Our metric conven-
tions are that of Ref. [1], i.e., the signature of the metric
is +2. Greek indices run from 0 to 3, latin indices from
1 to 3. Tetrad indices are underlined. We use units with
c=1.

II. DERIVATION OF THE GENERAL RESULT

The observer is assumed to move (in the coordinate
system y") on the world line z "(r) governed by the equa-
tion

where ~ is the proper time of the observer and a" is the
four-acceleration. A dot denotes the derivative with
respect to v.. To construct the hypersurfaces of constant
r, we consider the family of geodesics y"(r, s) wrth geo-
desic length s starting at y "(r,0)=z"(r) which satisfy the
equation

y""+I "~' y' =0,
where a prime denotes the derivative with respect to s.
Their tangent vector on the world line has to be perpen-
dicular to the tangent vector of the world line z"(r); that
is,

z y i~ a=0
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Decompose y "(~,s ) into a Minkowski part yg and a part

yg which is of the order of h„. The same can be done
with the world line z" of the observer. The Minkowski
part of the solution of Eq. (3) is easily found by noting
that in flat space all geodesics are straight lines. Thus,

y/ir(~, s )=zg(~)+s vg (~),

where vg is some vector which is perpendicular to il in
the Minkowskian sense, i.e., vtirisrrl„„=O In.serting this
into Eq. (3) leads to

;n
d

h,"(y/' =z/'+svt)=h"; k, '„(y/')a '" a"

(13)

holds. We introduce the Fermi coordinate system x& in a
weak gravitational field by setting x =v and x'=so. ' as
proposed by Manasee and Misner [3]. The transforma-
tion from the coordinate system y" to Fermi coordinates
is then given by Eq. (12), or, after the Taylor expansion,
by

'"+g" (hi„k T'h—„k J )vsrvsr =0. (6)
y"(xi)=z"(x }+x'[e/'(x )+h/'(x ))

Up to now, each factor of h„„was taken at the point
y"=yQ+y/, '. By making a Taylor expansion around yQ,
one can see that all terms including derivatives of h„„are
of higher order in h„, so that one can restrict the sum to
the lowest order:

h„,(ygj+y/)=h„, (ygj )+0((h„„) ) .

The general solution of Eq. (6) is then given by

y/'(r, s ) =C J2 (~)+sC", (r) f vugh"—„(yg(~,s') )ds'
0

I

+ ,'q~~v~vM-f 'ds f 'ds "h„k,(y/, (r,s"}) .
0 0

(8)

The four-vectors C~ have to be determined by the condi-
tion (4) together with y&(r, O)=z&(r) and y'"y&~, —0=1.
To make contact wi:h Fermi coordinates and to give the
result in a convenient form, we first introduce an ortho-
normal tetrad e"(~) defined in the tangent space of zi'(~)
which satisfies eN0 =i "(v) and has the equation of motion

De = —Qe
d'7

1 q 0
,

h k . . .k(x)x x x
)=0

I=O

(14)

With the aid of this formula, it is straightforward to
derive the metric in Fermi coordinates by using Eq. (9)
and

~y ~y
g ~ (x~)= . g „(y (x~)) .

ax
' axe "" (15)

go (m Xx); —yo (m X x)J y—
~

glJ ~IJ ygl

(16)

The expression (m Xx), denotes e~k coLx
" and the

coefBcients y~ are found to be

Note that the factor of g„„on the right-hand side (RHS}
must also be expanded in terms of x '. The result is

goo= —(1+a;x') +(mXx) —
y(}()

—2(m Xx);yo; —(m X x), (m Xx)~y~,

with

0""=a"z" a "i"+i—imps ~&', (10)
2 mnk1 k

yoo g (r+3)( ~omon, ki k,
r=0

where e is the four-rotation of the tetrad. If the condi-
tion (4) is satisfied, we can write

y'"(~, 0)=vg+ C", v~h"„(r) =a—~/' .

The parameters a-'determine the direction of the geodesic
at the world line and h„„(r} is shorthand for
h„„[y"(~,0)]. Taken all together, the family of geodesics
perpendicular to the tangent vector of the world line is
parameterized by a-' and is given by

y"(~,s)=z"(r)+sagef+h/'(~)] a 'f h/'ds'—-
+ ,'g"I'c&zJ-f—ds'f ds "h,J (12}

Here and in the remainder of this paper we use the trans-
formation of space-time indices to tetrad indices, e.g.,
X~=X„e". %'e use this notation also if the index is a
derivative. It is now convenient to make a Taylor expan-
sion of the integrals in Eq. (12). It is obvious that

X[(r+3}+2(r+2)x'a;+(r+1)(x'a;) ],
2 m n 1. . . rk k

y oi $ ~

3 i ~0m(n k " k xi~+3i! rr=0

X [(r+2)+(r+1)x'a,.],
2(r +1)

X
( +3 }i imJ'n, k&

. k„

where the linearized Riemann tensor is given by

R p 2[h p ~+h~ p hp hq~yp]

Equation (16) is the main result of this letter. It agrees
with Eq. (49) of Fortini and Gualdi [4] for the case of a
gravitational wave and with the more general result of Li
and Ni [6] in absence of any rotation or acceleration. It
is also in concordance with the expansion to third order
in the geodesic distance s from the world line derived by
Li and Ni for an accelerated and rotating observer [7].
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It is worth noting that, in the absence of curvature, i.e.,
in fiat space, all y „vanish and Eq. (16) becomes exact
even for strong accelerations or rotations which may de-
pend on the proper time. In this case Eq. (16) can be con-
sidered as the generalization of Rindler space-time which
describes an observer with constant acceleration in two
dimensions.

III. THE RESTING OBSERVER IN THE FIELD
OF A STATIC MASS DISTRIBUTION

(20) in Eq. (17), one sees immediately that it is given by
the Taylor expansion of Newton's potential without the
first two terms. Assuming that we are in the range of
convergence of the Taylor series, we thus find

yoo =2[/(x )
—$(0)—x 'P,

~ o] .

Note that all acceleration-dependent contributions to y„,
are neglected since they are of higher order in h„. To
get a closed expression for the remaining components y, ,
we first introduce the functions

In addition to gravitational waves, it is of interest to
study the Fermi coordinates of an observer who is at rest
with respect to a static mass distribution. This situation
is equivalent to those usually treated in Newtonian gravi-
ty. Since Fermi coordinates are in this context close to
the concept of an inertial system in flat space, their
analysis may give the notion of the Newtonian limit of
general relativity a more accurate form.

The gravitational field is caused by a static mass densi-

ty Io(y)=Too(y). All other components of the energy-
momentum tensor T„, are assumed to vanish. In the
harmonic gauge the solution of the linearized Einstein
equations is then given by [1]

hOO(y)=h, I;I(y)=26J, d y',c (y')

where G is Newton's constant and the index i in
parentheses denotes that no summation is understood.
Obviously, the components h„are related to Newton's
potential (t by p(y) = —boo/2. The curvature tensor has
in this coordinate system the components

u [f](y):=,J r' f(yr'Ir)dr',m+1 (24)

mki, . . . , k„. 0 + + l )k) . * k„ (25)

After the insertion of R; „ from Eq. (20) into Eq. (17),
one can see that the resulting series is just the Taylor ex-

pansion of

y~ =»'[ui [(b„j]—us[0, ;j]]+2&j[0(»—2uo[0]+0(0)]
—2[x'[2u&[({)j]—uo[P j]1
+x j[2u [4,;]—uo[((l, ;]]1 . (26)

It follows that the metric in the Fermi coordinates of our
observer is given by

where f is some function of y and r =
~y~ is the absolute

value of the three-vector y' in the usual Cartesian sense.
One can show by induction and by using de 1'H6pital's

rule that the Taylor coefficients of these functions are
given by

R OIOm 0, Im

~os =0

Rimjn 5mn0 ij ~ij 0, mn ~ink jm ~mj 4 in

(20)

goo = —1+2[/(0) —P(x)],

go,- =0,
gJ=~J &J

(27)

We take the observer to be fixed to the spatial origin of
the coordinate system, z'=0. By the normalization con-
dition z"i„=—1 and Eq. (2), his acceleration is found to
be

a =0, a'=B,P(o, (21)

e"=5"+O(h„) . (22)

%'e can neglect the first-order part since we will be con-
cerned with tensors which are already of first order in

h„. It follows that the components of the curvature ten-
sor and the acceleration with respect to the tetrad are the
same as those taken with respect to the coordinates y".

We now turn to the calculation of the quantities y'z .
A glance at Eqs. {17)and (20) shows that yo,. vanishes.
The derivation of goo is also not difficult. Inserting Eq.

which is the negative of Newton's acceleration. This is
reasonable since the Newtonian acceleration describes
the apparent acceleration of freely falling objects (the ap-
ple) as seen by the observer and is therefore the negative
of the actual acceleration of the observer. An appropri-
ate tetrad is

This result has a clear physical interpretation. As is well

known, the largest effect for objects with slow velocities
comes from the goo component of the metric. This effect
is identical to that of the Newtonian potential normalized
to be zero on the world line of the observer, as indicated
by Eq. (27). This normalization condition has its origin
in the use of the proper time of the observer as the time
coordinate. Another choice of time would lead to a
different normalization of the potential.

Less obvious is the interpretation of the g,- components
which can be tested by the measurement of spatial dis-
tances. Since the expression (26) for y, involves the gra-
dient and the second derivatives of the potential, we can
infer that distances measured in the direction of the field

gradient or of the main axes of the matrix P; behave

differently as in other directions. This may be more obvi-
ous for the (unnatural) case when p(y)=iti(r) is a func-
tion of the distance r to the observer only. After several
partial integrations in Eq. (26), one gets

l J
{28)

r r3 o dr'
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where we have slightly changed the notation so that r is
now identical to ~x~. We see that the radial direction is
indeed preferred.

IV. CONCLUSION

In this paper we have shown that the linearized con-
struction of Fermi coordinates can be performed for arbi-
trary space-time geometries, arbitrary motion of the ob-
server, and to all orders in the geodesic distance s from
the world line. In particular, we have treated the case of
a resting observer in the field of a static mass distribution.
This enables us to make the correspondence between gen-
eral relativity and Newtonian gravity more precise.

One advantage of the knowledge of the metric to a11 or-
ders in the spatial geodesic distance s from the world line
may be that one can considerably enlarge the range of va-
lidity of the Fermi coordinate system. In the usual ex-
pansion to second order in s, one has, in addition to oth-
ers, to satisfy the condition [3]

length is often supposed to be in the order of 300 km. If
one can calculate the whole sum in Eq. (17},the limit is
much larger. For growing distance from the world line
and certain directions, the factors y;- can grow roughly
[g] like A (x'/A, },where A is the amplitude of the gravi-
tational wave which is usually assumed to be smaller than
about 10 ' . It should be stressed that this equation of
Ref. [2], which was first derived by Baroni et al. [9], in-
cludes the Srst order in h„„but all orders in the geodesic
distance s from the world line. The sum of Eq. (17) was
given in a closed form in the same sense as in our Eq.
(27}. The only restriction is now that the corrections to
the Minkowski metric remain weak. This means

~ yJ« 1 or, equivalently ~x '~ && iL/v'A . We see that the
knowledge of the whole sum has enlarged the range of va-
lidity by a factor of 1/~A, which is about 10s in our ex-
ample. In this case there is no problem to describe con-
temporary laser detectors of gravitational waves in Fermi
coordinates. This last conclusion is not in concordance
with Ref. [2].

For a gravitational wave with wavelength A, , for instance,
the Riemann tensor is roughly proportional to
exp(ikx }/k so that this condition gives ~x "~/A, &&1. For
laser detectors this may be restrictive since the wave-
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