
PHYSICAL REVIEW D VOLUME 50, NUMBER 2 15 JULY 1994

Einstein-Yang-Mills theory with a massive dilaton and axion: String-inspired regular
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We study the classical theory of a non-Abelian gauge field [gauge group SU(2)] coupled to a massive

dilaton, massive axion, and Einstein gravity. The theory is inspired by the bosonic part of the low-

energy heterotic string action for a general Yang-Mills field, which we consider to leading order after
compactification to 3+1 dimensions. We impose the condition that spacetime be static and spherically

symmetric, and we introduce masses via a dilaton-axion potential associated with supersymmetry break-

ing by gaugino condensation in the hidden sector. In the course of describing the possible non-Abelian

solutions of the simplified theory, we consider in detail two candidates: a massive dilaton coupled to a
purely magnetic Yang-Mills field, and a massive axion field coupled to a non-Abelian dyonic
configuration, in which the electric and magnetic fields decay too rapidly to correspond to any global

gauge charge. We discuss the feasibility of solutions with and without a nontrivial dilaton for the latter
case, and present numerical regular and black hole solutions for the former.

PACS number(s): 04.20.Jb, 04.70.Bw, 11.25.Mj

I. INTRODUCTION

Following the early investigation of a variety of field
theories coupled to Einstein gravity [1-4], it was widely
believed that only the charges carried by massless gauge
fields could characterize the exterior of a black hole. The
notion that mass, angular momentum, and "electric" and
"magnetic" charges are the only distinguishing features
outside the horizon became known as the no-hair conjec-
ture.

In light of the no-hair results and several no-go
theorems for classical glueball solutions with [5] and
without [6] gravity, the recent discovery of both black
hole [7—9] and smooth [10] solutions of SU(2) gauge
theory coupled to Einstein gravity came as quite a
surprise. The fields in such solutions decay suSciently
quickly that no global gauge charges are present, and
hence no imprint at spatial infinity is required for the ex-
istence of nontrivial gauge field structure. It was later
shown that static solutions with global electric or mag-
netic gauge charges can only occur in the embedded
Abelian sector of this theory, and that non-Abelian dyons
and dyonic black holes are prohibited [11]. Further
analysis has also established a sphaleron interpretation of
some smooth solutions which bridge topologically dis-
tinct Yang-Mills vacua [12,13], and the inherent instabil-
ity of such saddle-point field configurations may help ex-
plain the generic instability of all Einstein-Yang-Mills
(EYM) solutions against collapse into Schwarzschild
black holes [14—17]. Despite their lack of stability, these
non-Abelian solutions still present a chaBenge to the no-
hair results, which are not based on the issue of stability,
but rather follow from the careful analysis of several
theories which are fundamentally di8'erent in character
from EYM theory.

In fact, the advent of these solutions has helped inspire
a rethinking of the no-hair conjecture, as we11 as a wealth
of other solutions incorporating non-Abelian structure.
In [18],a distinction is drawn between primary hair, such
as the structure arising from the familiar continuous
gauge charges, and secondary hair [19],which exists sole-
ly as a result of primary hair sources and hence does not
constitute a fundamentally new characteristic. ' This dis-
tinction is well illustrated by the two recent approaches
to Einstein-Yang-Mills-Higgs (EYMH} theory: for the
"black holes inside magnetic monopoles" of [20—22], the
't Hooft-Polyakov monopole charge supports a core of
secondary (triplet) Higgs hair outside the horizon, while
for the case of SU(2} coupled to a Higgs doublet (the mas-
sive vector theory of the standard model less hyper-
charge) [23], gauge and Higgs hair exist near the horizon
without global gauge or topological charges. Thus, a dis-
tinct observer in the latter case would not be able to dis-
tinguish such an object from a Schwarzschild black hole
of the same mass, which motivates an alternate definition
of primary hair: when the properties of a black hole are
no longer completely determined within a given theory by
the mass, angular momentum and continuous gauge
charges, the additional parameters required to describe
the black hole expand the space of states and give rise to
primary hair [18].

Although the latter case and the original EYM black
holes are examples of such primary hair, neither seem to
share the stability properties of the well-known primary

We do not discuss quantum hair in this paper, although this
distinction applies equally well to the quantum and classical
cases.
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hair solutions. The black hole solutions of the spontane-
ously broken gauge theory appear to be unstable because
of their similarity to the sphaleronlike EYM solutions of
[10,7—9], and their interpretation as gravitating generali-
zations of the familiar SU(2) sphalerons: the weak-
gravity limit of one class of solutions is equivalent to the
YMH configuration of [24,25]. On the other hand, when
we ignore Hawking radiation, the secondary hair solu-
tions of [20—22] are stable for the same reasons fiat-space
monopoles are stable. Thus, the physically important
condition of stability appears to be more closely tied to
the stability properties of corresponding flat-space soli-
tons (when such solutions exist) than to the classification
of structure as primary or secondary hair. Another illus-
tration of this correlation between black hole and flat-
space soliton stability, the linearly stable [26] black hole
solutions to Einstein-Skyrme theory [27,28], merits spe-
cial attention. Although stable ffat-space and gravitating
Skyrmions carry nontrivial topological charge (the wind-
ing number), black holes with chiral hair are topological-
ly trivial [28]. Hence [27,28] provide examples of stable
black holes with primary hair which, unlike the mono-
pole black holes of [20—22], are asymptotically indistin-
guishable from Schwarzschild black holes. Thus such
solutions violate even the "weak" version of the no-hair
conjecture, which posits the uniqueness (within a given
theory) of stable black hole solutions for particular values
of mass, angular momentum, and global gauge charges.
Although a systematic approach to the existence of black
hole solutions with solitonic flat-space counterparts has
been formulated [29], a systematic treatment of black
hole stability and its relationship to soliton stability is
currently 1acking. The search continues for stable black
hole solutions to physically relevant theories, even several
years after the first challenge to the no-hair conjecture
opened the door to rich, new structure in the exterior of
black holes.

On a separate front, some recent progress in black hole
physics has stemmed from the generic modifications to
gravity mandated by string theory, a promising candidate
for a consistent theory of quantum gravity which also
provides predictions that challenge general relativity well
below Planck scale curvatures. In particular, the pres-
ence at low energies of the dilaton and axion, two scalars
with unusual couplings which appear in the same super-
symmetric multiplet as the graviton, has precipitated a
host of new black hole solutions with secondary hair and
interesting properties. In charged dilaton black holes
[30—35], the Maxwell field acts as a source for dilaton
hair, which leads to modifications of causal structure that
help shed light on several puzzles peculiar to the
Reissner-Nordstrom spacetime, as well as some mysteries
'of the later stages of Hawking evaporation. Because the
axion couples to I'F-E B, black holes with both electric
and magnetic charge can support axion hair [36,37].
Another axion coupling is of the Lorentz Chem-Simons
form, so that background metrics reffecting nonzero an-
gular momentum can give rise to axion hair [38], which
in turn acts as a source for dilaton hair [39], without the
need for U(1) charges. The more general case of dilaton
and axion hair for Kerr-Newman black holes [40,41]

combines all of these scenarios. There have also been re-
cent studies of the more physically interesting case of a
massive dilaton coupled to an Abelian charged black hole
[44,45]. It is widely believed (but not required) that the
dilaton acquires a mass when supersymmetry (SUSY) is
broken: a precisely massless dilaton violates the
equivalence principle [33,44], and the dilaton cannot have
a mass with SUSY intact. Since SUSY is broken at low
energies in any event, it seems essential that all of the
above scenarios be reexamined with a massive dilaton,
though the details of the SUSY-breaking mechanism and
the dilaton potential are not yet mell understood.

The convergence of these separate efforts in black hole
physics was inevitable. A natural question to ask is
whether non-Abelian gauge fields in the low-energy string
context lead to black holes with primary hair, and if so,
whether the sphaleron nature of previous non-Abelian
solutions is modified enough by the "stringy" scalar fields
to yield stable solutions. It was the desire to answer these
questions, as well as to explore more general black hole
solutions to what could be the physically relevant theory,
which motivated the present work. While this paper was
being completed, however, we became aware of recent
work in Einstein- Yang-Mills-Dilaton (EYMD) theory
[46—50] which in part grew out of solutions to the Yang-
Mills-Dilaton (YMD) system [51,52]. Although these
efforts involve strictly massless dilatons, some of our nu-
merical results overlap with those of [49] in which the au-
thors examine a special case of the more general dilaton
coupling y explored in [46,47]. We draw comparisons to
these numerical results wherever appropriate, and discuss
the implications of this recent body of work for the stabil-
ity of our solutions.

This paper is organized as follows. In Sec. II we intro-
duce the bosonic part of the low-energy heterotic string
action, which we take to first order in the inverse string
tension after compactification to 3+1 dimensions. %e
specify the generic form of dilaton-axion potential which
arises when SUSY is broken by gaugino condensation,
and obtain a simplified string-inspired theory by requir-
ing spherical symmetry and staticity, and by assuming
that the characteristic curvature of solutions is sma11

compared to the Planck curvature. The spherically sym-
metric metric and SU(2) connection Ansatz are then used
to fully specify the theory, which is rewritten in terms of
dimensionless parameters and variables before the gen-
eral field equations are derived in Sec. III. In Sec. IV we
classify all possible non-Abelian solutions to the theory
and ignore the embedded Abelian solutions, which corre-
spond to some of those discussed above but with dilaton
and axion masses included. Our analysis indicates that
only two scenarios can admit solutions: a massive dilaton
coupled to a single magnetic Yang-Mills degree of free-
dorn, and the full theory of a massive dilaton and massive
axion coupled to non-Abelian electric and magnetic
fields. Although the latter theory is numerically intract-
able we outline a possible solution scenario before exten-
sively analyzing and presenting numerical regular and
black hole solutions to the former theory in Sec. V. In

2For reviews of these and related developments, see [42,43].
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the course of analyzing this theory, which we label
EYMD theory, we also note the equivalence of scaling ar-
guments for the existenre of solutions [53] and a judicious
combination of the field equations. In Sec. VI we specu-
late further on solutions to the most general non-Abelian
scenario, briefly address the issue of stability, and offer
our conclusions.

II. PRELIMINARIES

A. Low-energy string action

Our starting point is the bosonic part of the low-energy
heterotic string action [54];

I

S=fd x& g— ——e ~ H,&H"" —8—Dd"D 2V—(D,s) —e r (2g F'g'""" R)— (2.1)

terms assume the formwhich is expressed in the Einstein frame for a metric with
signature (

—+++ ). The action has been expanded to
first order in the inverse string tension a'=2« /g, where

g is the gauge coupling for the Yang-Mills (YM) curva-
ture F =dA +gA A A and « =8nG H„„«. is the field

strength tensor associated with the three-form

1
[
—28 QB~Q —4» V(g, s)] .

2K
(2.7)

It is important to note that y is the only coupling param-
eter that we fix in our analysis; all others (including the»
factor now appearing in front of V) will be absorbed in
the definition of other dimensionless fields and parame-
ters.

The field s appearing in V is the dimensionless pseudo-
scalar Kalb-Ramond axion, the only truly dynamical
mode of the three-form field which we introduce via

a'
H =d8+ (Q3t —g Q3r},

SK
(2.2)

where 8 is the two-form potential in the gravitational su-
persymmetric multiplet. 031 and Q3& are the Lorentz
Chem-Simons (LCS) and Yang-Mills Chem-Simon s
(YMCS) three-forms,

4p cr1
Hpg= e Cps 8 s

2K
(2.8)

Q,t = Tr[coAR —
—,'coA~Aco],

Q3„= tr[A AF —
—,'A A A A A ],

(2.3)

(2 4) With this relation and the dual of the Bianchi identity

which arise in string theory in order to remove gauge and
gravitational anomalies. Here tr and Tr denote trace
over the suppressed gauge and Lorentz indices, respec-
tively, and the normalization for 03& is chosen for gauge
generators satisfying tr(T'TJ)= —25'J. R in Q3t is not
the first curvature scalar R„„g""that appears in the ac-
tion; it is the curvature two-form

dH = [Tr(R AR) —g tr(F AF) J
8K

(2.9)

which follows from (2.2) we can express the three-form
field strength as a sum of axion kinetic and topological
current contributions

——'e ~H H"'
pvA,

R pv =dcopv+Np A (2.5) 1

2K
——e ~B sB"s —2«V ('H)" (2.10)

1 4

2 p

where co „„=(e„)V, (e„)b is the spin connection for the
tetrad (e„)b. The other gravitational scalar appearing in
(2.1) is the Gauss-Bonnet (GB) curvature combination:

RP"P~ —4R R 8"+R 2
PvpcT pv 7 (2.6)

which also helps to cancel anomalies and is second-order
in derivatives of g„. The dilaton field D couples to other
fields through exponentials with coupling strength y and
has a self-interaction V whose form will be specified
below. The normalization of V has been chosen to ac-
commodate a choice of coupling and a field rescaling: we
take y =&2» and define the dimensionless dilaton field
P=»D/&2, so that the dilaton kinetic and potential

I

where «V„('H)"=( a' /8)[ V„(' Q3i)" gV„('Q3r)"—] is
comprised of the four-divergence of two topological
currents,

V„('Q3t )"= 2V& Tr[(co(&—R—„} 23co(„co(~&}}—)d—' " ],
(2.11)

Vp( Q3r ) 2 Vp tr[( A (zF„„}——,'gA („A ( Az}})e~ ~']

(2.12)

which can also be expressed —Tr(R„„R" )/2 and
—tr(F„„F" ) l2, respectively. With this replacement, the
action becomes

IS=,fd x& gR ,'e ~B„—sB"s 28„$B—P—4«V(g,—s}+ [ ,'s—d''" (R ~—~R„~+2gF'j',F„'„'}
K

20(2g2F~ig~'~iiP& R 2))
2 P (2.13)
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The above equation is a general expression for the low-
energy heterotic string action to first order in the inverse
string tension for @=&2m. We now briefiy examine
some features of this form of the action while arriving at
some useful simplifications.

Note that when V=O, all sources for the dilaton and
axion fields are O(a'), so the fields themselves are first or-
der in a'. Furthermore, the sources are comprised of
gauge field and higher-derivative curvature combinations
on an equal footing. Even for fixed s, for which the topo-
logical current terms arising from the YMCS and LCS
three-forms contribute nothing to the equations of
motion, we must include the GB term P if we are to ac-
count for the gauge field strength. From this perspective,
the Reissner-Nordstrom solution (corresponding here to
the Abelian sector of some non-Abelian field strength and
fixed dilaton field) should, for example, be viewed as an
O(a') correction to the Schwarzschild solution, subject to
GB curvature corrections at the same order [41]. The
gravitational efFect of such curvature terms for fixed (t

has been examined in [55—57], although in d =4 the GB
contribution enters purely as a boundary term and can be
ignored. The inclusion of the dilaton, however, intro-
duces an R source term in the dilaton field equation
even in d =4, and such scenarios have also been studied
[58—62]. Several authors have neglected the GB curva-
ture contribution in their investigations of the dilaton
while consistently keeping the gauge field strength source
[31—33] by considering solutions whose mass scale is

large compared to the Planck mass. In some cir-
cumstances, such as the extrema1 limit of charged dilaton

black holes [31,63,64], one ean satisfy the mass scale as-
sumption but introduce a diferent inconsistency: in this
regime, a' is necessarily large, so the dropping of higher
order terms in the effective string action is no longer
justified [32]. Mindful of these concerns, we neglect the

A. 2 term in the action by assuming that the mass of solu-
tions is large relative to the Planck scale, but that o." is
small enough for (2.13) to remain reliable.

For a dynamical axion s with or without the dilaton we
again encounter higher-order curvature and gauge field
source terms. For spacetimes with rotation, the LCS
combination gives nontrivial contributions to the dilaton
and axion equations of motion, and analytical solutions
for dilaton and axion hair outside Kerr [38,39] and
Kerr-Newman [40,41] black holes have been obtained.
For the four-dimensional (4D) Schwarzschild spacetime,
spacetimes related by a conformal transformation, or any
4D spacetime with a maximally symmetric 2D subspace,
the LCS three-form either vanishes or is exact [65]. Thus
for the static, spherically symmetric spacetime we investi-
gate below, the remaining O(a'R ) term in the action can
be ignored.

The inclusion of the potential V introduces an addi-
tional mass scale into the problem, so that the dilaton
and axion need not be O(a'). None of the other preced-
ing observations are qualitatively altered by its inclusion,
but in choosing a potential our discussion must move
from generic features of heterotic string theory [in static,
spherically symmetric (3+1)-dimensional spacetime] to a
more specific model. Before doing so we summarize the
simplifications outlined above by rewriting the action

S = d x& gR —
—,'e ~—B sB"s —2B PdPP 4aV(g, s)— .1

2/C
2 p p

I
2 pipvg ( g (i)F(i) ) g (i) g (j)g (k)

)
—2(i 2F(i) ~(i)pv]

p jI. pv 3 Igk p v A. pv (2.14}

where we have used the fact that F„,F""is a four-divergence [Eq. (2.12)] in a topologically trivial spacetime to recast
the axion-gauge field coupling in a more convenient form.

B. Dilaton-axion potential

%e choose a potential of the form which arises when supersymmetry is broken by gaugino condensation in the hid-
den sector of the theory [66]:

a (a+ 1) —(a —a ) a+ 1 —(a —a in 3
V(g, s)=p 1+ e " —2 e " cos sa (a„+1)2 a„+1 2b()

(2.15)

where a —=3 exp( —2$)/bo, a corresponds to the dilaton
Geld at a potential minimum, and bo is determined by the
one-loop P function of Q, the subgroup of the hidden sec-
tor gauge group which precipitates supersymmetry
breaking. We take Q to be the entire hidden sector gauge
group that arises in these scenarios, E8, for which

bo =90/(16m ). The parameter )M is a scale related to the

vacuum expectation values of the gaugino pair yy and
the three-form H „,where I, n, and p are indices on the
internal compact manifold K only; we treat it here as a
free parameter. %'ith the axion field set to its vacuum
value, s =bo(4mn)/3 for integer n, this potential has
been used by some authors to investigate inflation and
cosmology in the context of superstring theories (see, e.g. ,
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[62, 67 —69]). A plot of V for s =s„and $„=0is shown

in Fig. 1(a); it has a minimum at p =p„and achieves a lo-

cal maximum at P & P„before V~O for P~ —ao.

ds = —T (r)dt +R (r)dr

+r (d8 + sin 8dy ), (2.16)

C. Metric

We parametrize the metric for a static, spherically
symmetric spacetime as

v(f, s )r~

where R(r}—:(1 —2Gm (r}lr) ', m (r) is the total mass

energy within the radius r, and we have set c =1. To de-
scribe black hole solutions we define 5= —ln(R /T) and
rewrite (2.16}as

26m (r)
ds = — 1— e dt

T

(0) + 26m (r)
r

0.5 +r (d8 + sin 8dy ) . (2.17)

0—

-I .5 0.5

Regularity at the origin requires T(0) & ao and
R'(0), T'(0}=0, while regularity at the event horizon at
r =r„ is satisfied by m (r„)=r„l26 and 5(r), ) & ~. We
also impose the condition of asymptotic fatness, which
implies R(r), T(r)~1 as r~~ or, equivalently,
R (r)~1 and 5(r)—+0 By e. xploiting the freedom to re-
scale the time coordinate, however, we can make the
boundary conditions more suitable for integrating the
Einstein equations. Rather than requiring To:—T(0) and

5p =5( pg ) as initial conditions, consider rescaling t such
that

'/($, s)/p.

I I I I I I I I I 1
I I I I I I I I I

R (0)=1, T(0)=1,
m (rh )=rh /26, 5(rI, )=0 .

(2.18)

The condition of asymptotic fatness then translates into
T ( ~ ) = I!To and 5( 00 ) = —5o, and we can determine To
or 50 from the behavior of a solution as r ~ 00.

D. Gauge connection and YM curvature

In this paper we investigate the simplest choice of
non-Abelian gauge group SU(2). The most general spher-
ically symmetric SU(2) connection can be written in the
form [70]

-t.5
I I I I I I I I I I I I I

C)

A
S

A =—
I as„dt + br„,dr + [d rs (1+c)r+]d8—

FIG. 1. The dilaton-axion potential (2.15), which is of the
form used in the study of SUSY-breaking via gaugino condensa-
tion in string theory. In (a) the rescaled axion field

9 =s (3/4~ho ) is fixed at one of the degenerate minima
s=s„=n for integer n, and the dilaton at spatial infinity is

chosen to be $„=0. Solutions to Einstein-Yang —Mills-dilaton

theory correspond to P rolling monotonically to the minimum

from the right, confined to a region where Vis well approximat-
ed by leading-order (II)—p„) behavior. In (b) the dilaton is fixed

at P = (()„and the potential assumes the form
V~2[1—cos(2ms)]. A possible solution scenario for the full

theory involves the axion traversing one of the maxima in the 2
direction and monotonically approaching an adjacent minimum
as P~P„ from above. The fact that such non-Abelian dyonic
solutions are conceivable critically depends on the presence of
both the massive axion and massive dilaton fields.

+ [(1+c)vs+dr ] sin 8'], (2.19)

where g is the gauge coupling and (r„,r&, r ) is the anti-

Hermitian SU(2) basis projected along the polar coordi-
nate directions: v.„=r-~, etc., and the matrices satisfy

[r„rb]=E,b, ~, (we deviate from the gauge generator
normalization used above for this section only). From
(2.19) we note that c and d are in general dimensionless
functions of r and t, while a and b have dimension [L]
The connection has a residual gauge freedom under
transformations of the form U= exp[P(r, t)r„], where

P(r, t) is an arbitrary real function, which we can use to
set b=O while preserving the form of the connection.
Because the field equation for b becomes a potentially
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useful constraint equation after gauge fixing, we leave 6
nonzero for now and demand that the component func-
tions of A depend on r only.

Following [70] we express the c and d degrees of free-
dom in the connection in complex scalar form:

c (r) —id (r) =f (r) exp[iP(r)],

which will make the non-Abelian character of the system
more transparent. The YM curvature F =d A +g A A A

for the connection (2.19) is then

af dt —+(b —P') dr h [( costs s—inP~~)d8+( sinPre+ cosP~&)dp]
1 T, f

+— dr h [ —( sinP~&+ cosP~ )d8+( costs si—nP~ )dy]
1 f'

+— a' —r„d—t A dr + (f 1—)v d 8—h d y
g R (2.21)

which we have expressed in a convenient orthonormal
tetrad basis:

dt = dt, dr —=—R dr,T

(3.1)

and that from (2.13) all terms in 2i~ X have dimensions

[L] . Thus, if we factor (a'/4) ' out of 2a X, define

g =2/v'a', and define the dimensionless quantities

d8=—r dO,

dq—= r sin8dp .

(2.22)

P =K p /g, r=gr

Note that the dependence of F and A on the gauge cou-
pling indicates that g only enters the simplified form of
the action (2.14) through the inverse string tension a'.

8=—a/g, b —=6/g,
(3.2)

III. GENERAL FIELD EQUATIONS

With the choice of Ansatz (2.19) for the gauge connec-
tion and (2.15) for the dilaton-axion potential we are in a
position to express the action in terms of the axion, dila-
ton, metric, and gauge degrees of freedom. Before
proceeding we relax the condition c = 1 and examine the
dimensionful quantities in the action in order to cast our
equations of motion in dimensionless form.

Noting that [g]=[T][M] '~'[L] '~', [p'] =[T]
[M]' [L] ', and that ir=&8mG /c has dimensions
[it]=[T][M] ' [L] ', we observe that the parame-
ters appearing explicitly in the action have dimensions

1 26m
R (r) c r

2m1—
r

for m(P)—:gGm (gr)/c . (3.3)

Expressing the curvature scalar R„g"' in terms of the
metric functions R ( m, r ) and T ( r ) we find the following
expression for the gravitational and matter action of our
static, spherically symmetric system:

then i —g (2~ X. ) can be written purely in terms of di-
mensionless fields and parameters. To do this explicitly
we also define a dimensionless mass-energy function m
based on the metric (2.17):

c 1 1 d RS~= dt cP — —1 r
gG R dr

4

fdtdr —m (e )
gG cfog'

SM= dtdr — —e ~ +— +r V(g, s) —s'ft(f 1)— —1 ~ (rs') 1(r ') 2 R
M

—2P T2 1 («)'+f2~
R

fl2+f 2(b Pl)2 1 22 R
(1 f)—

2P 2 T
(3.5)

where the prime denotes derivative with respect to r and P'= i~ V. The solutions to the dimensionless field equations ob-
tained from this action give us solutions for any g )0 (or 0 & a' & ~ ) through scaling relations
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a (r)=g&(gr), m (r)= m(gr), 9 (r)=9'(gr),
g t ~ ' s

g
(3.6)

where 7 denotes any of the functions I s, p, f,13,R, T,5] and we have ignored b since it will be eliminated by gauge fixing.
Hence the radial structure of solutions for a given value of g is the same as that obtained from (3.5), but it occurs at a
physical radius r =rig with physical scales given by (3.6) and p =gp /~. For notational simplicity throughout the
remainder of the paper, we drop the carets on dimensionless quantities with the understanding that everything is now
dimensionless unless otherwise specified.

By varying (3.5) with respect to the fields we obtain the dimensionless, static field equations

d rP'
dr RT

BV(p,s) zR 1 ~(rs') +2 q4, 1 [f,2+fq(~, b)i]+ (1 f )— T2 1 (ra') +f2 2 0
BP T 2 RT Ri 212 2

~
'

(3.7)

1e'& 2,
dr 4 RT

BV(p, s) 2 R d
Bs T dr

(3.8)

e ~ ra—' —2e ~f2aRT —s'(1 —f2)=0,
dr R

(3.9)

~
—2Pd e

dr RT

d e'& f '[P' b]—=0,

[P' b]' -2 2

T2 R2f — f +T a f ——s'af =0,
T

(3.10)

(3.11)

and the constraint equation

e
—2P f (P' b)=0 . — (3.12)

Even without using the remaining gauge freedom to set b =0, we find that f (P' b) disappea—rs from the field equa-
tions. The constraint equation with gauge fixing does give us additional information, however: it implies that our
gauge choice eliminates an additional degree of freedom (c and d are related by a multiplicative constant) when we insist
f+0, a criterion for non-Abelian solutions. In the Abelian sector f=0, it and the P field equation indicate that P is an
arbitrary function of radius, which refiects the fact that c —=d —=0 in (2.20) entirely eliminates the need for the complex
scalar phase. In either case we can now eliminate f (13' b) from our an—alysis.

To obtain the Einstein equations we can either utilize the energy-momentum tensor

K
T„,=e ~[2F„"F'„'r——,

' „g„F„'g'""'] +'e ~d„sBp+2d„pd„p g„„[,'e ~Bye—Ys+d —/Bi'P+2V(g,s)], (3.13)

or use the explicit dependence of (3.4) and (3.5) on some pair of independent metric functions (m and 5 will do as well as
R and T) to derive the gravitational equations directly. By whatever route, we find the (tt) and (rr) Einstein equations
can be expressed in the form

2 2

1 — f'+ +T — 1 — ( ') +f
2T 2 T

1 4, 2 1

8
e~(rs') +—(rP') + V(g,s)r—

2
(3.14)

1 —2m T = zy — 1 —2m f'2+ f +T2 1
1

2m (,)z f2 2

T T T 2T 2 1'

2m1—
r

e~(rs') + (rP')—+ V(g, s)r—
8 2 T

(3.15)

For black hole solutions we replace the T' equation with

5'= ——e ~ f' + 1—2 -2 2 2kB

T T
e sf a +—e 4'(rs') +—(rP')1, 1

8 2
(3.16)
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+2)2
1 — f' +

2
—2V(g, s)r —+2e ~ — 1 — (ra') +f a RT

r 2r T 2 r

which indicates that 5 monotonically decreases with radius. From this fact and the boundary condition 6( ~ ) =0, we
can conclude that 5 ~ 0 and thus T(r) ~ R (r) ~ l. Another metric relation useful for predicting solution properties is

d r
2e

dr R T

which may be obtained by combining the field equations. In preparing the equations for integration we will also require
the relation

2Td 1

R dr RT
2m —e ~ r 1 — (ra') T+2m, 2 2 (1 f )'—

r r
2V(g—,s)r' (3.18)

Finally, in classifying the possible solutions of this system of equations, it is useful to rewrite (3.9) as

e ~ r(a—)' =e ~ (—ra') +2e ~f a RT+s'(I —f )a .
2 dr R

(3.19)

The positivity properties of the right-hand side of this
equation, coupled with boundary conditions, can be ap-
plied to establish no-dyon results in the non-Abelian sec-
tor analogous to those for EYM [11] and EYMH [23]
theories.

IV. TAXONOMY OF NON-ABELIAN SOLUTIONS

In previous studies of SU(2) gauge theories coupled to
Einstein gravity, many authors have noted that f—=0 in
the gauge connection ansatz gives a theory with Coulom-
bic [i.e., U(1)] magnetic and electric charges. As dis-
cussed in the introduction, a great deal of work has re-
cently been done on the corresponding Abelian sector of
the low-energy heterotic string action. Although the ad-
dition of the SUSY-breaking potential (2.15) could pro-
vide interesting new features for some Abelian sector
solutions (see, for example, [44,45]), we choose not to ex-
plore them here. Our focus is the non-Abelian sector of
the theory (2.14), and in this section we consider the vari-
ous possibilities for static, spherically symmetric solu-
tions with f%0.

The most general class of possible non-Abelian solu-
tions to the field equations corresponds to [f,a, s, P]
behaving as nontrivial functions of radius. By studying
the asymptotic behavior of the field equations we find
that the condition f%0 requires f ( ao )= 1 and
a ( ao ) =0, so the asymptotic values of the gauge functions
for fundamentally non-Abelian solutions are identical to
those of pure EY'M theory [10,7—9]. This important re-
sult follows directly from (3.9) and (3.10) when we make
some physically reasonable assumptions. Namely, we as-
sume that f (r) and a (r) are bounded and admit expan-
sions in powers of (1/r) as r ~ ~, and that the massive
fields P and s exponentially approach finite asymptotic
values fixed by V [recall that we are free to choose P„but
the axion must assume the value s „=bo(4m n ) /3 for
some integer n]. The latter assumption allows us to ig-
nore P' and s' at large r, so the f and a equations resem-
ble those of EYM theory asymptotically. With this
simplification, the proof of the desired result can be di-

t

vided into three parts. If we take a( oo )%0 in the asymp-
totic form of the f equation, then we find that the only
nontrivial solutions are oscillatory about f =0 and
infinite in energy. If we take a(oo)=0, on the other
hand, then f (oo)=0 implies f (r)=0 to all orders in
(I/r), and nontrivial solutions are possible only for
f (~)=1 and li m„r a'=0. Finally, if we take

f (~ )=1 in the asymptotic form of the a equation and
solve, the result a(r)=constX1/r satisfies the above
constraint on r a', and we have established a consistent
set of asymptotic conditions for fundamentally non-
Abelian solutions. Although a mathematically rigorous
proof in the spirit of [71]for EYM theory might be possi-
ble, the analysis is complicated by the s' term in the alter-
nate form of the a equation (3.19); as we discuss below,
the fact that this term can be negative at finite r precludes
the no-dyon result [a =—0 for f2( ~ ) =1]which simplifies
the EYM proof. Note that since the decay of a is too
rapid to give a net electric charge and f2( oo ) =1 corre-
sponds to zero magnetic charge, the most general non-
Abelian solutions are not dyons in the usual sense but do
possess both electric and magnetic fields.

To actually obtain a general non-Abelian solution, we
must also study the behavior of the field equations as
r~O for regular particlelike solutions and r~r& for
black hole solutions. Such an analysis demonstrates that
the initial data [f"(0),a'(0), (0s), P(0)] or
[f(rh), a'(ri), s(rh), Pz)] are required to integrate regu-
lar or black hole solutions, respectively; in either ease
finite energy density restrictions force the initial value of
a to vanish. Exploring a system with four integration pa-
rameters is impractical numerically, but we can demon-
strate analytically that solutions are not forbidden to ex-
ist, and we can anticipate some of the properties of poten-
tial solutions. The analysis of the general case is best
done, however, after the simpler possibilities are sur-
veyed. To describe the less general non-Abelian solu-
tions, we reduce the number of integration parameters by
ansatzing each of the fields [f,a, s, P] to an appropriate
constant value in turn. We will find that only the
a =const and s =const cases admit nontrivial solutions,
though the P—= const Ansatz provides much insight into
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the characteristics of the most general non-Abelian solu-
tions.

A. f =const

The asymptotic behavior of the field equations restrict
the acceptable values to f = 1, and the alternate version
of the a equation (3.19} can then be used to establish
a =0. The proof relies on the fact that the right-hand
side of (3.19) is non-negative for f:I, —so that a is
strictly increasing beyond the initial radius for nontrivial
solutions. The boundary conditions a (0}=a ( rz )

=a( ao )=0, however, require that a decrease toward
a =0 asymptotically. It then follows that the only solu-
tion consistent with the a field equation and the boundary
conditions is the trivial solution a —=0, and we are left
with a theory of two gravitating scalar fields. Through
the metric relation (3.17) and the same line of reasoning
used to establish a =0, we can now show that only trivial
solutions follow from f=const. Since the right-hand
side of that relation is never positive, nontrivial solutions
obey the condition T &0 beyond the initial radius. Be-
cause we also noted in the discussion of (3.16) that
T(r) ~ T( ~ )= 1, the only way to reconcile monotonical-
ly increasing T with the boundary conditions is to require
V(g, s)—:0: only the trivial solution P—:P„, s =—s„ is

compatible with both the boundary conditions and the
field equations.

B. a =const or s =const: EYMD theory

s'=4
z

e ~[a(1 f )+c,.], —RT 4 2

T
(4.1)

By setting either a or s to a constant value we arrive at
a theory with one gauge degree of freedom coupled to a
massive dilaton and Einstein gravity, which we denote
Einstein- Yang-Mills-Dilaton (EYMD) theory. In the
s =—const case, the potential requires s =—s„, and the a
equation (3.19) with s'=0 subsequently yields a =0 when
we employ the reasoning introduced in the f=const dis-
cussion. Alternately, if we take a =const the boundary
conditions require a =0, and the field equations then im-

ply s =—s „for f +1. Note that the right-hand side of the
metric relation (3.17) again involves a —V contribution,
but now there are positive f-dependent terms which
make possible the decrease of T(r) toward T( ~ }=1re-
quired for nontrivial solutions. To obtain regular or
black hole solutions to EYMD theory, we must fix P„
and choose the integration parameters {f"(0),$(0)} or
If (r„),P(r„)}, respectively, such that the fields match
the appropriate boundary conditions upon integration.
We provide a detailed discussion of this procedure, which
is often referred to as a two-parameter "shooting" pro-
cedure, and obtain numerical solutions in the next sec-
tion.

It is interesting to note that in the absence of the
dilaton-axion potential, solutions to EYMD theory are
the most general non-Abelian solutions to the full field
equations: dyonic non-Abelian solutions and nontrivial
axion solutions are prohibited when V:—0. The s field
equation (3.8) in this case implies

where c,. is a constant which acts asymptotically like a
Coulombic charge, giving a contribution to the total
mass-energy proportional to c, /r at large radius.
Though nonzero c,. appears acceptable at large r, it
violates regularity of the metric at the origin for regular
solutions and at the event horizon for black hole solu-
tions, since m'(0) and 6'(rz) diverge as (rs') diverges.
When (4.1) with c,.=0 is substituted into the alternate
form of the a equation (3.19), the right-hand side is non-

negative and a =—0 by the arguments outlined above. It
then follows from (4.1) that s =const, the value of which
is no longer fixed by the minimum of V, and the general
theory reduces to EYMD theory for a massless dilaton.
A closer look at the field equations, however, reveals that
a =—0 and s=—const also follows from the weaker condi-
tion (BV/Bs) =—0: the no-dyon result is a consequence of
having an axion-independent potential, rather than no
potential at all. The possibility of non-Abelian solutions
other than the EYMD class relies crucially on the pres-
ence of a massive (or at least self-interacting) axion field

in the theory.

C. P—:const

At first glance, setting P equal to its asymptotic value

P„appears to reduce the number of independent matter
fields from four to three. The exponential coupling of the
dilaton to the gauge field and axion kinetic terms in (3.7)
instead make the dilaton field equation a nontrivial con-
straint which must be satisfied by the remaining fields

{f,a,s}. Using this constraint and some field
redefinitions, it is possible to cast the resulting theory in a
form which requires only two independent integration
parameters. Although the constraint equation appears to
make the theory numerically tractable, it is also responsi-
ble for the nonexistence of solutions: by differentiating
with respect to r, we find that the constraint is incompati-
ble with the /=const field equations. Because this
theory shares important features with the most general
non-Abelian case, we develop the two-parameter formu-
lation and show explicitly that solutions cannot exist.

The prospect of black hole solutions with nontrivial
gauge degree of freedom a motivates us to define
A =aRT: based o—n the expression (3.16) for 5', a must
vanish at least as fast as 1/R T near the horizon for the a
term not to diverge and violate regularity requirements.
It is also convenient to introduce 8—:esa' in lieu of A',
to which 8 is related byA, A 1, , m—5' = (A' —5'A) —2 —A .

R~ R2 r

(4.2)

In terms of these new variables, the self-interaction and
kinetic contributions of a to the action interchange roles;
the 1/R factor which appears with (a') is absorbed by
the definition of 8, and reappears in the f a term:

2 2

T — 1 — (ro') +f a = r8+—
2 r 2 R2

(4.3)
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This combination also appears in the Einstein equations
(3.14) and (3.15) and the metric relation (3.17},which are
unchanged apart from the substitution of (4.3) and

The interchange of kinetic and potential roles is
sensible when we consider the expression for 5',

8'= ——e "[f' +f A )+ e "—(rs'), (44)
r 8

which now involves only kinetic terms and is no longer
explicitly dependent on the metric functions. Because the
relation between ( and A' depends explicitly on 8', it is
convenient to use (4.4) in place of the Einstein equation
(3.15) when considering regular as well as black hole solu-
tions.

Through the metric derivative equation (3.18), which
becomes

2 g d e
r e

dr
m —2())„1 z z (1—f2)=2r ——e " —r 8+
r 2 2r

—V(g„,s)r (4.5)

(}V(f,s)
Bs

r~C'+2rh —2f A —e "s'(1—f )=0,2$

for this case we can also express the axion and gauge 6eld equations in a form independent of either T or 5:

r
—6s"+ r +r e~

R 2
—4e "

( (1 f ) —2ff' — =0 (4.6)

(4.7)

r f„, 2 sd e"+ re
dr f'+ (1 f )+ r —(A —e "s') f =0 .

R
(4.8)

The potential for P:—(I}„may be written in the form

4 1 3
V(g„,s) =2p 1 —cos — s

2 bo

4. z 1 3=4p sin — s
4 bo

(4.9)

which is proportional to the derivative with respect to P at (t)„:
() V(())),s)

B(t
= A ~ V(()I)„,s) =

rtp= 1

a„(a„+1}+2
V(P„, ), (4.10)

where a„=—3 exp( —2(I}„)/ho and we have introduced A
&

to denote the constant of proportionality. This property of

the potential allows us to write the dilaton constraint equation in the virial-like form

f'+ (1 f')' 1 2 p f—'A'
g2 2r2 2 g2

1 4&„(rs') 1—e " + —A V(g„,s)r =0 .
4 R& 2

(4.11)

We can use this constraint to help integrate the system comprised of the m' and 5' equations, Eqs. (4.6)—(4.8), and the
6 —A relation (4.2): it reduces the number of integration parameters to two and provides a check as we integrate the
system.

There are reasons to expect nontrivial solutions to this theory. We can formally integrate (4.6) to obtain an expres-
sion analogous to (4.1),

e„(rs ), f, A s, ~ 2 ~~~ s(-„)
2 av(~, s)

which upon substitution into the alternate form of the (2 equation (3.19) gives us

—5 2 2"- —' 2~'+f A
dr R2 2 R2

+—s'(1 f)—1, 2 A
R

2 2=2e-' "- 'r2~'+ f—
R

~ BV((t.„,s)—s' 'der' "'
e ""

00 Bs
(4.13)
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—s' 'cubi r' "'
e "" &0

BV( „,s)

00 s
(4.14}

for the entire trajectory, and the right-hand side of (4.13)
is not positive definite. In order that a be nontrivial,
however, the magnitude of the contribution (4.14) must
be large enough that the integral of the right-hand side of
(4.13) be negative as r~oo, which from the original
equation (3.19) is required for the asymptotic decrease of
a 2 toward zero. From (4.12}we must therefore have

1 4$„(rs'), ~ V(4 s} (, )

4 R'

=s'(1 —f ) &0 (4.15)
R

at least as r ~ oo, from which we conclude A(1 —f ) & 0
asymptotically and A &0 if f approaches f (oo)=1
from below. We can infer some general features of f by
rewriting the f field equation as

In the two previous cases considered we used the mani-

fest positivity of the right-hand side of this equation to
help establish A =8=0 and s =const as the only accept-
able solution. Now we must contend with the final term
in (4.13},the sign and magnitude of which depend on the
details of the potential. For the pure axion potential de-
picted in Fig. 1(b) we can imagine a solution scenario in
which s increases from some initial value
4m n (bo/3) &so &4m(n +1/2)(bo/3), moves over the po-
tential maximum at s,„=4m(n + 1/2)(bo/3), and comes
to rest at the closest degenerate minimum
s„=4m(n+1)(bo/3). With s'&0 along the entire solu-
tion trajectory, the sign of the final term in (4.13) is com-
pletely determined by the integral factor. For
s,„(s&s„, the integrand is negative definite. For
so & s &s,„, the sign of 8 V/Bs changes but the integrat-
ed contribution from r & r (s,„) initially dominates.
Since the monotonically increasing factor r e in the in-
tegrand weights the r & r(s,„)contribution more heavi-

ly, and ~BV/Bs~ is symmetric about s =s,„, we can in
fact conclude

—5
1 sd e —zy (fz),
2 dr

R

(4.16)

From this expression we find that solutions must obey the
inequality

f 1+r (A —e "s')
R

(4.17)

2P
when A &0 or A &e "s', since outside this region the
right-hand side of (4.16) is positive definite and f cannot

2P
approach unity asymptotically. For 0&A &e "s', on
the other hand, f can exceed the bound in (4.17) but
must then approach f (oo) monotonically, so the in-

equality simplifies to f & 1. Further implications follow
from the original form of the f equation (4.8), which indi-
cates that ff"&0 when f'=0 and (4.17) is satisfied re-
gardless of the value of A: solutions can exhibit oscilla-
tions about f =0 at finite radius, but they cannot possess
turning points once the inequality bound is exceeded.
Combining these observations we can construct a simple
picture for the s' &0 trajectory that is consistent with the
field equations: A &0, with a single extremum and in-
crease toward A ( oo ) =0 as the negative contribution
(4.14) begins to dominate in (4.13), and f & 1, with oscil-
lations and nodes in f possible. Had we begun with
4m(n +1/2)(bo/3) &so &4n(n +1)(bo/3} and demanded
that s decrease monotonically toward s„=4m.n(bol3),
we would have found an identical picture with A —+ —A.
Thus, in the presence of a sufficiently massive axion field,
non-Abelian dyonic solutions for the P —=const theory ap-
pear possible.

Unfortunately, the constraint (4.11) that follows from
the P:—const Ansatz is not consistent with the rest of the
field equations. It is not obvious from inspection whether
solutions to (4.6}—(4.8), (4.2), and the Einstein equations
satisfy (4.11) for some choice of the parameters Ip, g„).
Because this set of equations without the constraint is
sufficient to determine solutions, we should be able to ver-
ify (4.11) by utilizing the entire set. When we take the
derivative of (4.11) with respect to r and use the other
field equations to eliminate higher derivatives, we obtain
the relation

[(1—f')'1'
(f2) +~@f2

r2
—3s' (1 f )' +(1 f )8— —

R

+—e "f' e "fA ——e "(rs')—
r 4

1 r
2

+ ( lnT)'
R R

,+ 2 1 4&„(rs')s'+ ——e
r 4 R2

—
A~ V(g„,s)r =0 (4.18)
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which should be satisfied along with (4.11) for all r .It appears that no choice of I p, g„) or further simplification with
the field equations can make (4.18) an identity for nontrivial gauge and axion fields, and we conclude that the $=—const
case admits only trivial solutions.

D. General non-Abelian solutions

The failure of the P—=const system to admit nontrivial solutions is closely tied to the constraint created by a non-
dynamic dilaton field. How does the situation change when we relax the restriction that P—:P ?

Exciting the dilaton degree of freedom restores the original form of the potential (2.15), but the expansion of the po-
tential in powers of P =—P

—P„can be written in the form

a +a +2 u +a„+6+ +4 a —1
V(g, s)=V(g„,s) 1+ P+ P +O(P ) +p, a„P+O(P ) .a +1 2(a„+1) & +1

Thus 8 V/Bs deviates from the purely axionic form discussed above, but only by a P-dependent scale factor. This scale
factor breaks the symmetry of

~
3 V/Bs~ about s =s,„,but it is of order unity when P is near the minimum at P „,so the

reasoning behind (4.14) for the s' 0 solution scenario remains intact when the expansion (4.19) is valid. Relaxing
P:—P„also gives dynamical exponential couplings in the field equations, but neither these changes nor the scale factor
seem to qualitatively alter our solution discussion in this P regime. The dilaton kinetic term is restored in 5,

5'= ——e ~[f' +f2A ]+ e"~(rs') +——(rP')
T 8 2

(4.20)

and similarly in the expressions (3.14) and (3.15) for m' and T', while the axion and gauge field equations acquire addi-
tional terms linear in P':

r „2r+4rg' 2 sd e
5 + +r e

dp'

—4~ 2 BV(p s)
Bs

—4e ~ C(1 f ) 2ff-'—
R

=0, (4.21)

f'+ (1 f )+r (A— e~s—') f =0 .2A
R

r 8'+(2r 2r P')6 2f—A —e—~s'(1 —f )=0,
r f + 2r'P'+ i s d e+r e
R2 R2 dr R2

(4.22)

(4.23)

Equations (4.12), (4.13), and (4.16), which were derived from the axion and gauge field equations, retain their form, and
the inequalities (4.14), (4.15), and (4.17) which followed from them are still valid if we take P„~P(r)

Although the solution scenario explored in connection with P =—P„appears promising when the scale factor in (4.19)
is convergent, the general non-Abelian case still requires an analysis of the dilaton equation

1 s d e 2 ~2, (rP') BV(g,s) q 1 4~ (rs')
2 dr g2 g2 BP 2 R&

(4.24)

which we have rewritten in a form analogous to (4.16).
Since the inequalities derived above provide no informa-
tion about the relative magnitudes of the terms on the
right-hand side of (4.24), it is difficult to extract an in-

equality restricting the behavior of P, but we can make
some observations. Since BV/BP(0 for P(0 and near
the minimum, the potential contribution and possibly the
gauge field contribution to the right-hand side of (4.24)
are positive, which tends to drive P away from the vacu-
um. For P) 0 near the minimum, these signs reverse and
make a monotonic decrease of P toward )=0 more like-
ly. Although our preceding analysis does not require
such monotonic behavior for the dilaton, it is certainly
consistent with the solution scenario and provides a po-
tentially viable alternative to the P =Q„Ansatz.

The complexity of the full string-inspired theory is well
reflected in our inability to proceed any further analyti-

cally. It appears that the question of existence of non-
Abelian solutions with nontrivial dilaton and axion fields
can only be settled by further numerical study. Although
we have not actually obtained numerical solutions in the
general case, we have considered a strategy for simplify-
ing this four-parameter problem. In past (two-parameter)
shooting problems, we have found the method of "shoot-
ing to a fitting point" a convincing way to confirm our
numerical results. In this method, shooting parameters
at both fixed points (r =0; rt, and r = ~ ) are chosen so
that the field equations can be integrated toward a com-
mon midpoint, at which the two trajectories join smooth-
ly if the parameters correspond to a solution. Though
this procedure requires more than double the original
number of shooting parameters, the deviation of the tra-
jectories at the midpoint can be used to choose new
shooting parameters via a multidimensional Newton-
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Raphson algorithm. If the initial shooting parameters
are reasonably close to a solution, this procedure is
moderately successful at converging on the solution, but
it is dificult to match the trajectories with an error com-
parable to the global tolerance of the integration routine.
Once the neighborhood of a solution is determined, this
appears to be a more promising approach to finding the
solution than the method employed in the next section, at
least for three or more shooting parameters. We hope to
utilize this procedure in the future to find solutions to the
full string-inspired theory.

By closely examining some simplifying Ansatze we
have been able to narrow the possible solution classes to
two: a massive dilaton coupled to a single magnetic
Yang-Mills degree of freedom, which we denote EYMD
theory, and the gauge field coupled to both massive dila-
ton and massive axion fields. Although we could only
speculate about solution scenarios for the latter theory, in
the next section we present and analyze numerical solu-
tions to the former.

V. EYMD THEORY: REGULAR AND
BLACK HOLE SOLUTIONS

A. KYMD equations

d f' f(1 f ) R— f'(h/r)'
dr RT r~ T RT (5.1)

and the dilaton equation assumes the form

As we observed above, the Ansatze s'=0 or a' —=0 in
the non-Abelian sector give a =—0 and s =—s „ for both reg-
ular and black hole solutions. To obtain numerical solu-
tions to the resulting EYMD system, it is instructive to
reexpress the dilaton as (tp(r): h(—r)/r+P„, where h/r,
which we also denote ((), is the deviation of P from its vac-
uum value. With this change and the simplifications
a =—0 and s =s„=ho(4mn)/3, the remaining gauge field
equation becomes

r

d r (h/r)'
dr RT

2R —2(hlr+P ) f' [1—f ]2 RT" r~ T (5 2)

whe~e V'=8 V/Bp I, =, . The Einstein equations (3.14) and (3.15}for EYMD theory are
T

2() «+0„—)
1

2m f,2+ 1 (1 f )
—1 2m

r 2 r~ 2 r

2

h' —— + V(g, s„)r2,h

r (5.3)

2m Tr 1— =e
r T

—2(h/r+y ) 2m, 2 1 (1—f2)2
00 ft2+

r ' 2 r
m 1 2m1—

2 r

'2
h' —— + V(((),s„)rh

r
(5.4)

with the auxiliary equation

—2(h/r+P ),p 15'= ——e at ft2+
r 2

2
h

h I

r (5.5)

replacing the T' equation for black hole solutions. To simplify the integration of the equations of motion, we use the
metric derivative relation (3.18) to express the gauge field and dilaton equations in a form independent of T or 5:

) ] 2 2
r 1 — f"+ 2m —e " —2V($ s )rr r (5.6)h' —— f'+(1 f )f =0, —h

2 2m „2(hlr+p ) (—1 f ) —3, hr 1 — h "+ 2m —e —2V((I),s„)r h' ———V'(P, s„)rr

r 2r

Although it is the h-dependent form of the field equations
we choose to integrate we pass freely between P, ((), and h
in our analysis when describing the dilaton. —2P (f')' + (f2 1)f2

RT r~T

gauge field equation may be rewritten

1 d e ~(f )'

2 dr RT

B. Analytical features and boundary conditions (5.8)

We can anticipate the general features of the solutions
and boundary conditions from the field equations. The

Since the right-hand side of this equation is manifestly
positive for f ) 1, the only nontrivial solutions having
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2( p2 t)I

2 dr RT
(rP')' 2~

f" (1—f')'-
RT R2 2r2

finite f must satisfy f ( 1. By expanding the left-hand
side of the equation we can see that solutions satisfy
ff"&0 for f'=0 and f (1, which is characteristic of
oscillations about f =0. As in past studies with non-
Abelian gauge fields coupled to gravity (see, e.g. , [7—10])
we expect that solutions will be classifiable by the number
of nodes which occur at f oscillates.

From the f field equation we note that the boundary
conditions for the gauge field include

~f ~

=1 and f =0 as
r ~~. The asymptotic behavior of the field equations
reveal that the latter condition implies f—:0, which for
black hole solutions corresponds to an Abelian gauge
Geld carrying purely magnetic charge. %ithout the dila-
ton, this case just reduces to the Reissner-Nordstrom
solution, while with the dilaton we recover the type of
theory studied in [44,45]. The f ==0 case for regular solu-
tions is forbidden by boundary conditions at the origin:
regularity of the metric only allows the possibility

If (0)
~

=1. If we attempt to set
~f ~

—:-1,corresponding to
the theory of a massive dilaton coupled to Einstein gravi-

ty, we find that both regular and black hole solutions are
forbidden: according to (3.17), T must be monotonically
increasing, but boundary conditions provide the incom-
patible restrictions T(0)) T(~) and T(r~)) T(~). We
conclude that for fundamentally non-Abelian solutions to
EYMD theory, we must have ~f(~)~=f(0)~=1 for
regular solutions,

~f ( ~ ) ~

= 1 and f ( rh ) unspecified for
black hole solutions, and f (r) ( 1 for all solutions.

To better understand the expected behavior of g we
rewrite the dilaton equation

~ f ~
approaching unity after crossing at least once through

f =0.
In addition to providing a sketch of the behavior of the

fields for regular and black hole solutions, the preceding
analysis provides insight into the behavior of the fields
when we are close to a solution. To qualify what we
mean by "close," we introduce some details of the ap-
proach to solving this system numerically. For regular
solutions, finite energy density (v /g )T~ and regularity
of the metric at the origin give the following behavior as
r-~O:

f ( r) = —1+ ,
' f"(0)r —+0( r ),

h (r) =h'(0)r +O(r'),
Zm (r)=O(r

1nT(r) =O(r'),
where f"(0) and h'(0) =$(0) are parameters we must ad-

just to "shoot" a solution to match the asymptotic condi-
tions ~f(~)~=1 and P(~)=0, and we have taken

f (0)= —1 and used the rescaled initial condition
T(0)=1 introduced in (2.18). All the terms not shown
explicitly in (5.10)—(5.13) depend only on the two shoot-
ing parameters and the free parameters p2 and (()„associ-
ated with V. Similarly, for black hole solutions we can
use the metric condition 1/R (rh )=0 for m (r„)=rh/2
to expand near the horizon:

f (r)=f (rz )+f '(ri, )(r rl, )+O—((r rI, ) ), (5.14)—

h (r)=h (r„)+h'(ri, )(r rh )+O((r —
rh ) ), (5.—15!

m (r)=rh /2+m'(rh )(r —
r& ) +O((r —

rh ) ), (5.16)

—V'(P, s„)r —,(5-.9)
5(r) =0+5'(r„)(r —

rh )+O((r rl, )-'), — (5.17)

where P—= (h/r) is the deviation of P from the asymptotic
value fixed by the minimum of V. For P(0 near the
minimum, V' &0 and the right-hand side of (5.9) is posi-
tive definite, which implies that pP is strictly increasing.
Although V' changes sign before it vanishes as P~ —oo

(cf. Fig. 1), the gauge field contribution to (5.9) is ex-
ponentially amplified in the same limit, so the details of
the potential should not alter the conclusion that the re-
gion (t &0 is forbidden. We can also predict that solu-
tions exhibit a monotonic decrease from P )0 to the vac-
uum /=0. This is unambiguous in the p, =0 case, for
which (5.2) indicates P is strictly negative, but nonzero
V' introduces the possibility of turning points. Carrying
out the derivatives on the left-hand side of (5.9) demon-
strates that for P'=0, P" &0 if the gauge field contribu-
tion dominates V', while P")0 if V' is dominant. It fol-
lows that P'=0 can only occur at a plateau in the former
case, but for V dominant a turning point in P is possible.
Since the gauge field contribution is exponentially
suppressed and V' grows even larger as P increases, it ap-
pears that a turning point is a precursor to diverging P
and cannot be a solution feature. To summarize, we ex-

pect all solutions for which P( ~ ) is finite to be character-
ized by P rolling monotonically to zero from above, and

where f (r„) and h (ri, ) are now the shooting parameters,

rl, is a free parameter, and the field equations (5.3)—(5.7)

give the derivatives f'(rh ), h'(rh ), m'(rh ), and o'(ri, ) as

functions of these parameters.
On the basis of past investigations [7—10] we expect

solutions (for a particular choice of free parameters) to
exist only for discrete values of the shooting parameters.
Using the above analysis we can anticipate the asymptot-
ic behavior of the fields for a small neighborhood sur-

rounding those discrete values in shooting parameter
space. Since f exhibits oscillatory behavior for f (0,
and f )0 leads to diverging f, we should look for a pa-
rameter range in which ) f~ approaches unity at large r
and either exhibits a turning point or exceeds

~ f ~

= 1 and
diverges. If for such a parameter range P approaches 0
and (for p nonzero) then undergoes a turmng point and
diverges, or becomes negative and diverges, then our
neighborhood should contain a point which gives the
correct asymptotic behavior. %e explain the shooting
procedure in more detail below.

Although the vacuum values
~ f ( ~ ) ~

= 1 and P( ~ ) =0
are shared by all solutions, the behavior of the field equa-
tions or r-~ ~ provides interesting distinctions between
massless and massive dilatons. For massive dilatons, the
leading-order asymptotic expansions of the fields and



50 EINSTEIN-YANG-MILLS THEORY WITH A MASSIVE. . . 879

metric functions are

f(r}-+ —1+—c
r

—m&r
h (r) a-e

(5.18)

(5.19)

2M
R (r)= 1 — + +0

r2 r
(5.29)

which has the form of the Reissner-Nordstrom solution,
but is absent from the unrescaled form of the other:

—2P
c em(r)-M—

r 3
(5.20)

1 2M 1
1 — +0

T (r) r r
(5.30)

lnT(r)- ln +1 M
Tp r

—2 It'

5(r)- —5 +-1ce
p r4

(5.21)

(5.22)

Noting that h „=lim„„(—e r P'/R ) we can obtain
an integral expression for h „[49]from (5.2):

—e
sr P'

R

2= 8 V
m =2a~2

gp2

a„—1
'2

a„+1 (5.23)

forces the dilaton to approach its asymptotic value ex-
ponentially as we expect. For a„/1 we find it con-
venient to use m& in place of p as a free parameter. In
the massless case jM =0, the expansions are

1 c(6M+2h„—c)f(r)-+ —1+—+-
r 8 2

Mh„ 1 h„(8M —b „)h(r)-h„+ +-
r 6 2

1 h2„1 Mh2„
m(r)-M ——

2 r 2 r2

(5.24)

(5.25)

(5.26)

1 M MlnT(r)- ln + +
2Tp r r

4 Mh2
5(r) —50+ —— +—

2 r 3 r

(5.27)

(5.28)

where we have included the first two nontrivial orders in
1/r to help demonstrate that the constant h„plays the
role of a Coulombic charge [49] in one metric function

where c and a are positive constants, Tp and 5p are the
rescaled metric constants introduced in the discussion of
(2.18), and the +(—) sign in (5.18) corresponds to an
even(odd) number of nodes in the function f (r). Note
that the presence of m&, defined by

—2(hlr +p ) f'~ [1—f2]2
dr e 2e

ro R2 22

V (5.31)

We have included V' in this expression for the sake of
generality, and have denoted the lower limit rp to em-
phasize that (5.31) applies to both regular and black hole
solutions, since ( —e r P'/R ) vanishes at ra=r), as
well as rp=0. It is difficult to extract any further infor-
mation about h „ from this expression alone, but we can
derive a simpler expression for h „and other useful rela-
tions by applying the scaling argument techniques of [53]
and utilizing the metric relation (3.17). Before doing so
in the next subsection we address an ambiguity which
arises from the definition of m &.

In the above discussion we are careful to quality
"massless dilaton" by the condition p = V=O, because
(5.23) indicates that there are two ways to achieve mass-
less dilatons in this theory: m& vanishes if either p =0
or a„=1. The latter case, corresponding to
(()„=—,

' ln( 3/ho ) =0.830, is also special in another
respect. If we consider a power series expansion of V
about a =a „,we find that the coefficient of the nth order
term varies as (1/a„)'" ",so a„=1 marks the radius of
convergence of the potential expansion. This would
present a restriction if we chose to work with the repre-
sentation Y—=e ~ for the dilaton preferred by some au-
thors, but for our field choice the power series expansion
is well behaved for all a„~0:

V(g, s„)=p a„
a„—1 (a„—1}(a„—3)

P ao
( +1)

(4[1—lla„]+a„[a„—3][7a„—33]) ~+p4a„g +O(P7) .
12(a„+1)

(5.32)

From this expression we find

V(g, s„}=4p (P P„) +O(($ —P„)—)—(5.33)

for a„=1 and P near P„=—,
' ln(3/bo}, so the potential

resembles that of a A,P theory with )(,—=3!p in the vicini-
ty of its minimum, while for all other positive values of
a the potential has P and P contributions. When we
examine the asymptotic behavior of the field equations
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for this special case, we find the same leading order
behavior as in (5.18)—(5.22) with the exception of the ex-
pansion for h (r):

gi(r)=k ~Q(Ar),

which lead to the decompositions

r3

—2$
1 c~e

h (r)- ——
2

1 c e "(2M+c}
5 4

U~(r) =g 1, "U„(ir),

C. Further analysis

To further explore the EYMD system analytically we
make use of a scaling technique developed in [53] for reg-
ular solutions and extend it to study black hole solutions.
We find that the same results may be obtained from the
metric relation (3.17), but we investigate the equivalence
of the two approaches elsewhere [72].

The general procedure of [53] involves defining a non-
local energy functional

M= f dr(e m)'= f dr e X' ', (5.35)
0 0

where

Uk(r)
5(r)=2f dr

k

(5.36)

is a sum of (non-negative) contributions from the kinetic
terms Uk of the matter fields. Demanding that M be sta-
tionary with respect to variations of the independent
matter fields then yields the Euler-Lagrange equations
when we treat X' ' and 5 as functionals of those fields,
and we restrict our attention to theories for which the ac-
tion may be written

S~ fdtdr +V e
U

R
(5.37)

where U and V are independent of the metric functions.
The combination X' '= m

' —5'm in (5.35) is just m ' with
the metric function R (r) set to unity; with natural units
restored, X' ' is equivalent to an effective matter La-
grangian with 6 =0. By introducing radial scaling trans-
formations for the independent matter fields 1( of the type

Note that the behavior of the field is completely deter-
mined by the gauge field to leading order: although the
presence of a cubic V' in (5.7) eliminates the possibility of
nonzero h which arises in the p =0 case, it does not
otherwise infiuence the asymptotic behavior of h (r) until
several orders beyond those shown in (5.34). Most
significantly, in the u „=1 case the dilaton field can only
match the boundary conditions if P & 0 near r = oo,
which from our discussion of (5.9) is inconsistent with the
behavior dictated by the full dilaton equation for Po) 0
or P(rh ) & 0. The same arguments also apply to the range

P,„&$0,$(ri, ) & 0, where P,„is the location of the local
maximum of V (see Fig. 1). For the range P & P,„,where
V')0, the dilaton field is not strictly forbidden to in-

crease, but the exponential amplification of the gauge
field term relative to V' in (5.7) and (5.9) makes a solution
with P increasing toward /=0 highly unlikely. After
checking this possibility for a wide range of initial condi-
tions, we believe that no solutions to EYMD theory exist
for a„=1.

we can find the A,-dependent energy functional M(A, ) and
obtain the constraint

=0 (5.40)

Depending on the positivity properties of X' ' and the
various scaling constants [I, ,pl, ], the constraint can be
used to establish nonexistence theorems or useful virial-

type relationships for the kinetic and potential contribu-
tions of the matter fields. In the present case,

U =e ~(f') V =e (1 f2)2
f f

(5.41)
U&= —,'(rP'), V&=r V(g, s„),

and the constraint dM/d A, ~i =,=0 assumes the form

f dr(yI+y&)

=2f dry/ —2f dr5fy 2f dre Vp
0 0 0

(5.42)

where 5& is the contribution to 5 from UI, y =e m, and

y/—=e (U/+ V/), y~ —=e (U~+ V~), (5.43)

co —$( y" )M= dr e X' '+e ' m(ro) .
Po

4, 5.44)

By treating X' ', 5, and 5(ro) as functionals of the matter
fields, we again recover the correct equations of motion
from the variation of M. The corresponding constraint
equation is

are the gauge field and dilaton contributions to y'.
The approach to black holes in [53] involves defining

an effective Lagrangian X' ' on a fixed black hole back-
ground and a different scaling for the matter fields,

Pi(r/ri, )=g((rIrh) }. Such an approach yields a com-
plicated integral relation which generically involves
In(r/rl, ) in the integrand. Although still quite useful in

establishing nonexistence theorems, the result of the pro-
cedure is not very useful as a pseudovirial relation. Since
we are interested in a means of simplifying integral rela-
tions such as (5.31), a relation analogous to (5.40) for
black holes is more appropriate for our purposes. To ex-
tend the regular solution analysis, we write the energy
functional as a sum of horizon and nonhorizon contribu-
tions:
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dM dr g X~(
' l.—1 —gpk5k e —e m'(ro)ro —e(0) 5

—5(rp)

=0.

—5(rp )' m(ro) gp„5„(ro)
k

(5.45)

In the notation introduced above, this constraint can be written for EYMD theory as

f dr(yI+y&)=2 f dr yI —2f dr 5Iy' —2f dr e V& 2—e ' m(ro)5&(ro) roe— [VI(ro)+ V&(ro)],
rp rp rp rp

(5.46)
—5(rp )

the left-hand side of which is equivalent to M —e ' m(ro).
With the addition of the definition x —= rP, t—he integrated dilaton equation (5.31) in this notation becomes

e — x =2f dr[yI 5&y—'] f—dr r e V'+2 f dr(5&y)' .
0 0

(5;47)

Substituting the constraint (5.46) then gives
—5(rp)' [V~(ro)+ V&(ro)]+2y (ro)5&(ro)h„=f dr(y&+y&) —f dr r e (V' —2V)+2[5&y]p +rpe

rp rp

=M —e ' m(ro) —dr r e (V' 2V)+—roe
—(0) " 2 —5

0

With p =0, this establishes the simple result h „=Mfor regular solutions and

s(r„) — zy«„) [1 f r—i ]

2rh

—5(rp )' [V~(ro)+ V~(ro)] .

1

2

V„,M= f drr e (V' —2V)= fd xQ g„, e—
0

for black holes with ro = rz =2m (r& ).
For nonvanishing potential, Eq. (5.48) also gives the interesting regular solution relation

(5.48)

(5.49)

(5.50)

where e ~V„,=—V and "str" describes quantities in the string frame, which is related to our Einstein frame by the con-
formal transformation g„=e ~g„"':

f d xg g„,e ~(—R,«+4d„)B"P 4V«(g, s)+— )~f d x& g(R —2B—„(tB"(t—4V(g, s)+ . . ) . (5.51)

(5.52)

If there is any significance to the suggestive form of (5.50), it is not readily apparent.
The regular solution scaling analysis of [53] and its extension to black hole solutions provide an analytical relation

among the solution parameters and the integrals of the dilaton potential which can be verified numerically. Since this
nontrivial information about the system must be realized by the field equations, we expect that it might be obtained
directly from them. A closer examination of the metric relation (3.17}reveals this to be the case. In the notation of the
scaling discussion, (3.17) may be rewritten

2 ( lnT)' =2yI+2y5I —2e V& .
dr R T dr

Using the T equationr, 1 m(lnT}'= — (U +U )+(V +V )—— (5.53)

to express the boundary terms we obtain the relation

r2e —5
M+ ( lnT)'

R r=r 0

—5(rp ) —5(rp )=M —e m (ro)+roe [VI(ro)+ V&(ro)]

=2f dr yI+2 f dr 5&y
—2f dr e V&, (5.54)

rp rp rp

which is identical to the scaling result (5.46) with the 5Iy contribution integrated by parts. This result provides the al-
ternate expressions
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2 —6
h „=M+ ( lnT)'

fd'xQ g—„,e
„z —s

( lnT)'
R r=

&

(5.56)

for Eqs. (5.49) and (5.50) generalized to black hole solutions. Note that the different signs of the kinetic contributions in
m' and r ( lnT)'/R indicates that the result from the functional approach (5.45) agrees with (5.54) only when ro is the
radius of an event horizon, not some arbitrary radius. It is also interesting to note that the regular solution parameter
values correspond to the r& ~0 limit of the black hole values, which is consistent with solution properties observed in

previous studies of non-Abelian gauge fields coupled to Einstein gravity [7—9].
We can use the combination of the metric relation (3.17) and the dilaton field equation to determine an additional

analytical relation. The combination

d r'e '
dr g2

[P' —( lnT)'] =r e ( V' —2V) (5.57)

can be integrated with the help of (5.48) to yield a useful relation between (t and T:

R 2 r s(i') „R2 r es(F)
[P(r)—P„]=lnT(r)+(M —Ii„)f dr + f dr f ~y e @~'(V'—2V) .

QO r 00 r 00
(5.58)

In the p =0 case we have the simple regular solution feature P(r) P„—= lnT(r), which can be easily verified numeri-
cally, while for black holes the above equation gives

R 2(r )e s(r )

[P(r) P]= 1nT(—r)+(M —h „)f dr (5.59)

The generic relation for a nontrivial potential is obtained from (5.58) by setting h „ to zero.

D. Numerical regular solutions

As we observed above, solving the EYMD equations numerically is a two-parameter shooting problem. In terms of
the shooting parameters b —=f"(0)/2 and Po=—P(0) =[h'(0)+P„] the boundary conditions (5.10)—(5.13) become

f(r)= —I+br + ,', b( 24b e ——' 9b+12Vo+—4VO)r +O(r ),
h (r) =($0—P„)r+ —,'( Vo —12b e ')rs+ —„', Vo(20VO+3VO' )r ~

+,~b e '( —576b e '+288b —432VO+48VO —36VO )r +O(r ),

(5 60)

(5.61)

2m(r)= 4b e '+ —', Vo r + ,', (b e '[ ——144b+96Vo—48VO]+4VO )r +O(r ), (5.62)

lnT(r)= —(2b e ' ——'V )r +—'(20V +3V' )r

„',b e (28—8b e '—144b+144V +048V )r0+O(r ), (5.63)

where Vo, Vo, and Vo are the potential and its deriva-
tives with respect to P at P =go, and the shooting param-
eters satisfy b)0 and $0&$„. We evaluate the initial
conditions at r =10 and use global error tolerance
10 ' in an adaptive fifth-order Runge-Kutta ordinary
difFerential equation solver, adjusting (b, go) for fixed P„
and m& and integrating toward r = Oo. For a range of b
and $0 in the vicinity of a solution, the fields behave
much as we anticipated: the gauge field either undergoes
a turning point at

~f~
5 1 or diverges, and P either under-

goes a turning point at P ~ 0 or becomes negative and
diverges In t.he p =0 case, the property P'~0 excludes

P turning points, and we instead observe a transition be-

tween monotonic decrease to P(00)=0 and the diver-
gence P~ —~ over a small parameter range. In terms
of h, the finite dilaton behavior is characterized by a turn-
ing point after exponential decrease toward b ( ~ ) =0, or
the approach toward a positive constant value h „when
p2 —0

In the massive case, finding a neighborhood of some
discrete point (b, go) which exhibits these properties does
not guarantee that one has found a legitimate solution to
the EYMD system. The key to determining whether the
results of the shooting procedure constitute valid solu-
tions lies in the exponential behavior of h. For h to decay
exponentially to zero, the gauge field coupling term in
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—m&M —m&r (5.64)

describes the asymptotic behavior of the dilaton more
precisely than (5.19), so that

5h" 1
h

) g )+2M
h

II
h

II (5.65)

gives a fair measure of the deviation from ideal behavior.
Another useful quantity is

hh" 1

h" h"
2R —2(h lr +) ) f' (1 f )—e +

T 2@2

(5.66)

which directly measures the contribution of the gauge
field coupling term to h". In the asymptotic regime of a
valid solution, we expect ~b,h "/It "~ &&h" &&1 and (5.66)
to be comparable to (5.65), but the maximum acceptable
value of either quantity is somewhat ambiguous. Since
the size of the contributions to the dilaton equation
which are not accounted for by the deviation formula
(5.65) are roughly of order h "/r, and r —10 is the
characteristic radius at which f obeys the asymptotic
form (5.18), we adopt the criterion

~
5h "/h "

~

+ 1/r = 10 . We find that criterion gives the consistent

(5.7) must be insignificant. Since this contribution is posi-
tive definite at finite radius, we must rely on its algebraic
approach to zero via (5.18) to satisfy this condition. As

p is increased from zero, the radius at which h exponen-
tially decays behaves roughly as r —1/m&, and eventually
encroaches upon the fixed region where the gauge contri-
bution algebraically decays. In other words, the screen-
ing of the Coulombic dilaton charge h „occurs at a ra-
dius r —1/m& which approaches the zone where the local
magnetic charge density vanishes. According to (5.7),
once m& is large enough that these regions overlap, the
gauge field source drives the dilaton away from its vacu-
um value and solutions are not possible. For a range of
m& near this overlap, h appears to decay exponentially
and satisfy the numerical solution criteria, but close ex-
arnination reveals deviations from exponential behavior
which prohibit extrapolation to h ( ec ). To determine a
maximum allowable mass (mI),„ in practice, we must

set a limit on the deviation of h from the behavior re-
quired to match the boundary conditions. By considering
next-to-leading order terms in (5.7) we find that

result (m), ),„-1/r —10 for the classes of solutions we
investigate.

When actually obtaining solutions, we adjust the shoot-
ing parameters until the solution bracketing conditions
(the turning points and divergent behavior of f and h

which characterize the solution neighborhood) indicate
that the intervals containing the discrete solution values
are smaller than our rnachine accuracy. To achieve this
precision as m& is increased, we truncate h by taking—m&rh~0 or by attaching an exponential tail h~ae ~ at
the turning point; this allows the integration to proceed
so that the f bracketing condition can be determined. To
justify this procedure, we apply the deviation criterion
(5.65) at the turning point and verify that h behaves ac-
cording to (5.64) to better than one part in 10 . Since h

tends algebraically to h„rather than experiencing a
turning point when the dilaton is massless, the truncation
procedure is unnecessary and the numerical pitfalls posed
by the final term in (5.7) disappear.

The results of the shooting procedure for the choice
$„=0 are displayed in Fig. 2, with the massless and

(mI, ),„solution properties summarized in Table I. Like
the results of previous studies [7—10], solutions can be
classified by the number of nodes k exhibited by the non-
Abelian gauge field function f. Although an infinite
number of solution classes exist, we focus our attention
on the lowest odd- and even-k classes. For both of these
classes we performed an identical shooting procedure
with the toy potential V(P)=m&P /2 for comparison.
As Table I indicates, the results agree to better than one
part in 10 for the narrow range of allowable dilaton
masses, which indicates that the higher-order P terms in
the potential expansion (5.32) are negligible for this
choice of P„. Although the total mass M measurably in-
creases as k increases and m& varies over the allowed
range, the only substantial change in the function plots
occurs for h (r). It exhibits a maximum at small radius
and approaches h „at large r, where the Coulornbic dila-
ton charge is exponentially screened progressively closer
to the decay zone of the gauge field. The plot of the actu-
al dilaton field h (r)/r, along with the gauge function f (r)
and the mass-energy. m (r), exhibits nontrivial variation
only in the decades surrounding r = 1: the characteristic
radius of the solution is fixed by the string coupling,
which in our dimensionless variables mirnics the choice
g =2/&a' = 1. Note that the maximum dilaton mass,
which we only determine to one decimal place using our
imprecise criterion, decreases as the characteristic radius

TABLE I. EYMD regular solutions $„=0.
4o 1n T(0)

1

1

1a

2
2
2'

0
3X10
3X10

0
2X10-'
2X 10

1.075 524 3
1.071 677 2
1.071 778 4
8.362 081 5
8.339 161 1

8.339 517 1

0.932 283 9
0.930484 2
0.930 534 7
1.792 793 5
1.791 417 6
1.791 440 0

0.576 985 6
0.577 504 9
0.577 492 9
0.684 833 2
0.685 3146
0.685 306 5

0.576 985 6
0
0

0.684 833 2
0
0

0.932 283 9
0.932 277 1

0.932 276 2
1.792 793 5

1.792 824 5

1.792 814 5

'Run with V(P) = 2m)$' for comparison.
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E Y MD k =
I Re gul ar

2

l, 5
lag lo( r )

EYMD k=2 Regular
2 I I I I I I I I I

I
I I I I I I I I I

(b)

4,0

of the gauge field decay zone increases with increasing k.
The solution parameters M, h „,and lnT(0) in Table I

are determined with the aid of the asymptotic expansions
(5.18)—(5.21) and (5.24}—(5.27). In the massless case they
provide a good check of some of the analytical relations
determined above. In particular, h „=M to better than
seven figures in accordance with (5.49), while the predic-
tion of (5.59) that P(r) = ln T(r) is confirmed at r =0 (and
other points) to an accuracy exceeding the global error
tolerance 10 ' . The agreement of numerical and analyt-
ical results is compelling evidence for the general accura-

cy of our shooting method; the numerical results of other
authors who recently considered the massless case [49] do
not clearly exhibit these relations, though they are in gen-
eral agreement with Table I.

As values of P „ in the range —0.8 5 P „80. 8 are used
in our procedure, solutions appear to be related to the
$„=0 solutions by the scaling of the radius and some
physical parameters. To understand and quantify the
scaling, we consider the simplified case of the massless di-
laton. %hen we ignore the axion and the dilaton-axion
potential in the action (2.14), the dilaton explicitly ap-
pears only in the exponential coupling to the non-Abelian—2iti
field strength. If we absorb the constant e " into the
gauge coupling g and then rewrite the theory in terms of
dimensionless variables and parameters, we recover the
$„=0theory but with g~e "g. From the definitions
of the dimensionless quantities (3.2) —(3.3), we therefore
expect the radial structure of the $„%0solutions to scale

according to r ~e "r. The mass energy should similar-

ly scale as m —+e "m, but the amplitude of the dilaton
deviation field P and the gauge field should remain un-
changed. It follows that the dilaton shooting parameter
shifts such that P(0)=go —P„ is unaffected, while the

2P
gauge field parameter scales as b ~be " to compensate
for the scaling of the initial value of r . Though the in-
troduction of the potential and its complicated depen-
dence on P „changes this picture, solutions approximate-
ly obey the same scaling relations for the range of P„ex-
amined, with (m&),„~e "(m&),„as expected from
(3.2) and the relationship (m& },„-1/r discussed above.
As P„approaches the critical value —,

' in(3/bo }=0.830,
at which the potential (5.32) reduces to the A,P form
(5.33) to leading order, solutions become harder to obtain
numerically and appear to be forbidden at —,

' ln(3/b„, } for
reasons examined above. For i}}„above this critical
value, the leading order m&P term is restored in the po-
tential expansion and solutions are again possible, though
we do not explore the scaling properties of this solution
region in depth.

K. Numerical black hole solutions

0
—IQ l. 5

log (r )

4.0

To find numerical black hole solutions we use the con-
ditions

FIG. 2. One- and two-node regular solutions to Einstein-
Yang-Mills-dilaton theory for the dilaton potential of Fig. 1(a).
The connection function (1+f (r}), total mass-energy m (r}, di-
laton P(r}, and Ii (r}=rP(r} are plotted as functions of radius for
a range of dilaton masses 0~m&((m&), „. The maximum
mass (m&),„ is reached as the exponential screening of h(&),
which asymptotically resembles a Coulombic charge h „=h ( ~ )

in the m& =0 case, occurs near the zone where the local magnet-
ic gauge charge vanishes. The other functions do not vary ap-
preciably in this mass range. The exact correspondence be-
tween h „and M=m ( ao ), as well as P(r}—P„and the metric
function lnT(r), is proven analytically in Sec. V for the massless
dilaton case.

h (rl, )
+

f (&q }]'
m'(r„) =e " + V($(rg )}r„,

2rp,

(5.68}

(5.69)



50 EINSTEIN-YANG-MILLS THEORY WITH A MASSIVE. . . 885

TABLE II. EYMD black hole solutions $„=0.

1

1
18

2
2
2'

0
2X 10-'
2X10-'

0
3 X10-'
3X 10-'

—0.593 S48 2
—0.S93 942 6
—0.593 938 3
—0.132085 1
—0.132 1129
—0. 132 1128

0.442 271 3
0.441 637 5

0.441 650 7
0.544 546 4
0.544 485 7
0.544 486 0

0.836 706 3
0.836 975 9
0.836 972 1

0.865 072 7
0.865 122 5
0.865 122 3

0.512 133 3
0
0

0.574 832 8
0
0

0.241 881 8
0.242 325 4
0.242 318 5
0.151032 4
0.151093 5
0. 151093 2

'Run with V(P) =
z m &P for comparison.

5'(r„)=— (5.70)

on the horizon, and use f (rs }and h (rs )=r„[P(rs ) —(()„]
EYMD k=1 Block Hole

2

5.0

EYMD k = 2 Block Hole
I I I I I I I I I

i
I I I I I I I I I

(b)

2.5
'g o(')

5.0

FICx. 3. One- and two-node regular solutions to Einstein-
Yang-Mills-dilaton theory for horizon radius ri, =1 and the di-
laton potential of Fig. 1(a). As in the regular case, only the dila-
ton function h (r)=rP(r) varies appreciably as the dilaton mass
approaches a maximum value. Although h„and M are not
equal for m&=0, an analytic expression is derived in Sec. V
which relates these quantities to other global solution parame-
ters.

as shooting parameters for rI, =1. The asymptotic prop-
erties of the fields, which we use to locate the neighbor-
hood of a solution in shooting parameter space, are iden-
tical to the regular solution properties, so we follow pre-
cisely the same shooting procedure detailed above. In
particular, the same truncation of h and maximum dila-
ton mass criterion are used to determine solutions in the
massive case.

We again examine only the k = 1- and k =2-node solu-
tion classes for the choice $„=0and compare results for
the full potential (2.15) and the toy potential
V($)=m&$ /2; the results are shown in Fig. 3 and
Table II. Again only the function h varies significantly as

m& increases over the small allowed interval, with h ap-
proaching h „and then vanishing exponentially at pro-
gressively smaller radius. The solution structure is nearly
identical to the r ~1 portion of the regular solutions,
which in part rejects the occurrence of the event horizon
at the characteristic radius r = 1 of the dimensionless sys-
tem. A closer examination of the regular solution func-
tion reveals a sharp peak in the metric function R (r) near
r =1, where 2m(r)lr closely approaches unity, thus
demonstrating that even the regular solutions are strong-
ly gravitating. As we might expect from previous work
with black hole solutions to theories with non-Abelian
gauge fields [7—9], the black hole solutions reduce to the
regular solutions for the same choice of Ig„,m& ] in the
limit rI, ~O.

Although the total mass energy and dilaton charge do
not obey the simple relationship h „=M enjoyed by the
massless dilaton regular solutions, the analytical result
(5.49}does relate h „ to M, 5o=5(rz ) and the integration
parameters rI„f (r„),and p(r„}. Again, the results of our
numerical procedure verify a nontrivial relationship be-
tween the physical parameters of solutions to better than
seven significant figures. Black hole solutions for the
massive dilaton also exhibit the approximate scaling
properties explored above for nonzero P„, but the
specific relations for r, m (r), and (m&),„only hold when

we scale the horizon radius according to rz ~e "rz.

VI. CONCLUSIONS

In this paper we have studied static, spherically sym-
metric regular, and black hole solutions to SU(2) gauge
theory coupled to a massive dilaton, massive axion, and
Einstein gravity. Our intentions have been twofold: to
explore solutions in the physically relevant context of
low-energy string theory with massive scalar fields, and
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to determine whether "stringy"' scalar fields lead to non-
Abelian solutions with primary hair and good prospects
for stability. After analyzing all the possibilities for fun-
damentally non-Abelian solutions, we found strong nu-
merical evidence for regular and black hole solutions of a
massive dilaton coupled to the Yang-Mills field (EYMD
theory), and established a deeper understanding of cer-
tain solution existence techniques [53] in the course of ex-
ploring the solutions analytically. Although the case of a
massive axion coupled to the gauge field appeared
promising we found that the full theory, which describes
a massive dilaton and massive axion coupled to a dyonic
non-Abelian configuration, is the only other situation
which can admit solutions. We presented no numerical
evidence for such solutions, but we were able to construct
a consistent solution scenario.

An important issue that we have not addressed in
depth is the stability of our solutions. As we noted
above, the primary hair solutions to EYMD theory are
structurally very similar to the solutions of EYM
[10,7 —9] and EYMH [23] theories, which have been in-

terpreted as generalized sphalerons and are generically
unstable. Although examples of stable solutions with
non-Abelian structure have been found, such solutions
typically possess a net gauge or topological charge (e.g. ,
"black holes inside magnetic monopoles" [20—22]) or, at
the very least, occur in theories which admit stable Aat-

space soliton solutions (e.g. , black hole solutions in
Einstein-Skyrme theory [27,28]). Neither of these
characteristics is shared by our solutions. These observa-
tions, and the linear analysis of [46] which established the
instability of EYMD solutions for a massless dilaton,
make the stability of our massive dilaton solutions very
unlikely.

In light of this conclusion one might question the
relevance of pursuing numerical solutions to the fu11

theory. As the only examples of gravitating SU(2) solu-
tions with both magnetic and electric fields, such solu-
tions would be interesting in their own right, but the lack
of a net electric charge (which follows here from the
asymptotic behavior of the field equations) would appear
not to improve the chances of stability. It is conceivable,
however, that the structure arising from the coupled elec-
tric and magnetic charge densities substantially modifies
the sphaleron character of EYMD solutions, even in the
absence of a net charge. Only in such circumstances, it
seems„could we reasonably hope for stable solutions.
Since it requires a four-parameter shooting procedure,
the task of finding such solutions could present enough
obstacles that these questions might remain unanswered.
Though we have not yet attempted to obtain such solu-
tions, we have described a strategy which might simplify
this formidable task. We hope to test the eScacy of this
strategy in future investigations of string-inspired non-
Abelian dyonic solutions.

XOIe added. Whi1e this paper was being completed, I
received a preprint by Donets and Gal'tsov [49], which
overlaps with some of this work, and I recently became
aware of related papers by Lavrelashvili and Maison
[46—47] and Bizon [48].
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